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Abstract 

Background: Coronavirus outbreak (SARS-CoV-2) has become a serious threat to human society all around the 
world. Due to the rapid rate of disease outbreaks and the severe shortages of medical resources, predicting COVID-
19 disease severity continues to be a challenge for healthcare systems. Accurate prediction of severe patients plays 
a vital role in determining treatment priorities, effective management of medical facilities, and reducing the number 
of deaths. Various methods have been used in the literature to predict the severity prognosis of COVID-19 patients. 
Despite the different appearance of the methods, they all aim to achieve generalizable results by increasing the 
accuracy and reducing the errors of predictions. In other words, accuracy is considered the only effective factor in 
the generalizability of models. In addition to accuracy, reliability and consistency of results are other critical factors 
that must be considered to yield generalizable medical predictions. Since the role of reliability in medical decisions is 
significant, upgrading reliable medical data-driven models requires more attention.

Methods: This paper presents a new modeling technique to specify and maximize the reliability of results in pre-
dicting the severity prognosis of COVID-19 patients. We use the well-known classic regression as the basic model to 
implement our proposed procedure on it. To assess the performance of the proposed model, it has been applied to 
predict the severity prognosis of COVID-19 by using a dataset including clinical information of 46 COVID-19 patients. 
The dataset consists of two types of patients’ outcomes including mild (discharge) and severe (ICU or death). To meas-
ure the efficiency of the proposed model, we compare the accuracy of the proposed model to the classic regression 
model.

Results: The proposed reliability-based regression model, by achieving 98.6% sensitivity, 88.2% specificity, and 93.10% 
accuracy, has better performance than classic accuracy-based regression model with 95.7% sensitivity, 85.5% specific-
ity, and 90.3% accuracy. Also, graphical analysis of ROC curve showed AUC 0.93 (95% CI 0.88–0.98) and AUC 0.90 (95% 
CI 0.85–0.96) for classic regression models, respectively.

Conclusions: Maximizing reliability in the medical forecasting models can lead to more generalizable and accurate 
results. The competitive results indicate that the proposed reliability-based regression model has higher performance 
in predicting the deterioration of COVID-19 patients compared to the classic accuracy-based regression model. 
The proposed framework can be used as a suitable alternative for the traditional regression method to improve the 
decision-making and triage processes of COVID-19 patients.
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Background
COVID-19 which was initially emerged from Wuhan, 
China in December 2019 has spread rapidly all around 
the world and has caused serious challenges for public 
health, economic and social activities. COVID-19 pan-
demic has put considerable pressure on governments 
and healthcare systems. In this crisis situation, predict-
ing the disease severity of arriving patients can play a 
fundamental role in saving more lives. It helps treatment 
teams to prioritize patients who are more likely to have 
an acute condition (ICU admission or death), which in 
turn accelerates the triage and healing processes, reduces 
the number of deaths, and causes more efficient resource 
management. Patient characteristics including clini-
cal data and computed tomography (CT) imaging have 
been studied by researchers to achieve precise predic-
tions about COVID-19 severity. Gallo Marin et  al. [15] 
have surveyed useful features in predicting the severity 
of COVID-19 disease. The factors include patients’ age, 
comorbidities, immune response, radiographic findings, 
laboratory markers, and indicators of organ dysfunction. 
Francone et al. [14] have studied CT scores and labora-
tory findings of SARS-CoV-2 patients. The results have 
shown that CT score has a critical role in forecasting 
the outcome of patients and there is a high correlation 
between this score and laboratory findings. Rokni et  al. 
[36] have compared clinical, para-clinical, and labora-
tory findings between survived and deceased COVID-
19 patients by using an independent sample T-test. The 
results show that elevated neutrophil to lymphocyte 
ratio (NLR), platelet to lymphocyte ratio (PLR), and sys-
tematic immune-inflammation (SII) can be considered 
as prognostic and risk stratifying factors of the severe 
form of COVID-19. Zhang et  al. [48] have compared 
clinical, laboratory, and CT findings between the sur-
vived and deceased groups of patients. Their results have 
shown that older age, comorbidities such as diabetes and 
emphysema, and higher CRP and NLRs increase the risk 
of death in Covid-19 patients. The literature of forecast-
ing in COVID-19, specifically for disease severity, shows 
a great interest to apply model-based approaches in dif-
ferent forms. In general, these models can be categorized 
into two main categories of analytical and predictical 
approaches. In the analytical approaches, the final goal 
is to yield a valid model for analyzing the underlying 
relationships between the target variable to the explana-
tory variable(s). While the main goal of the predictical 
approaches is to predict the target variable. Both of these 

categories are beneficial in their domain and have been 
applied in a wide range of applications, successfully.

