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Abstract 

Background:  We aim to develop and test performance of a semi-automated method (computerized query com-
bined with manual review) for chart abstraction in the identification and characterization of surveillance radiology 
imaging for post-treatment non-small cell lung cancer patients.

Methods:  A gold standard dataset consisting of 3011 radiology reports from 361 lung cancer patients treated at the 
Veterans Health Administration from 2008 to 2016 was manually created by an abstractor coding image type, image 
indication, and image findings. Computerized queries using a text search tool were performed to code reports. The 
primary endpoint of query performance was evaluated by sensitivity, positive predictive value (PPV), and F1 score. 
The secondary endpoint of efficiency compared semi-automated abstraction time to manual abstraction time using a 
separate dataset and the Wilcoxon rank-sum test.

Results:  Query for image type demonstrated the highest sensitivity of 85%, PPV 95%, and F1 score 0.90. Query for 
image indication demonstrated sensitivity 72%, PPV 70%, and F1 score 0.71. The image findings queries ranged from 
sensitivity 75–85%, PPV 23–25%, and F1 score 0.36–0.37. Semi-automated abstraction with our best performing query 
(image type) improved abstraction times by 68% per patient compared to manual abstraction alone (from median 
21.5 min (interquartile range 16.0) to 6.9 min (interquartile range 9.5), p < 0.005).

Conclusions:  Semi-automated abstraction using the best performing query of image type improved abstraction effi-
ciency while preserving data accuracy. The computerized query acts as a pre-processing tool for manual abstraction 
by restricting effort to relevant images. Determining image indication and findings requires the addition of manual 
review for a semi-automatic abstraction approach in order to ensure data accuracy.
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Background
Lung cancer represents the leading cause of cancer 
deaths within the US [1].

Patients undergoing treatment with curative intent are 
routinely followed for ongoing cancer surveillance as the 
risk of recurrent lung cancer is estimated at 2–14% per 
patient-year and the risk of second primary lung cancer 
is 1–4% per patient year [2–4]. Data to inform recom-
mendations on surveillance timing hinges on the abil-
ity of researchers to accurately categorize imaging tests 
as to their indications and findings. Such detailed data 
have historically required manual chart abstraction as the 
gold standard for capturing clinical events [5–7]. How-
ever, manual chart abstraction in clinical research is labor 
intensive and time consuming [8], thereby limiting the 
size of data sets that can be studied to inform practice. 
Thus, the majority of data regarding surveillance imaging 
following lung cancer treatment has been limited to small 
case series [9–15]. Consequently, guidelines regard-
ing post treatment lung cancer surveillance from the 
National Comprehensive Cancer Network (NCCN) and 
other international entities are based on low level evi-
dence and the opinions of expert panels of providers [16].

Other studies have been conducted using larger data 
sources in an attempt to inform surveillance guideline 
recommendations (e.g. Surveillance, Epidemiology and 
End Results Program (SEER) or Veterans Affairs Central 
Cancer Registry (VACCR)) [17, 18]. These administra-
tive and claims-based datasets provide large amounts of 
data for population studies, providing sufficient power 
for robust analysis. They are limited, however, in that 
they often lack the clinical granularity required to fully 
inform decision making [19–21]. Pairing this data with 
the gold standard method of obtaining clinical data—
chart abstraction—would provide a significant amount 
of relevant clinical information to truly understand 
current practices of post treatment surveillance but is 
often impractical due to the expense and labor of such 
abstraction.

To address this problem, some have advocated for 
automating the process of chart abstraction through the 
use of machine-learning and natural language processing, 
thereby reducing the time burden and increasing effi-
ciency. While these techniques have shown some prom-
ise overall, reliable methods to distinguish the indications 
for imaging studies in the context of lung cancer do not 
exist. Additionally, use of natural language processing 
suffers from limitations in accuracy [22]. At least one 
prior study compared abstraction of lung cancer imaging 
reports using natural language processing alone, manual 
abstraction alone, and a combination of the two methods 
and found the combination of manual abstraction and 
natural language processing to be the most accurate in 

identifying findings suspicious for lung cancer. However, 
this study only examined CT chest reports and did not 
specifically focus on post-treatment surveillance imag-
ing which can be more complex studies to interpret by 
radiologists [23]. Another study also examined CT chest 
imaging reports using a rule-based natural language 
processing algorithm to identify lung nodules and more 
complex machine learning algorithms to determine the 
presence of concerning features. However, again, the 
authors only examined one type of imaging modality 
and did not focus on post-treatment surveillance imag-
ing [24]. Though CT chest is recommended by NCCN 
guidelines for post-treatment surveillance  [16], in clini-
cal practice, multiple different imaging types are utilized 
routinely to rule out or diagnose recurrence in these 
patients.