Statistical and intelligent models are two main classes 
of methods that have been used in this field. The use of 
statistical techniques is a common approach to develop 
COVID-19 severity, prediction models. Regression mod-
els are among the most commonly used statistical meth-
ods in medical predictions. Different forms of regression 
models such as classic regression, logit regression, Cox 
regression, and least absolute shrinkage and selection 
operator (LASSO), etc. are among the most important 
statistical methods that have been used frequently in 
COVID-19 severity prediction researches. Hajiahmadi 
et  al. [16] have used a multivariate regression model to 
show the usefulness of chest severity score (CSS) in pre-
dicting ICU admission and mortality. Homayounieh et al. 
[18] have applied a multiple logistic regression model to 
show the superiority of the radionics from non-contrast 
chest CT over the radiologists’ estimation in predicting 
the outcome of COVID-19. Huang et al. [19] have shown 
that clinical attributes including underlying diseases, 
increased respiratory rate, elevated C-reactive protein 
(CRP), and lactate dehydrogenase (LDH) have a signifi-
cant correlation with the progress severity of COVID-19. 
The obtained results also indicate that elevated lactate 
dehydrogenase can be used as an effective feature to dif-
ferentiate severe cases from mild patients. They have 
utilized single-factor and multivariate logistic regres-
sion models as prediction methods. Zhou et  al. [52] 
have studied Demographics, symptoms, comorbidities, 
and temporal changes of laboratory results, CT features 
and severity scores for recovered and deceased groups 
by employing Mann-Whitney U test and the logistic 
regression model. Xiao et  al. [44] have applied univari-
able and multivariable logistic regression models by using 
demographic, clinical, laboratory, and radiological data 
of COVID-19 patients. Their findings show that maxi-
mum CT score (>11) and chronic obstructive pulmo-
nary disease (COPD) are critical features that affect the 
deterioration of COVID-19 patients. Shi et al. [37] have 
employed a LASS logistic regression model to predict the 
severity of COVID-19 disease based on clinical and radi-
ological findings of patients at admission. Wei et al. [42] 
have applied the value of CT texture analysis and clinical 
parameters to predict severe COVID-19 patients. They 
first have performed a minimum redundancy and maxi-
mum relevance (MRMR) method to feature selection and 
secondly have applied selected features as independent 
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variables in a multivariate logistic regression framework. 
Zhang et al. [48] have used univariable and multivariable 
logistic regression models to determine the risk factors of 
COVID-19 severity including age, white blood cell count, 
neutrophil, glomerular filtration rate, and myoglobin. A 
scoring system has been built according to the hazard 
ratio of each selected feature and the system has been 
used to predict severe COVID-19 patients. Chen et al. [8] 
have determined risk factors on fetal status for COVID-
19 hospitalized patients by employing multivariate Cox 
regression analysis. The risk factors include advanced 
age, dyspnea, coronary heart disease (CHD), cerebro-
vascular disease (CVD), and elevated levels of procalci-
tonin (PCT) and aspartate aminotransferase (AST). Bi 
et al. [6] have studied factors of coagulation function in 
COVID-19 patients. Their results show that fibrinogen-
to-Albumin Ratio (FAR) and platelet count (PLT) are 
two important features in predicting the progression of 
severe disease by applying a multivariate Cox analysis. 
Zhou et al. [53] have used the LASSO regression model 
to determine effective factors on COVID-19 severity 
including body temperature at admission, cough, dysp-
nea, hypertension, cardiovascular disease, chronic liver 
disease, and chronic kidney disease. They have utilized 
a multivariable logistic regression to achieve COVID-
19 severity predictions. Dong et  al. [12] have employed 
Cox regression models to identify high-risk features in 
COVID-19 severity. The features which include comor-
bidities, advanced age, reduced lymphocyte count, and 
higher lactate dehydrogenase at presentation are applied 
to make a scoring forecasting model.McRae et  al. [30] 
have used logistic regression model by using different 
attributes including CRP, N-terminus pro B type natriu-
retic peptide (NT-proBNP), myoglobin (MYO), D-dimer, 
PCT, creatine kinase-myocardial band (CK-MB), and, 
cardiac troponin I (cTnI) to determine COVID-19 sever-
ity. Zhang et  al. [49] have employed the Cox regres-
sion method to forecast recovery in adult hospitalized 
COVID-19 patients in the short term.

As well as statistical models that are useful tools in 
modeling and analysis, machine learning and artificial 
intelligence methods have attracted a great deal of atten-
tion in the field of COVID-19 severity prediction. Li et al. 
[27] have shown the effectiveness of laboratory tests and 
CT data to predict severe cases by employing a machine 
learning approach based on the random forest approach. 
Matos et al. [29] have provided a prediction of short-term 
outcomes in COVID-19 patients. They have shown that 
the volume of disease on CT scans and clinical attributes 
are useful to predict short-term outcomes. They have 
applied lymphocyte percentage and C-reactive protein 
to predict the volume of disease on CT scans. Different 
classification methods have been employed in their work 

including generalized linear model (GLM), penalized 
binominal regression (PBR), conditional inference trees 
(CIT), and support vector machine with the linear ker-
nel (SVL). Zhou et al. [51] have examined a set of clini-
cal factors including oxygenation index, basophil counts 
aspartate aminotransferase, gender, magnesium, gamma-
glutamyl transpeptidase, platelet counts, activated partial 
thromboplastin time, oxygen saturation, body tempera-
ture, and days after symptom onset to achieve a predict 
of COVID-19 disease development. They have used a 
genetic algorithm (GA) as a feature selection method as 
well as support vector machine (SVM) model to make the 
predictions. Yan et  al. [46] have proposed an XGBoost 
machine-learning model to predict critically ill patients 
by using lactic dehydrogenase (LDH), lymphocyte, and 
High-sensitivity C-reactive protein (hsCRP) factors. Ning 
et al. [31] have prepared a deep learning approach to pre-
dict COVID-19 patient outcomes by using CT images 
and 130 clinical features including biochemical and cel-
lular analyses of blood and urine samples. Bai et  al. [5] 
have used clinical, laboratory, and CT data to predict 
COVID-19 malignant progression by utilizing different 
approaches including logistic regression model, linear 
discriminant analysis (LDA), SVM, Multilayer perceptron 
(MLP), and long short term memory (LSTM) methods. 
They have proposed a machine-learning-based model 
for severity prediction which outperforms the logistic 
regression model. Cheng et al. [9] have applied a random 
forest (RF) model to forecast ICU Transfer within 24 h 
for COVID-19 patients who are hospitalized. Al-Najjar 
and Al-Rousan [2] have studied the effect of various vari-
ables including sex, birth year, country, region, group, 
infection reason, and confirmed date on the outcome 
(death or survival) of a set of COVID-19 patients by 
applying neural networks. Their results show that infec-
tion reason, confirmation date, and region are the most 
crucial factors in deceased cases while region, birth year, 
and confirmation date are the most effective features in 
survived patients. Moreover, the least effective factors 
in deceased cases include sex and group where the least 
important factors in survived patients are infection rea-
son and country. Several researches carried out in this 
field have been summarized in Table 1.