Objective
We sought to develop a semi-automated approach to 
chart abstraction to speed identification and evalua-
tion of post treatment surveillance imaging and to test 
the efficiency and accuracy of this method. The method 
combines the advantages of a large administrative data-
set with important clinical details to produce a rich 
data source for robust analyses. This is a part of a larger 
study of a national cohort of lung cancer patients within 
the Veterans Health Administration (VHA) examin-
ing data from the Corporate Data Warehouse (CDW), 
that includes full clinical and radiographic notes and 
reports as unstructured elements. The methods herein 
describe the use of the Veterans Indexed Search for Ana-
lytics (VISA), for improved time efficiency as well as its 
limitations by defining the point at which manual chart 
abstraction must supplement VISA use to produce accu-
rate results.

In this study, we hypothesized that VISA queries will 
function at an intermediate level in terms of clinical 
accuracy. We anticipated they would provide insufficient 
search results (mid-level sensitivity and positive predic-
tive value) to appropriately characterize the clinical indi-
cation for the radiology study and the image findings 
on their own. However, when combined with manual 
abstraction (the semi-automated method), VISA query 
use (specifically using the image type query) will result 
in an increase in efficiency of abstraction as compared to 
manual abstraction alone.

Methods
Cohort creation
This study was evaluated by the joint Stanford and Vet-
erans Administration IRB and waivers of consent were 
granted. The larger study population includes Veterans 
who had been diagnosed with non-small cell lung cancer 



Page 3 of 14Byrd et al. BMC Medical Informatics and Decision Making          (2022) 22:148 	

(NSCLC) between 2008 and 2016 that were present in 
the Veterans Administration (VA)/CDW database. This 
data source combines structured administrative data ele-
ments (e.g. International Classification of Diseases (ICD) 
and procedure codes) from multiple sources into a cen-
tral resource [7, 25].

We included Veterans with a relevant ICD-9 diagnosis 
of lung cancer that underwent treatment with curative 
intent, defined by relevant treatment and procedure Cur-
rent Procedural Terminology (CPT)/Healthcare Com-
mon Procedure Coding System (HCPCS) codes (lung 
resection, chemotherapy and radiotherapy or combina-
tion thereof ) (Additional file 1: Appendix A: ICD-9 and 
CPT/HCPCS codes). Treatments and procedures were 
included if they occurred between one month before and 
6 months after diagnosis. Patients were excluded if they 
died within 6 months of diagnosis, had any previous can-
cer within the prior 5 years, or had stage IV disease. Fol-
lowing exclusion, 17,472 total Veterans were included in 
the final cohort from the initial 185,112 patients. (Addi-
tional file 1: Appendix B: Consort diagram).

Radiographic index preparation
A searchable radiology index was created which housed 
the full text radiology reports within the aforementioned 
timeframe for all patients in this cohort. The radiology 
reports were saved in a Text Integration Utility (TIU) for-
mat in the CDW. Relevant CDW radiology note domains 
(patient indentifier (PatientICN), radiology exam, radiol-
ogy report text, date of report, etc.) were queried using 
SQL to identify all radiology related text documents. 
Separately, relevant structured clinical variables were 
queried from the CDW (PatientICN, date of diagnosis, 
cancer histology, stage, etc.). All retrieved information 
was then stored in a relational database. The Lucene-
based VISA tool (developed in part by members of our 
team) indexed the aforementioned radiology texts stored 
in the relational database and linked them with the struc-
tured clinical variables via the patient identifier combin-
ing the two data sources [26].

Lucene‑based search tool development
To characterize all imaging performed during the post-
treatment period, we defined our main outcome variables 
as image type, image indication, and image findings (the 
latter as described by the reporting radiologist). VISA, a 
Lucene-based open-source full text search engine written 
in Java, was used to index the radiology reports, search 
the radiology reports for text relevant to the user’s query, 
and then to abstract radiology data from the reports. This 
tool was developed in part by members of the team and 
has been previously applied to clinical provider docu-
ments within the medical chart to capture conversations 

surrounding the initiation of dialysis for chronic kid-
ney disease and identify adverse childhood events in 
the Veteran population [6, 27]. The Lucene-based VISA 
text search tool, as described above, rapidly reviews the 
full text radiology reports within the index. Based on a 
user’s query, VISA returns the user-defined relevant full 
text radiology reports (organized by patient identifier and 
date of report) with highlighted relevant text snippets. In 
other words, a complex combination of key words can 
be automatically searched for, allowing for more efficient 
chart abstraction.

The VISA tool allows radiology reports to either be 
flagged and coded without manual review (computerized 
query only) or to be manually reviewed and annotated 
by a clinical abstractor (as in the case of our semi-auto-
mated review) (Fig.  1: VISA Tool). Three search query 
types are available for use in VISA—Boolean, Span, and 
Phrase Queries. Boolean queries allow system users to 
combine keywords with operators such as “AND” and 
“OR” to search the entire scope of the document to find 
relevant reports. Span queries retrieve documents where 
identified keywords are all present within a specified 
number of words. The “NOT” operator can be used in 
the span query. If keywords are linked by “NOT” within 
the aforementioned specified number of words, the doc-
ument is not a match and is excluded. Phrase queries 
allow for a set of adjacent words within quotations to 
be found within a document. The VISA tool returns rel-
evant report information including a patient identifying 
number (PatientICN), if the report has been abstracted 
by the reviewer already, the date of cancer diagnosis, the 
title of the document (enterprise title), and a snippet of 
the report text containing the highlighted queried terms.

VISA also houses the data collection instrument spe-
cific to our project. Thus, each radiology report can 
be reviewed by a clinical abstractor to code image type 
(CT chest, Chest x-ray, PET/CT, etc.), image indication 
(surveillance, symptoms, follow up from abnormal prior 
imaging, etc.), image findings (benign, suspicious for 
recurrence, definitive recurrence, etc.) and other relevant 
clinical variables (Fig.  2: VISA Data Collection Instru-
ment). At the completion of abstraction, data are subse-
quently exported to a SQL based server.

Manual abstraction training test performance
Clinical abstractors were trained to manually abstract 
radiology reports using a series of validated test data. 
Abstractors underwent three rounds of training using 
sets of 20–40 randomly selected reports from the 17,472 
patient-cohort. They were required to reach a concord-
ance rate of 95%. After the completion of manual abstrac-
tion training, abstractors timed themselves to determine 
the amount of time required to manually abstract data 
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from patient reports.The time to abstract each patient’s 
set of reports over the course of a workday (8 h) was timed 
using stopwatches. The first time recorded the duration 
of time to abstract an entire patient chart (patient-level 
timing). This was defined by the time between open-
ing a patient record and end of data abstraction for that 
patient. The second time recorded the duration of time 
to abstract each radiology report (report-level timing). 
This was defined by the time from opening each image 
report until after that report had been completely coded. 
Prior to the development of queries, the time to manu-
ally abstract the reports/ patient data as described above 
was recordered and stored. This manually abstracted set 
of patients would later be compared with a subsequent 
dataset that utilized semi-automated abstraction to 
determine the efficiency of each technique.

Search query development
Queries were then developed to determine test perfor-
mance of the VISA tool for our main outcomes of inter-
est. A total of 4 queries were developed (Additional file 1: 
Appendix C: Search Queries). The goal of the first query 
was to identify the appropriate image types relevant to 
identifying lung cancer recurrence, metastasis, or sec-
ond primary lung cancers and to exclude non-relevant 

imaging. Relevant image types included: CT chest, CT 
head, CT abdomen/pelvis, CT chest/abdomen/pelvis, 
chest x-ray, bone scan, PET/CT, MRI brain, and MRI 
body. Search terms and phrase queries were devel-
oped in an iterative process with the goal of capturing 
as many relevant studies as possible. The phrase que-
ries were added into a Boolean search query with “OR” 
as the default operator between phrases. All subsequent 
searches were thus restricted to relevant imaging studies.

The second query sought to identify the radiology 
studies obtained specifically for the indication of post-
treatment “surveillance”. This was selected as it was most 
relevant to the questions of the larger study to determine 
the ideal surveillance for asymptomatic patients follow-
ing treatment for lung cancer. As per the first query, 
phrases associated with surveillance were identified and 
added into a Boolean search query with default operator 
“OR” between terms/phrases (Additional file  1: Appen-
dix C: Search Queries). The last two queries sought to 
characterize imaging findings and more specifically, to 
identify studies with findings “suspicious” for recurrence, 
metastasis, or second primary lung malignancy and those 
where the radiologist indicated findings definitive for 
cancer recurrence, metastasis, or second primary lung 
cancer. Similar to “surveillance”, we limited the findings 

Fig. 1  Veterans indexed search for analytics (VISA) tool. This figure includes a nonsense example of the appearance of the Veterans Indexed Search 
for Analytics (VISA) Tool. The star highlights an example of a Boolean search query. The subsequent results and snippets of text information with 
highlighted terms from the search query are seen below as represented by the pentagon
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query to these two categories in order to focus on the 
variables that carried the most relevance for the larger 
study of surveillance and clinical outcomes. For the “sus-
picious” query, span queries were built that searched 
for combinations of terms signifying suspicious  (e.g. 
“worrisome”, “concerning,”) and words that represented 

recurrence, metastatic disease, or second primary lung 
cancer within a 10-word span. If the words “not” or “no” 
were present within the 10-word span, those radiology 
reports were excluded. The “recurrence” query was built 
using words that indicated definitive cancer recurrence, 
metastatic disease, or second primary lung cancer within 

Fig. 2  VISA data collection instrument. This figure includes a nonsense example of the appearance of the Veterans Indexed Search for Analytics 
(VISA) Data Collection Instrument tool. The star demarcates the full text of a radiology report. User highlighted text is in pink. Yellow highlighted text 
represents computer identified queried words and phrases. A pentagon represents an example of the way in which the radiology report may be 
coded by a user
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a 10-word span. If the words “not” or “no” were pre-
sent within the 10-word span, those image reports were 
excluded (Additional file 1: Appendix C: Search Queries).