Despite the different appearance of Covid-19 severity 
prediction models, they all have been developed based 
on logic and common idea. The idea is that maximiz-
ing accuracy in a predefined training dataset (known 
patients) leads to higher generalizability in the unknown 
testing dataset (unseen samples). This means that the 
accuracy of results is considered as the only factor to 
determine the generalizability of forecasting models. 
Although it is a reasonable and frequent approach, it 
is not the only effective factor in making generalizable 
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Table 1 Recent studies on predicting the severity of Covid-19 patients

Author/[Ref.] Scope Attributes Methods Performance Size Country

Zhang et al. [48] Severity of COVID-19 Clinical and laboratory 
variables

Univariable and mul-
tivariable logistic regres-
sion models

AUC=0.906 80 China

Hajiahmadi et al. [16] ICU and death CT severity score Logistic regression 
model

AUC=0.764 192 Iran

Homayounieh et al. [18] ICU and death Interpretation of 
radiologists, clinical vari-
ables, lung radiomics

Multiple logistic regres-
sion model

AUC =0.84 (for ICU 
admission)

315 Iran

Huang et al. [19] Severe cases Clinical and laboratory 
data

Single-factor and 
multivariate logistic 
regression

AUC = 0.985 (95% CI 
0.968–1.00)

125 China

Zhou et al. [52] Severe cases clinical, laboratory, and 
CT data

Multivariable logistic 
regression

AUC =0.952 134 China

Xiao et al. [44] Severe illness Demographic, clinical, 
laboratory, and radio-
logical data

Univariable and mul-
tivariable logistic regres-
sion models

AUC= 0.861 (95% CI 
0.811–0.902)

243 China

Wei et al. [10] Common and severe 
patients

Clinical and CT data Multivariate logistic 
regression

AUC=0.95 81 China

Dong et al. [12] Survival Clinical and laboratory 
findungs

Multivariable Cox 
regression model

AUC= 0.922 (14 days) 
AUC= 0.881 (21 days)

628 China

Bai et al. [5] Severity of disease Clinical, laboratory, and 
CT data

Logistic regression 
model, LDA, SVM, MLP 
and LSTM

AUC=0.954 133 China

Al-Najjar and Al-Rousan 
[2]

Recovered and death 
cases

Sex, birth year, country, 
region, group, infection 
reason, and confirmed 
date on the outcome

Neural network Accuracy=0.938 Accu-
racy=0.995

1308 South Korea

Li et al. [27] Severe cases CT scan data and 
clinical biochemical 
attributes

Machine-learning 
models

AUC =0.93 46 China

Matos et al. [29] Mechanical ventilation, 
death

CT scan and clinical 
attributes

 GLM, PBR, CIT, and SVL AUC =0.92 106 Italy

Ning et al. [31] Negative, mild, and 
severe cases

CT images and clinical 
features

 CNN, DNNs, and PLR AUC = 0.944 (negative) 
AUC = 0.860 (mild) 
AUC = 0.884 (severe)

1521 China

Zhou et al. [51] Severe cases Clinical factors GA and SVM Accuracy: over 0.94 
Accuracy= 0.80

144 25 China

Yan et al. [46] Survival for severe cases Clinical data XGBoost algorithm Accuracy=0.93 375 China

Shi et al. [37] Severe cases Clinical and radiological 
findings

 LASSO logistic regres-
sion

AUC= 0.890 196 China

Bi et al. [6] Severe illness Fibrinogen-to-albumin 
ratio (FAR) and platelet 
count (PLT)

Multivariate cox analysis AUC=0.754 113 China

Zhou et al. [53] Severe cases Body temperature, 
cough, dyspnea, hyper-
tension, cardiovascular 
disease, chronic liver 
disease, and chronic 
kidney disease

Multivariable logistic 
regression

AUC= 0.862 (95% CI 
0.801–0.925)

366 China

Cheng et al. [9] ICU transfer Signs, nursing assess-
ments, laboratory 
features and electrocar-
diograms

Random forest AUC= 0.799 (95% CI 
0.752–0.846)

1987 USA

McRae et al. [30] Death CRP, NT-proBNP, MYO, 
D-dimer, PCT, CK-MB, 
cTnI

Logistic regression 
model

AUC= 0.94 (95% CI 
0.89–0.99)

160 China
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predictions. Undoubtedly, the consistency or stability of 
models’ performance is also important to make proper 
decisions. In other words, a model with less variety will 
have more reliability which is an important issue in mak-
ing medical forecasts. Increasing the reliability of medi-
cal forecasting models increases the survival chance of 
the patients and makes the treatment process more cost-
efficient and time-efficient. In other words, the reliabil-
ity of accuracy is another critical factor in yielding more 
generalizable and confident medical results that have not 
been taken into consideration in the modeling processes. 
In general, increasing the reliability of medical results 
is usually examined through reducing errors in labora-
tory tests, errors of equipment, and human error. In this 
paper, we propose a reliability-based approach to maxi-
mize the reliability of accuracy instead of accuracy and 
achieve more confident predictions in the severity prog-
nosis of COVID-19 patients. In fact, developing data-
driven prediction approaches to maximize the reliability 
of the models’ performance has been mainly ignored in 
the literature.