VISA test performance for computerized queries
To test the computerized VISA tool test performance in 
coding radiology reports, we created a gold standard of 
completely manually abstracted data derived from a ran-
dom sample of the parent study cohort of 17,472 patients. 
This gold standard cohort consisted of 361 patients 
with abstraction and annotations performed manu-
ally (Table 1: Characteristics of Gold Standard Manually 
Abstracted Radiology Reports). This cohort was used as a 
reference standard for test performance of the VISA tool 
computerized queries.

We evaluated the performance of each computerized 
query applied (image type, image indication, and image 
findings) to our manually abstracted gold standard data-
set using the VISA search tool. Sensitivity (recall), PPV 
(precision), F1 score, and specificity were calculated to 
evaluate performance of each query to accurately retrieve 
and characterize reports. All statistical analyses were 
performed using R [28].

VISA allows users to develop queries to search for 
reports that correspond to a specific annotation. The 
sensitivity of the query is thus the fraction of appropri-
ately retrieved reports (true positives) out of all reports 
with that specific annotation (true positives + false nega-
tives) in the gold standard cohort. The PPV of the query 
is the fraction of reports that are appropriately retrieved 
(true positives) out of all the retrieved reports (true posi-
tives + false positives). The F1 score is a summary sta-
tistic representing the harmonic mean of sensitivity and 
PPV, taking into account both false positives and false 
negatives. The specificity of a query is the fraction of 
reports that the lucene tool appropriately excluded (true 
negatives) out of all reports not matching a specific anno-
tation (true negatives + false positives). A high-perform-
ing, efficient query has both high sensitivity (retrieves 
a majority of the relevant results) and high PPV (of the 
reports retrieved, a majority of them are relevant). A low 
PPV indicates that the query retrieved several irrelevant 
reports that must be reviewed manually for exclusion. 
A low sensitivity indicates that the query did not appro-
priately identify relevant reports. In those cases, manual 
abstraction is necessary for accuracy. A high specificity is 
also helpful as it indicates that this query excludes mostly 
irrelevant reports, though literature in this work tends to 
focus soley on the sensitivity and PPV of a search query 
[6, 29, 30].

Semi‑automated abstraction methods and timing
We determined the highest performing computer-
ized queries (high sensitivity, PPV, and F1 score) and 
then combined this with manual abstraction for more 
accurate coding. First, the computerized query was 
applied to yield snippets of text with highlighted terms 
that were then viewed within the context of the larger 
report by the trained abstractor (Fig. 1). The abstractor 
had full access to all other reports for a given patient as 
well as the VISA database tab which included impor-
tant clinically relevant data (date of diagnosis, histol-
ogy, etc.) to assist with accurate coding as in the case 
of the full manual abstraction process. The abstractor 
would then apply the relevant data codes to each imag-
ing report providing the most accurate accounting of 
the data based on the displayed text and snippet.

Table 1  Characteristics of gold standard manually abstracted 
radiology reportsα

α The total number of reportss with image type annotated = 3011, the total 
number of reports with image indication annotated = 3009, the total number 
of reports with image findings annotated = 3008. 180 reports were found in our 
manually abstracted dataset that were coded as null, indicating that they were 
not relevant images. Thus the total number of reports representing 361 patients 
was 3191

Characteristics of radiology reports Annotated 
reports (N 
(%))

Image types n = 3011

 Bone scan 23 (0.8)

 Chest X-ray 1320 (43.8)

 CT abdomen/pelvis 127 (4.2)

 CT chest 902 (30.0)

 CT chest/abdomen/pelvis 123 (4.1)

 CT head 149 (4.9)

 MRI body 58 (1.9)

 MRI brain 42 (1.4)

 PET scan 267 (8.9)

Image indication n = 3009

 Surveillance 954 (31.7)

 Symptomatic 649 (21.6)

 Follow up from prior abnormal chest imaging 244 (8.1)

 Follow up from prior abnormal other imaging 30 (1.0)

 Other 480 (16.0)

 Unknown 652 (21.7)

Image findings n = 3008

 Suspicious 331 (11.0)

 Recurrence 110 (3.7)

 Benign 959 (31.9)

 Nonspecific 1019 (33.9)

 Second primary lung cancer 14 (0.5)

 Second primary cancer, other 11 (0.4)

 Other (unrelated to cancer) 564 (18.8)
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To determine the effect of semi-automated abstrac-
tion using VISA queries on efficiency of data abstrac-
tion, we compared the time required for semi-automated 
and manual abstraction at the patient-level and report-
level. A new cohort of patients was abstracted  to meas-
ure semi-automated abstraction times while  the manual 
abstraction timing data was derived from patients in 
the gold standard manually abstracted cohort.  For this 
comparison, we limited the use of VISA to the image 
type query given its superior performance as com-
pared to the other queries (see “results” below). Using 
the same method described above, the time to abstract 
each patient’s set of reports using the semi-automated 
method over the course of an 8  h workday was timed 
using stopwatches.  Time per patient (minutes), time 
per report (seconds), and number of reports per patient 
were recorded. Collected manual abstraction times 
described in the “Manual abstraction training test per-
formance” section derived from the gold standard patient 
cohort  were then compared with the semi-automated 
abstraction times using the Wilcoxon rank-sum test for 
non-parametric data for comparison of independent 
groups data. The number of reports per patient were 
compared using a simple t-test. Percent reduction in time 
from semi-automated abstraction to manual abstraction 
was also calculated.

Results
The results of the performance of the image type query 
on the 361-gold standard manually abstracted patients 
are presented in Table  2. The image type query per-
formed relatively well. Sensitivity was 85%, PPV 95%, F1 
score 0.90 with respect to the query’s ability to retrieve 
relevant imaging reports. The query’s sensitivity to detect 
certain image types was also evaluated and is presented 
in Table  3. Sensitivities ranged from 79 to 100% for the 
image types of bone scan, chest X-ray, CT chest, CT 
chest/abdomen/pelvis, CT head, MRI brain, and PET 
scan. Sensitivity of the query was low for CT abdomen/
pelvis (50%) and MRI body (48%). Performance of the 
“surveillance” indication query and image findings que-
ries are presented in Table 2. The query for “surveillance” 
indication  demonstrated  sensitivity 72%, PPV 70%, and 
F1 Score 0.71. For study findings, the “suspicious” query 
demonstrated sensitivity 75%, PPV 25%, and F1 Score 
0.37 and the “recurrence” query demonstrated sensitivity 
85%, PPV 23%, and F1 Score 0.36.

Comparison of the timing results between manual 
abstraction and semi-automated abstraction using 
Lucene for the image type query are presented in Table 4. 
Given the comparatively lower performance of all com-
puterized queries with the exception of image type, we 
restricted our analysis of timing of the semi-automated 

methods to this query alone. Using the image type query, 
we were able to reduce the abstractor time spent per 
patient by 68%, from a median of 21.5 min/patient (IQR 
16.0) to 6.9  min/patient (IQR 9.5) (p = 0.0024). Time 
spent per report was reduced by 50% from a median 
of 60.0 s (IQR 90.0 s) to 30.0 s (IQR 80.0 s) (p < 0.0005). 
However, there was a significantly smaller number of 
reports per patient in those examined with the semi-
automatic technique v. manual abstraction technique 
(mean ± SD, 9.96 ± 9.41 v. 12.75 ± 10.50 (p = 0.04)) by 
virtue of the goals of the query to reduce the number of 
irrelevant reports that required review.

Discussion
Our goal was to develop a methodology that would allow 
us to efficiently gather clinically accurate information 
from unstructured radiology text reports housed in the 
VA CDW database. Ultimately, we would like to use this 
information to help inform post lung cancer treatment 
surveillance guidelines. To do this we have developed a 
semi-automated process to chart abstraction using com-
puterized queries to identify image types, images ordered 
explicitly for surveillance, and images that demonstrated 
findings suspicious or definitive for lung cancer recur-
rence, metastasis, or second primary lung cancer.

An ideal method would be evidenced by a query which 
yields a high PPV, reliably only retrieving relevant image 
reports. This reduces the time spent reviewing and ulti-
mately excluding irrelevant reports allowing the abstrac-
tor to concentrate their efforts on annotating only those 
reports relevant to the outcome of interest. This must be 
balanced with high test sensitivity as well. A highly sensi-
tive query improves efficiency by decreasing the time a 
manual abstractor would spend searching for unidenti-
fied results. Thus efficient, high performing queries with 
high PPV and sensitivity provide an important pre-pro-
cessing step to manual abstraction. They retrieve a high 
proportion of the relevant image reports while exclud-
ing irrelevant reports and thus reducing time spent on 
unnecessary chart review.