The main idea of this paper is to quantify the changes in 
the accuracy of models’ performance and minimize these 
changes to maximize reliability. In addition, the variety in 
this approach has been measured by the variance func-
tion. This implies that as the changes in the performance 
accuracy of the model decrease in the training or valida-
tion set, the reliability of the results for the unseen test 
set increases. To achieve this goal, the classic regression 
model is chosen to implement the proposed approach. 
This model has been used to predict various applications 
in medicine, engineering, energy, finance, management, 
environment, etc., in the literature. We briefly describe 
recent researche in a wide range of applications to show 
the importance and efficiency of this method.

In medicine, Rath et al. [35] applied the multiple linear 
regression techniques (MLR) to predict the next day’s 
trend in the active cases of coronavirus disease in Odisha 
and India. These models acquired remarkable accuracy in 
COVID-19 recognition. Tang et  al. [40] established the 
MLR model using radial artery pulse wave characteristic 
parameters to assess vascular aging. Huang et al. [20] pre-
sented a K-means-based multiple linear regression model 
to predict new local Chronic Obstructive Pulmonary 
Disease hospitalizations number per week with major 
air pollutants. This prediction model between Chronic 
Obstructive Pulmonary Disease and air pollutants helps 
early identification, individualized interventions to slow 
disease progression, and reduces medical expenditures. 
The mean absolute percentage error (MAPE) was used to 
evaluate the model efficiency.

In engineering, Ciulla and D’Amico [10] developed 
the MLR method to determine the thermal heating 

or cooling energy demand of a generic building in any 
weather condition. The promising results justify the use 
of MLR as an alternative method, issuing an immediate 
and straightforward tool that can solve a complex prob-
lem like building energy balance. Park et  al. [33] pre-
dicted the large-scale ground source heat pump system’s 
hourly heating performance with satisfactory accuracy 
by the MLR and artificial neural network (ANN) models. 
This research demonstrated the advantage of MLR for the 
interpretation of the quantitative analysis of performance 
influencing factors for the ground source heat pump sys-
tem’s performance. In energy, Çerçi and Hürdoğan [7] 
designed the MLR and ANN models to estimate the dry-
bulb temperature and absolute humidity values of the 
process air coming out of the process outlet of a desic-
cant wheel. The coefficient of determination (R2), Mean 
Absolute Error (MAE), and Root Mean Square Error 
(RMSE) criteria were used to determine the consistency 
of the results obtained from different models to the man-
ufacturer’s data. Khemet and Richman [23] predicted 
the quantity of air leakage in houses based on variables 
including building geometry, building materials, building 
age, and local climate by using the MLR model. Siavash 
et  al. [38] predicted the turbine power curve and rotor 
speed for the small wind turbine equipped with a wide 
range of duct opening angles at any wind speed using 
the MLR and ANN models. Four MLR models in differ-
ent shapes and a multi-layer perceptron neural network 
is presented to estimate the power and rotor angular 
speed of a wind turbine equipped with a variable shroud. 
The accuracy of prediction models was presented using 
RMSE and R2 for both the ANN and MLR models. In 
agriculture, Abrougui et  al. [1] evaluated the MLRs and 
ANNs to predict organic potato crop yield by using tillage 
systems and soil properties. The results showed that the 
MLR model estimated crop yield more accurately than 
the ANN model. Lee et al. [25] used the MLR model to 
estimate the soil moisture’s spatial distribution in South 
Korea. The coefficients of the MLR model were estimated 
seasonally considering five days of preceding precipita-
tion. Xie et al. [45] conducted the MLR and random for-
est regression (RFR) models to estimate soil amylase and 
urease activities in long-term coastal reclaimed land. 
Pahlavan-Rad et al. [32] compared the MLR and the RFR 
models for predicting soil infiltration rates in a dry flood 
plain of eastern Iran. The model RMSE and MAE evalu-
ation metrics were similar between models. In environ-
ment, Stoichev et al. [39] used an innovative MLR model 
to evaluate metal/metalloid contamination in a coastal 
lagoon’s surface sediments. Yuchi et al. [47] used the MLR 
and RFR to model indoor air pollution with 87 potential 
predictor variables from outdoor monitoring data, ques-
tionnaires, home assessments, and geographic data sets. 
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Tang et  al. [41] developed the MLR and support vector 
machine algorithms to predict biodegradation rate as a 
significant process for removing organic chemicals from 
water, soil, and sediment environments. Amoozad-Khalili 
et al. [3] investigated the relationship between input costs 
and the income of wheat production in mechanized and 
semi-mechanized systems using various MLR models. 
In finance, Cogoljević et al. [11] applied the MLR analy-
sis to determine how consumer price index, monetary 
aggregates, discount rate, and exchange rate affect infla-
tion. Based on the results, one can observe an acceptable 
correlation, which means there is a strong correlation 
between reals and estimated values.

Moreover, recently, Zheng et al. [50] by using the MLR 
techniques examined how process conditions (r.g., tem-
perature and duration) and feedstock properties affect 
the product characteristics. According to the R2 and 
RMSE, the developed MLR model had an excellent quan-
titative determination of hydrothermal carbonization 
properties with high accuracy. Kern et  al. [21] applied 
many MLR models for the prediction of dry matter dur-
ing curd treatment. The best models were selected based 
on Akaike’s information criterion (AICc), R2, and most 
parsimonious construction to describe the data set. 
Kusano et  al. [24] developed the MLR analysis to pre-
dict the tensile properties using several microstructural 
features for selective laser melted and post heat-treated. 
The model showed good accuracy for predicting. Rah-
bari et al. [34] provided the MLR model as a conceptually 
simple and computationally efficient way of computing 
thermodynamic derivatives for multicomponent systems 
analysis. Hoang [17] proposed the MLR and ANN mod-
els for estimating the punching shear capacity of steel 
fiber reinforced concrete (SFRC) slabs. Experimental 
results show that MLR can deliver prediction outcomes 
better than those of ANN and empirical design equa-
tions. Therefore, MLR can be a promising alternative to 
assist structural engineers in designing structures.

There are two main reasons to employ the classical 
linear regression model for implementing the proposed 
reliability-based approach. First, the classical linear 
regression with low complexity eliminates the effect of 
other features such as the impact of design and complex-
ity of models on generalization power, and the increase 
in model generalizability only originates from increas-
ing in the reliability. Second, the initial purpose of this 
paper is to analyze the severity of Covid-19 in addition 
to forecasting it. Therefore, the state-of-the-art models 
which have not the capability to analyze the relation-
ship between the variables have not been considered and 
the regression model which is considered as a popular 
method for analysis purposes is chosen.

All MLR models in the literature have identical think-
ing on the method of modeling. The logic of creating 
such models is to maximize the performance accuracy 
of the training data to achieve maximum accuracy in the 
test data or the model’s generalization ability. Accord-
ingly, the generalization ability in this type of model 
is considered only related to performance accuracy. 
Although the accuracy is one of the most important fac-
tors affecting the model’s generalization ability, it is not 
the unique factor explaining how to change the model’s 
generalization ability. It seems that one of the other fac-
tors affecting the generalization ability of the model is 
the degree of confidence in performance accuracy, or in 
other words, changes in performance accuracy in the face 
of different conditions that are not considered in the con-
ventional thinking of MLR modeling. In fact, he perfor-
mance basis in conventional regression modeling is based 
on the assumption that maximum accuracy in inaccessi-
ble data is obtained from models with the least amount 
of error in modeling available data. In this type of regres-
sion modeling, in order to maximize the generalization 
ability of simulations, which are the main factor influenc-
ing the quality of decisions made in real-world problems, 
the principle of maximization of the accuracy of available 
historical data is used. However, in this type of modeling 
process, the model’s reliability and its results have not 
been considered. On the other hand, the generalization 
capability of a model is simultaneously dependent on the 
accuracy of the model and the reliability level of the accu-
racy. In this paper, a new methodology is proposed for 
multiple linear regression modeling; in contrast to tradi-
tionally developed models, the constructed models’ reli-
ability is maximized instead of its accuracy.

To show the effectiveness of the proposed Reliability-
based regression (RbR) model, it has been applied to 
predict the severity of COVID-19 disease. A dataset 
including clinical findings of 46 patients with COVID-19 
symptoms is studied and the severe cases are predicted 
by applying the proposed framework. The results indicate 
the superiority of the proposed RbR model over the clas-
sic regression model.

The remainder of this paper is organized as follows: 
In the next section, the concepts and formulation of the 
proposed RbR model are presented. In "Results and dis-
cussion" section, the dataset is described and the pro-
posed RbR model is applied to predict disease severity of 
COVID-19 patients in mentioned dataset and its perfor-
mance is compared with the traditional regression model. 
Finally, and in the last section, we represent conclusions.
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Method
Traditional modeling approaches in medical predic-
tions all have been developed based on a common the-
ory, which indicates that accuracy in the training set is 
supposed as the only effective factor on the generaliz-
ability of models. However, models’ generalizability as 
an important factor in applying the model to solve real-
world problems depends on both the accuracy and reli-
ability of results. In fact, another way to enhance the 
generalizability of disease diagnosis models is increasing 
the reliability of the results and the reproducibility of the 
models’ performance. Given the importance of achiev-
ing reliable results in the process of diagnosis and treat-
ment of diseases, in this study, a new Reliability-based 
regression (RbR) model has been developed to maximize 
reliability rather than accuracy in diagnostic methods. 
The basic concept of the presented model is quantify-
ing the fluctuations of performance in the training data 
or a portion of it (validation data) and minimizing these 
fluctuations to ensure higher reliability and generalizabil-
ity in the test data. Therefore, in the first step, the data 
is divided into the training and testing data, and next a 
part of the training data is selected for validation data. To 
achieve the maximum reliability, the unknown param-

eters in the proposed approach are calculated in such a 
manner that the fluctuations of the model’s performance 
are minimized for the validation data.

In the following, first, the traditional multiple regres-
sion model, as a well-known statistical technique in 
medical applications, is briefly described and then the 
procedure of the suggested reliability-based regression 
template is explained in detail.

Multiple Linear Regression is broadly used in medi-
cal prediction researches, especially in modeling and 

analysis linear relationships between one output variable 
such as disease severity and one or several input variables 
such as patients’ attributes. A linear regression model can 
be shown as follows:

where Y represents the output variable, X1,X2, . . . ,Xk 
are the output explanatory variables, β1 is the intercept 
of the regression line, β2 to βk are regression coefficients, 
(slopes), u is the residual term, and N is the number of 
samples. The operation of the ordinary least square (OLS) 
technique which is used to estimate unknown parameters 
of the above formula is based on minimizing error (the 
difference between actual and predicted values) squares. 
In other words, OLS is an accuracy-based technique. In 
contrast, the procedure of our proposed model is based 
on this key idea that minimizing the variation of errors’ 
squares, results in maximizing the reliability of predic-
tions. To perform this model, first, a section of the train-
ing data set is considered as the validation data set. In 
this paper, the accuracy, as sum of squared errors, for the 
training data as well as training data plus each data of the 
validation is determined as follows:

and in the same manner, for each member of the valida-
tion data set:

where 
∑N+i

t=1 û2it for i = 0, 1, . . . , n and t = 1, 2, . . . ,N + i 
are the residual sum of squares (RSS), and is the 
size n of validation dataset. To determine the opti-
mal value of unknown parameters in each data point, 
βij i = 0, 1, . . . , n j = 1, 2, . . . , k , they are determined 
in such a way that 