In this study, we hypothesized that the computerized 
queries on their own would perform this pre-processing 
step sufficiently well to improve efficiency but would 
likely be unable to yield high enough accuracy when 
used alone in the absence of manual validation. The que-
ries would predictably have limitations in their ability to 
categorize the image characteristics (image indication 
and image findings) on their own. Thus, using a semi-
automated approach, would allow the use of computer-
ized queries to improve time efficiency by decreasing the 
number of irrelevant reports reviewed manually and by 
retrieving a significant number of the relevant reports 
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while also decreasing any limitations in accuracy that 
would arise when using the queries on their own.

Overall, the image type query was the best performing 
query with sensitivity 85%, PPV 95%, and F1 Score 0.90. 
By contrast, computerized queries to identify CT abdo-
men/pelvis and MRI body were only able to reliably code 
these image types approximately 50% of the time. It is not 
clear as to why these particular image types had low sen-
sitivity. However, given the overall success of this query, 

we subsequently attempted to determine if use of this 
query did improve efficiency of abstraction. The use of 
this query did reduce the amount of time necessary for 
abstraction. There was a 68% reduction in abstraction 
time per patient and 50% reduction in abstraction time 
per report. It is key to note that there were, on average 3 
less reports to review per patient in the group of reports 
abstracted using the semi-automated method vs. manual 
abstraction. However, given the significant reduction in 

Table 2  Overall performance of queries in the 361-patient manually abstracted cohort

β Sensitivity = true positive/ (true positive + false negative)
γ Specificity = true negative/ (true negative + false positive)
δ Positive predictive value = true positive/ (true positive + false positive)
ε F1 score = 2 ((sensitivity*PPV)/ (sensitivity + PPV))

Image annotation

Image type: any relevant 
image

Gold standard manual abstraction

Relevant study Not relevant study

Automated Lucene tool 
result

Relevant study 2548 133

Not relevant study 463 47

Sensitivityβ

(95% CI)
Specificityγ

(95% CI)
PPVδ

(95% CI)
F1 scoreε

85%
(83–86%)

26%
(20–33%)

95%
(94–96%)

0.90

Indication: surveillance Gold standard manual abstraction

Surveillance study Not surveillance study

Automated Lucene tool 
result

Surveillance study 690 292

Not surveillance study 264 1763

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

72%
(69–75%)

86%
(84–87%)

70%
(67–73%)

0.71

Finding: suspicious Gold standard manual abstraction

Suspicious finding on study No suspicious finding 
on study

Automated Lucene tool 
result

Suspicious finding on study 247 755

No suspicious finding on 
study

84 1922

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

75%
(70–79%)

72%
(70–73%)

25%
(22–27%)

0.37

Finding: recurrence only Gold standard manual abstraction

Recurrence on study No recurrence on study

Automated Lucene tool 
result

Recurrence on study 105 353

No recurrence on study 19 2531

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

85%
(77–91%)

88%
(87–89%)

23%
(19–27%)

0.36
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Table 3  Performance of the image type query in identifying specific image types in the 361-patient cohortζ

Image type

Bone scan Gold standard manual abstraction

Bone scan Not bone scan

Automated Lucene tool result Bone scan 23 0

Not bone scan 0 2988

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

100%
(85–100%)

100%
(100–100%)

100%
(85–100%)

1.00

Chest X-ray Gold standard manual abstraction

Chest X-ray Not chest X-ray

Automated Lucene tool result Chest X-ray 1039 0

Not chest X-ray 281 1691

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

79%
(76–81%)

100%
(100–100%)

100%
(100–100%)

0.88

CT chest Gold standard manual abstraction

CT chest Not CT chest

Automated Lucene tool result CT chest 841 0

Not CT chest 61 2109

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

93%
(91–95%)

100%
(100–100%)

100%
(100–100%)

0.97

CT abdomen/pelvis Gold standard manual abstraction

CT abdomen/pelvis Not CT abdomen/pelvis

Automated lucene tool result CT abdomen/pelvis 63 0

Not CT abdomen/pelvis 64 2884

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

50%
(41–59%)

100%
(100–100%)

100%
(94–100%)

0.66

CT chest/abdomen/pelvis Gold standard manual abstraction

CT Chest/abdomen/pelvis Not CT Chest/abdomen/
pelvis

Automated Lucene tool result CT Chest/abdomen/pelvis 116 0

Not CT Chest/abdomen/pelvis 7 2888

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

94%
(89–98%)

100%
(100–100%)

100%
(97–100%)

0.97
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Table 3  (continued)

Image type

CT head Gold standard manual abstraction

CT head Not CT head

Automated Lucene tool result CT head 131 0

Not CT head 18 2862

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

88%
(82–93%)

100%
(100–100%)

100%
(97–100%)