∑

û2it is minimized [13, 22]. This is 
performed by differentiating each equation partially 
with respect to parameters in each data point and set-
ting the results to zero. The process yields k simultaneous 

(1)
Yi =β1 + β2X2i + β3X3i + · · · + βkXki + ui

i = 1, 2, . . . ,N

(2)
N
�

t=1

û20t =

N
�

t=1

�

Yt − β̂01X1t − β̂02X2t − · · · − β̂0kXkt

�2

=

N
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k
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2

(3)
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Yt − β̂11X1t − · · · − β̂1kXkt

)2

=
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∑
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)2
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û2
2t =
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(
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)2

=
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k
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· · · · · · · · · · · ·

N+n
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N+n
∑

t=1

(

Yt − β̂n1X1t − · · · − β̂nkXkt
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=
N+n
∑

t=1

(

Yt −
k
∑
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equations in k unknowns, for each data point, as follows. 
For the training data:

and in the same way, for the first data of the validation 
data set:

For the last data of the validation dataset, we have:

(4)

β̂01

N
∑

t=1

X2
1t + β̂02

N
∑

t=1

X1tX2t + β̂03

N
∑

t=1

X1tX3t + · · · + β̂0k

N
∑

t=1

X1tXkt =
N
∑

t=1

X1tYt

β̂01

N
∑

t=1

X2tX1t + β̂02
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t=1

X2
2t + β̂03
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∑

t=1

X2tX3t + · · · + β̂0k

N
∑

t=1

X2tXkt =
N
∑

t=1

X2tYt

β̂01

N
∑

t=1

X3tX1t + β̂02
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∑

t=1

X3tX2t + β̂03

N
∑

t=1

X2
3t + · · · + β̂0k

N
∑

t=1

X3tXkt =
N
∑

t=1

X3tYt

· · · · · · · · · · · ·

β̂01

N
∑

t=1

XktX1t + β̂02

N
∑

t=1

X2tXkt + β̂03
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∑
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XktYt

(5)
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∑N+1
t=1 X1tYt
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∑N+1
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(6)
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To construct the RbR model with the minimum deviation 
of squared errors in validation samples, the unknown 

parameters of all accuracy-based regression lines must be 
equal. Thus, we have:

where, β̂ej is the jth parameter of the RbR model. Eventu-
ally, Eqs. (4–6) could be shown as follows:

(7)
β̂ij = β̂i′j ∀i, i′ = 0, 1, 2, . . . , n, ∀j = 1, 2, . . . , k

β̂ej = β̂ij ∀i = 0, 1, 2, . . . , n, ∀j = 1, 2, . . . , k

(8)
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The equations are presented in a matrix format as 
follows:

At last, the unknown parameters of RbR model can be 
obtained by solving Eq. (9). For instance, in a 3-variable 
model, the parameters are estimated as follow:

(9)
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(10)

β̂e1 =
(A22A33 − A2

23
)B1 − (A2A33 − A3A23)B2 + (A2A23 − A3A22)B3

A1A22A33 − A1A
2
23

− A2
2
A33 + 2A2A3A23− A22A

2
3

β̂e2 =
(A3A23 − A2A33)B1 − (A1A33 − A2

3
)B2 + (A2A3 − A1A23)B3

A1A22A33 − A1A
2
23

− A2
2
A33 + 2A2A3A23− A22A

2
3

β̂e3 =
(A2A23 − A3A22)B1 − (A2A3 − A1A23)B2 + (A1A22 − A2

2
)B3

A1A22A33 − A1A
2
23

− A2
2
A33 + 2A2A3A23− A22A

2
3

Table 2 List of independent variables (clinical factors)

Clinical factor ID Symbol Clinical factor ID Symbol

Albumin/globulin A/G X1 Mean corpuscular hemoglobin MCH X26

Albumin ALB X2 Mean corpuscular-hemoglobin concentration MCHC X27

Alkaline phosphatase ALP X3 Mean corpuscular volume MCV X28

Glutamic-pyruvic transaminase ALT X4 Absolute value of monocytes Mono# X29

Activated partial thromboplastin time APTT X5 Percentage of monocytes Mono% X30

Glutamic oxalacetic transaminase AST X6 mean platelet volume MPV X31

Absolute value of basophil Baso# X7 Platelet large cell ratio P-LCR X32

Percentage of basophils Baso% X8 PCT plateletocrit PCT X33

Blood urea nitrogen BUN X9 Platelet distribution width PDW X34

Creatine Kinase Isoenzyme CK-MB X10 Blood platelet count PLT X35

Creatinine CREA X11 Prothrombin time PT X36

C-reactive protein CRP X12 International normalized ratio PT-INR X37

Cystatin C CysC X13 Red blood cell count RBC X38

Direct bilirubin D-BIL X14 CV value of RBC distribution width RDW-CV X39

Absolute value of eosinophils Eos# X15 SD value of erythrocyte distribution width RDW-SD X40

Percentage of eosinophils Eos% X16 Sialic acid SA X41

Fibrinogen FIB X17 Total bile acid TBA X42

Gamma-glutamyl transpeptidase GGT X18 Total bilirubin TBIL X43

Globulin GLO X19 Thrombin time TT X44

Glucose (fasting) GLU X20 Uric acid UA X45

Hemoglobin Hb X21 Î
22-microglobulin Î22-MG X46

Hematocrit value Hct X22 Neutrophil absolute value Neut# X47

Lactic dehydrogenase LDH X23 Neutrophil percentage Neut% X48

Lymphocyte absolute value Lymph# X24 D-dimer SF8200_D-Dimer X49

Percentage of lymphocytes Lymph% X25 Cholinesterase CHE X50
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where Aj,j′ =
∑n

i=0

∑N+i
t=1 XjtXj′t for j, j′ = 1, 2, . . . , k , 

and Bj =
∑n

i=0

∑N+i
t=1 XjtYt for j = 1, 2, . . . , k.