0.94

MR body Gold standard manual abstraction

MR body Not MR body

Automated Lucene tool result MR body 28 0

Not MR body 30 2953

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

48%
(35–62%)

100%
(100–100%)

100%
(88–100%)

0.65

MR brain Gold standard manual abstraction

MR brain Not MR brain

Automated Lucene tool result MR brain 41 0

Not MR brain 1 2969

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

98%
(87–100%)

100%
(100–100%)

100%
(91–100%)

0.99

PET Gold standard manual abstraction

PET Not PET

Automated Lucene tool result PET 266 0

Not PET 1 2744

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

F1 score

100%
(98–100%)

100%
(100–100%)

100%
(99–100%)

1.00

ζ This 361-patient cohort consists of 3011 manually abstracted reports

Table 4  Timing for manual and semi-automated chart abstractionζ

ζ The semi-automated chart abstraction was performed using the image-type query

Timing metric Manual Semi-automated p-value % 
Reduction 
in time

Total number of reports 204 239

Minutes/patient (median, (IQR)) 21.5 (16.0) 6.9 (9.5) 0.0024 68

Seconds/patient report (median, (IQR)) 60.0 (90.0) 30.0 (80.0)  < 0.0005 50

Reports/patient (mean, (SD)) 12.75 (10.50) 9.96 (9.41) 0.0398
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time from 21.5 min/patient using the manual method to 
6.9 min per patient using the semi-automated method, it 
is unlikely that a difference of approximately 3 reports per 
patient could account for this difference in its entirety. 
Indeed, the objective and main benefit of the semi-auto-
mated method is to do just this, reduce the work associ-
ated with abstraction of irrelevant data and in fact, when 
normalized to time spent per image report, the reduction 
in time associated with the semi-automated abstraction 
persisted.

The performance of the surveillance indication query 
was intermediate with sensitivity 72%, PPV 70%, and 
F1 Score 0.71. The computerized query for image find-
ings to characterize cancer recurrence demonstrated the 
worst test performance with PPV of 25% (suspicious) and 
23% (recurrence). However, the query did demonstrate 
an intermediate sensitivity of 75% (suspicious) and 85% 
(recurrence). The F1 scores were 0.37 (suspicious) and 
0.36 (recurrence). The PPV of the image findings queries 
was much lower than expected. The remaining results, 
sensitivity of the image findings queries and the PPV and 
sensitivity of the image indication queries were satisfac-
tory as expected. However, given that the best queries 
have both high PPV and high sensitivity, this finding con-
tinues to emphasize that the queries benefit from manual 
abstraction to improve upon accuracy.

Our results demonstrate the limitations of using com-
puterized queries alone to fully characterize imaging 
reports from unstructured data in the complicated clini-
cal setting of radiology reports for lung cancer patients 
following treatment. The VISA search tool works well for 
identifying relevant image types which then defines the 
point at which a trained abstractor must be utilized to 
accurately complete the abstraction process. The primary 
benefit of the VISA tool/queries is that it does improve 
efficiency and decrease the amount of time for abstrac-
tion given the high PPV and sensitivity of the image type 
query and its ability to include only relevant reports. This 
study helps to define the limitations of the VISA tool to 
maximize its benefit (improved efficiency) while limiting 
the harms of data inaccuracy.

This study adds to growing literature examining the 
use of natural language processing and machine learn-
ing to explore surveillance radiology patterns and clini-
cal outcomes following treatment for lung cancer. Wadia 
et  al., compared a rule-based natural language process-
ing strategy and combination natural language process-
ing/manual abstraction to identify CT reports with 
findings suspicious for a new lung cancer diagnosis. 
Though slightly different from our aim (to examine mul-
tiple imaging types for lung cancer recurrence), they also 
found that a combination of natural language process-
ing and manual abstraction was the most successful. The 

sensitivity and PPV for natural lanague processing alone 
was 77% and 88%, respectively. With a combination of 
natural language processing and manual abstraction the 
sensitivity was 92% and the PPV was 87% [23]. Hunter 
et al. also analyzed the ability to detect “concerning” and 
“reassuring” lung nodules on CT using different machine 
learning algorithms (Logistic regression, XG boost, Naïve 
Bayes, Random forest, Linear support vector machine). 
They initially identified CT scans with lung nodules using 
a validated rule-based natural language approach. Over-
all the F1 scores ranged from 0.71 to 0.89, Sensitivity 
ranged from 0.70–0.90, and PPV ranged from 0.64–0.89. 
The best performing algorithm was linear support vector 
machine with F1 0.89, sensitivity 0.90, and PPV 0.88 for 
predicting concerning lung nodules [24]. It is important 
to note, the machine learning technique was used after a 
pre-processing step using a rule-based algorithm to iden-
tify CT reports that actually had nodules. Our study also 
used a computerized pre-processing step to identify rel-
evant image reports to focus on, however, we attempted 
to differentiate between multiple different image types, 
which results in added complexity.