Results and discussion
In this study, we have applied clinical features of 46 
patients of Covid-19 which have been used by Li et  al. 
[27]. There are more than 300 samples in the dataset, each 
patient with several samples on different days, related to 
105 different tests based on clinical reports. The dataset 
includes 10 severe and 36 mild patients. These patients 
visited the People’s Hospital of Yicheng City, China, 
between January 16, 2020, and March 4, 2020, and were 
diagnosed with Covid-19. The dataset consists of 6 male 
and 4 female in severe group and 19 male and 17 female 
in mild group. The mean age of patients is 48.6. In addi-
tion, the mean age of patients in the severe and non-
severe groups is 56.8 and 46.5, respectively [27]. Due to 
the large amount of missing data, 28 factors have been 
omitted and also for some factors that had less missing 
values, missing data replaced with the mean values. After 
normalization and data preprocessing, at last, a group of 
50 factors has been selected to analyze and predict the 
severity of Covid-19 patients (output variable) by using 
the proposed reliability-based regression and classic 
accuracy-based regression models. Table  2 summarizes 
the list of independent variables (clinical factors). The 
download link of this data set is provided in the Availabil-
ity of Data and Materials section.

In the first step, we use the proposed RbR model to ana-
lyze the effective variables on disease severity of Covid-19 
patients and compute their coefficients using the equa-
tions presented in section . The results considering all 
clinical variables are presented in Table 3. As shown, R2 
of the reliability-based model, using all mentioned vari-
ables in Table 3, is more than 82%. To interpret the relia-
bility-based regression coefficients and identify the most 
important risk factors, multicollinearity effects must 

Table 3 Results of RbR model using all clinical factors

Variable Coefficient Std. error t-Statistic Prob.

Constant −0.158417 1.195739 −0.132484 0.8949

X1 0.766133 0.669994 1.143491 0.2556

X2 −0.588120 0.369865 −1.590094 0.1150

X3 −0.268347 0.207036 −1.296137 0.1979

X4 −0.145710 0.234136 −0.622331 0.5351

X5 0.350635 0.224713 1.560370 0.1218

X6 0.124960 0.206834 0.604155 0.5471

X7 0.392064 0.221517 1.769907 0.0798

X9 0.419054 0.302267 1.386370 0.1687

X10 −0.080296 0.142200 −0.564666 0.5736

X11 −0.099828 0.228173 −0.437509 0.6627

X12 0.441895 0.324018 1.363796 0.1757

X13 0.782662 0.239895 3.262523 0.0015

X14 −0.272027 0.327671 −0.830183 0.4084

X15 0.483778 0.200362 2.414519 0.0176

X17 0.140422 0.181415 0.774039 0.4407

X18 0.446554 0.279914 1.595327 0.1138

X19 0.350373 0.507981 0.689735 0.4920

X20 −0.044969 0.193640 −0.232230 0.8168

X21 −4.518544 3.555349 −1.270914 0.2067

X22 5.660556 4.708489 1.202202 0.2321

X23 0.282944 0.357990 0.790367 0.4312

X24 −0.519364 0.212730 −2.441429 0.0164

X26 −1.317928 0.937514 −1.405768 0.1629

X27 3.450157 2.378494 1.450564 0.1500

X28 −0.988182 1.291966 −0.764867 0.4462

X29 0.626379 0.410115 1.527327 0.1298

X30 −0.610015 0.416580 −1.464341 0.1462

X31 0.316610 0.804939 0.393334 0.6949

X32 −0.281534 0.816533 −0.344792 0.7310

X33 −0.750111 0.826578 −0.907489 0.3663

X34 0.137479 0.291786 0.471164 0.6385

X35 0.518478 0.863308 0.600571 0.5495

X36 3.783075 6.284011 0.602016 0.5485

X37 −3.551337 6.329394 −0.561086 0.5760

X38 −1.789885 3.175541 −0.563647 0.5743

X39 −0.078335 0.850181 −0.092139 0.9268

X40 0.260570 0.524381 0.496910 0.6203

X41 0.303455 0.300802 1.008819 0.3155

X42 −0.232581 0.245079 −0.949004 0.3449

X43 0.249179 0.295612 0.842924 0.4013

X44 0.380763 0.267197 1.425027 0.1573

X45 0.192436 0.217392 0.885203 0.3782

X46 −0.626370 0.214868 −2.915135 0.0044

X47 −0.451888 0.458820 −0.984892 0.3271

X49 0.075227 0.183322 0.410354 0.6824

X50 −0.541507 0.206853 −2.617839 0.0102

R
2 =0.826801, and adjusted R2 = 0.747130

Table 4 Results of RbR model to analyze effective clinical factors 
on severity of COVID-19 patients

Variable Coefficient Std. error t-Statistic Prob.

Constant 0.252632 0.140872 1.793350 0.0751

X12 0.386337 0.194240 1.988966 0.0487

X13 0.651536 0.187129 3.481747 0.0007

X18 0.456707 0.160788 2.840435 0.0052

X21 −0.422841 0.142370 −2.970020 0.0035

X23 0.719013 0.172711 4.163093 0.0001

X25 −0.693047 0.147318 −4.704420 0.0000

X36 0.466564 0.169386 2.754448 0.0067

R
2 =0.676711, and adjusted R2 = 0.660431
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be eliminated. Moreover, to analyze the relationships 
between the severity of Covid-19 patients and clinical 
variables, in each category of highly correlated variables, 
we keep the variable with the highest correlation to the 
dependent variable in the model and remove others. The 

result of performing the RbR model between the sever-
ity of Covid-19 patients and selected clinical variables 
has been shown in Table 4. The results express that the 
remained clinical features in the model can explain more 
than 67% of changes in Covid-19 patients. According to 
the obtained results of the RbR model, the p-value is sta-
tistically significant (lower than 0.05) for the explanatory 
variables including X12 (CRP), X13 (CysC), X18(GGT), 
X21(Hb), X23 (LDH), X25 (Lymph%), and X36 (PT). 
Table 3 indicates that the largest positive reliability-based 
coefficients are related to X23 (LDH), X13 (CysC), X36 
(PT), X18(GGT), and X12 (CRP), respectively, which 
means that according to the results of the RbR model 
the amount of these factors increases in severe cases of 
Covid-19. Also, the variables X25 (Lymph%), and X21 
(Hb) have negative coefficients, which indicates that the 
amount of these factors decreases in the severe cases of 
Covid-19 patients. The results are consistent with recent 
researches, showing elevated levels of LDH, CysC, PT, 
GGT, and CRP and lower lymphocytes percentage and 
Hemoglobin in severe cases of Covid-19 patients [4, 26–
28, 43]. This means that in the RbR model, in addition 
to quantifying the changes in the accuracy of the model 
performance and minimizing these changes to maximize 
the reliability of results, the effect of influencing factors 
on the severity of COVID-19 patients is also logical. In 
the second step, after analyzing the effective variables on 
the severity of COVID-19 patients, we implement the 
the reliability-based model to predict COVID-19 disease 
severity. All of the clinical factors have been used in the 
prediction model. To make the prediction model, firstly, 
the data set is divided into a training set (80% of samples) 
and testing sets (20% of samples). Then, in the next stage, 
a part of the training data (10%) is applied for validation 
and obtaining the unknown parameters based on the for-
mulation presented in "Background" section. Due to the 
specific method of selecting the validation data, and to 
assure removing all possible data effects on the model’s 
performance, the procedure has been performed more 
than 100 times, each time with a different validation 
dataset.

To assess the performance of the presented model, 
it is compared with the traditional regression model 
according to accuracy metric, i.e., the ratio of correctly 
predicted samples to the total number of samples. The 

Fig. 1 Comparison of performance of two proposed predictive 
models

Fig. 2 The ROC curves of proposed models

Table 5 Comparison of performance of proposed models

Models Evaluation metrics

Sensitivity (%) Specificity (%) Accuracy (%)

Classic regres-
sion model

95.70 85.50 90.30

RbR model 98.60 88.20 93.10

Table 6 The ROC analysis of proposed models

Model AUC 95%CI p Value

Classic regression 
model

0.906 0.851–960 0

RbR model 0.934 0.887–980 0
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results achieved by the proposed RbR and the classic 
regression models have been provided in Table  5 and 
Fig.  1. The performance results demonstrate that the 
proposed reliability-based approach, by yielding 98.6% 
sensitivity, 88.2% specificity, and 93.10% accuracy, has 
higher efficiency than its accuracy-based rival and even 
can successfully predict severe Covid-19 patients with 
more validity. Therefore, the proposed RbR model has 
provided more accurate results in distinguishing between 
the severe and mild cases of Covid-19 patients. Also, the 
graphical analysis of the ROC curve in Fig. 2 and its anal-
ysis in Table 6 shows that the proposed RbR model with 
a higher area under the curve (AUC) has a better perfor-
mance than the classic regression model. The empirical 
results illustrate the importance of considering the reli-
ability in predicting disease severity in Covid-19 patients 
and are important from two aspects. First, the proposed 
model can guarantee the reliability of predictions, espe-
cially in medical decision makings, which require stable 
and reliable results rather than accurate, because this 
model minimizes performance fluctuations. Secondly, 
the results show that the proposed reliability-based 
approach not only increases the reliability and stability 
of the results in medical decisions but also presents more 
accurate results than the classical accuracy-based regres-
sion method. Hence, the proposed RbR model not only 
solves the problem of unreliable results in traditional 
accuracy-based models, but also improves the accuracy 
of such models, so it can be a useful alternative for classic 
prediction models to adopt reliable and accurate medical 
decisions.

Conclusion
The accuracy of the prediction models plays a critical 
role in forecasting the severity of Covid-19 disease, but 
it is not the only effective factor to judge the generaliz-
ability of the models. Certainly, the reliability and confi-
dence of the accuracy is another crucial factor that must 
be considered in modeling and forecasting the severity 
of Covid-19 patients. In this study, we have proposed a 
novel modeling approach to consider and maximize the 
reliability of the accuracy in predicting the severity of 
Covid-19 patients. For this, the classic regression model 
as a fundamental and common statistical method in dis-
ease predictions is applied. To show the generalization 
power of the proposed RbR model, we have applied a 
real-world dataset. The results imply that the proposed 
approach has not only increased the reliability of the 
results, it has also provided logical results about effec-
tive factors on the severity of Covid-19 patients and has 
yielded more accurate results compared with the classic 
accuracy-based regression model. The main contribu-
tion of the paper is the mathematical formulation of the 

proposed model. It is then used to analyze and forecast 
the severity of COVID-19 patients. The results of the sug-
gested RbR model show the importance of the reliability 
effect on the generalization power of the classic regres-
sion model. For future works, performing the RbR model 
on other datasets of the severity of Covid-19 patients is 
suggested. Also, the reliability-based approach can be 
implemented on other types of existing models including 
different statistical or artificial intelligence forecasting 
models.
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