Other studies in the field of natural language process-
ing have also sought to find the most appropriate way 
to extract relevant information from unstructured data 
by using more automated approaches. For example, 
Steinkamp et  al. [31] like our group, sought to extract 
structured data—findings, recommendations, clinical 
history indications, etc.—from abdominopelvic radiology 
reports. They however, used a technique that relied solely 
on an automated machine learning process by identify-
ing both anchor words associated with the sought-after 
data and surrounding modifier terms to help contextual-
ize and identify further information. They had very good 
results with sensitivity of 88.6%, positive predictive val-
ues of 93.5% and F1 score of 91.0%. This demonstrates 
as we predicted that simply using an automated method 
of identifying anchor words associated with the sought-
after data is not sufficient, one must further contextualize 
the anchor words within a query with either human input 
(as in our study) or further machine learning as demon-
strated by Steinkamp et al. [31].

Another notable study by Casey et  al., reviewed tech-
niques to extract information from radiology reports 
using computerized methods. Per Casey et  al. [32], our 
approach to extract information would be considered 
“rule-based” as we used specific words or terms that pre-
sented frequently to search through the text. Though as 
our approach is semi-automated (utilizing human review 
as well), this label does not completely describe our tech-
nique. Per Casey et  al. since 2015 the number of stud-
ies utilizing a “rule-based” approach is approximately 
10–15 annually,with the number of studies incorporating 
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further machine learning increasing over time. Though 
given the aforementioned challenges to automated pro-
cesses, there is still work to do prior to those techniques 
being fully adapted for clinical research. For example, 
machine learning or deep learning techniques require 
large amounts of data for training, such that they remain 
inadequate/inaccurate for small sample sizes. Thus utiliz-
ing a semi-automated approach, we are able to circum-
vent this potential problem [32].

There are notable limitations to this study. The com-
puterized queries may have contained overly inclusive 
language resulting in inclusion of irrelevant studies when 
tested on the larger gold standard cohort. This was not an 
issue for the image type query as it was able to very effi-
ciently retrieve relevant image reports. It is likely that the 
language used to identify an image type is more stand-
ardized than that needed to identify image indications or 
findings thus contributing to the observed superior accu-
racy for this query.

This may also have introduced potential uncertainty 
in the actual number of false positives and true nega-
tives captured with our image type query. Image type was 
manually abstracted in 3011 reports. In addition to this, 
180 reports were coded as null by our abstractor. The null 
reports commonly represented image types that were 
irrelevant for lung cancer surveillance (i.e., a foot x-ray or 
pelvic ultrasound). These null reports were only included 
when examining the image type query’s yield. The image 
type query, designed to retrieve any relevant image, was 
unable to retrieve reports grouped by type. (i.e. CT chest 
and CT head were returned together). Thus, we were not 
able to determine the exact number of false positives or 
true negatives for each specific type, as the image type 
query did not discern image types. 

Despite these limitations, we belive the VISA tool and 
the semi-automated abstraction method is still of great 
benefit. The VISA tool does not require a predictable 
format for provider progress notes, radiology text notes 
and other text-based data. This is critical given the non-
standard way in which radiology reports are dictated by 
radiologists even within the same healthcare system. In 
this technique, key words are highlighted allowing the 
abstractor to rapidly identify relevant sections and skip 
over unnecessary sections or in this case, to skip entire 
radiology reports that are not relevant to the study. This 
also allows for greater efficiency in chart abstraction. In 
our prior unpublished lung nodule pilot, a single expert 
reviewer was able to annotate 1292 reports in 154  h 
reviewing approximately 168 reports per day (average 
rate of 2.5  min per chart). In other published studies, 
the VISA tool was able to identify discussions about ini-
tiation of dialysis treatment from clinical provider notes 
for 19,165 individuals and able to successfully identify 

adverse childhood events from 44.7 million clinical notes 
among 243,973 Gulf War Veterans(6, 27). It is clear that 
the use of queries in our Lucene-based VISA tool is help-
ful. Our semi-automated method utilizes the efficiency of 
this technique but improves upon concerns about inac-
curacies. Thus, this technique shows significant potential 
for use in large data studies requiring electronic health 
record review.

Conclusions
The image type query acts as a pre-processing tool for 
manual abstraction, retrieving a significant proportion 
of mostly relevant images. However, the intermediate 
to poor performance of the image indication and find-
ings queries indicates the necessity of semi-automated 
abstraction for appropriate report characterization and 
is likely necessary for more detailed clinical data from 
unstructured sources. The semi-automated abstraction 
method using the image type query will thus be a useful 
tool in future studies.
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