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Abstract 

Background: Intensive Care Unit (ICU) readmissions in patients with heart failure (HF) result in a significant risk of 
death and financial burden for patients and healthcare systems. Prediction of at-risk patients for readmission allows for 
targeted interventions that reduce morbidity and mortality.

Methods and results: We presented a process mining/deep learning approach for the prediction of unplanned 
30-day readmission of ICU patients with HF. A patient’s health records can be understood as a sequence of observa-
tions called event logs; used to discover a process model. Time information was extracted using the DREAM (Decay 
Replay Mining) algorithm. Demographic information and severity scores upon admission were then combined with 
the time information and fed to a neural network (NN) model to further enhance the prediction efficiency. Addition-
ally, several machine learning (ML) algorithms were developed to be used as the baseline models for the comparison 
of the results.

Results: By using the Medical Information Mart for Intensive Care III (MIMIC-III) dataset of 3411 ICU patients with HF, 
our proposed model yielded an area under the receiver operating characteristics (AUROC) of 0.930, 95% confidence 
interval of [0.898–0.960], the precision of 0.886, sensitivity of 0.805, accuracy of 0.841, and F-score of 0.800 which were 
far better than the results of the best baseline model and the existing literature.

Conclusions: The proposed approach was capable of modeling the time-related variables and incorporating the 
medical history of patients from prior hospital visits for prediction. Thus, our approach significantly improved the 
outcome prediction compared to that of other ML-based models and health calculators.
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Background
The prevalence of Heart Failure (HF) rises over time. 
Approximately, 6 million American adults (age > 20) 
had HF between 2015 to 2018 [1]. Despite the progress 
made in HF therapeutics, readmission rates remain 
high at nearly 20% [1–3]. Excessive unplanned read-
missions and subsequent waste of medical resources 
have had financial implications that directly affect the 
overall performance of the hospitals. The Hospital 

Readmissions Reduction Program was established by 
the Affordable Care Act (ACA) in 2010 to encourage 
hospitals to avoid readmissions by penalizing the hos-
pitals that exceed the expected thresholds [4]. Since 
2012, hospitals have been penalized over $2.5 bil-
lion by the Centers for Medicare & Medicaid Services 
(CMS) for exceeding the unplanned 30-day readmis-
sion rates [5]. Unplanned ICU readmission may impose 
a severe financial burden on both hospitals and patients 
[6]. Readmissions were found to be associated with 
increased morbidity and mortality. The mortality rate 
of unplanned ICU readmission ranged between 26 
and 58% [7]. The ICU readmission rate had increased 
over time rising from 4.6% in 1989 to 6.4% in 2003 [1]. 
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Approximately 16% of unplanned ICU readmissions 
occurred within 30-days of initial hospital discharge [8, 
9].

The Electronic Health Record (EHR) has been revo-
lutionizing the health care decision-making processes 
through collecting and preserving medical data in a 
digital format. The use of the EHR has been allowing 
hospital systems to make intelligent data-informed 
decisions to address a wide range of problems from 
learning personalized prescriptions to maximizing the 
performance of hospitals [10, 11].

Artificial Neural Networks  (ANNs), [12], is a popu-
lar network-based ML technique to address complex 
problems in various application domains [13–15]. 
Neural networks (NN) can be hardware-based (physi-
cal components represent neurons) or software-based 
(computer models), and they can employ a wide range 
of topologies and learning algorithms. NN involve feed-
forward and back-propagation steps. The former model 
calculates the estimates for each observation in the 
training set, and in the latter, the errors are calculated 
to adjust the parameter estimates in the next iteration. 
NN generate their own features through a multi-layer 
structure of the network and use specific transforma-
tion of the input features called activation functions. 
Hence, NN are superior to many basic machine learn-
ing models in capturing underlying non-linearities 
when we have access to sufficient data. Many variants 
of NN have been proposed and developed for different 
settings; Convolutional Neural Networks (CNN) for 
image classifications and Recurrent Neural Networks 
(RNN) for time-series predictions [16].

Several ML and artificial intelligence techniques have 
been proposed to predict unplanned 30-day readmission 
of ICU patients with HF [11, 17]. However, the results of 
the developed models were not quite reliable.

Process mining analyzes and optimizes the sequence of 
events occurring during running processes, known as the 
event logs. The process mining approach has been used 
to enhance the healthcare processes [18]. However, the 
medical history of the patients from past hospital visits 
has not yet been used to predict unplanned readmission 
[19–21].

The present study aimed to introduce a novel pro-
cess mining/deep learning approach that incorporated 
the past medical history of the patients from prior hos-
pital visits and the time information related to the vari-
ables (Time State Samples (TSS)) to predict unplanned 
30-day readmissions of the ICU HF patients. A predic-
tion model was developed in accordance with the Trans-
parent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis (TRIPOD) initiative 
guidelines [22, 23].

Methods
Data source and inclusion criteria
We used the Medical Information Mart for Intensive 
Care III (MIMIC-III) public database, which contained 
deidentified clinical data of the patients who were admit-
ted to the Beth Israel Deaconess Medical Center in Bos-
ton, Massachusetts [24]. MIMIC-III contained 38,597 
adult patients and 49,785 hospital admissions from 2001 
to 2012. This database consisted of various tables such as 
admission information, demographics, caregiver infor-
mation, lab values, charted observations, discharge sum-
mary notes, and diagnosis codes.

In order to identify HF patients, specific ICD-9 codes 
related to the HF diagnosis including 398.91, 402.01, 
402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 
404.93, 428. XX were used in this study. Patients were 
included if any of these ICD9 codes appeared in the most 
recent admission following the standard approach in 
the existing literature [25]. Note that, patients who were 
diagnosed with HF in previous admissions, but were 
not diagnosed with HF in the current admission are not 
included. Among the patients who were diagnosed with 
HF in the current admission, we included those who had 
visited any hospital at least once before the current ICU 
hospital visit and had at least one future hospital admis-
sion of any type. The condition of having at least one hos-
pital visit before the current admission is needed as the 
process mining approach requires an existing medical 
history as its input at the time prediction. Also, having 
at least one future admission of any type is to guarantee 
that the patient is still alive and refers to the same hospi-
tal system for his/her medical needs. Patients who died in 
the same hospital ICU or got discharged from a hospital 
ICU and died later in another hospital or other parts of 
the same hospital were excluded.

Variable selection
Several variables were considered as the inputs to the 
model which are as follows: the admission type, the 
associated time of the admission, types of insurance, 
the discharge time, several lab measurements, various 
performed services, procedures, and diagnoses on the 
patients, and demographic information. The admission 
types were categorized either as planned or unplanned 
admission. The insurance group types were defined as 
Medicare, Medicaid, Private, Government, and Self-
pay. Lab values typically obtained to predict HF were 
extracted for each patient including Blood Urea Nitro-
gen (BUN), Serum Creatinine, sodium ion, and pro-brain 
natriuretic peptide (NT-proBNP). The various types of 
performed services, procedures and diagnoses were con-
sidered in the form of CPT and ICD-9-CM codes. The 
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demographic information including age, gender, and eth-
nicity was used as additional variables in the model.

Conversion of EHR into event logs
The proper format of the input data for the process min-
ing is event logs. Event logs contain the sequences of 
events as well as the associated time at which specific 
events occurred, which are referred to as timestamps.

The transformation of the EHR of the patients into the 
event logs was done based on the method reported by 
Theis et al. [21].

Thirteen different event types were defined in this sec-
tion. Table  1 shows the mapping of each of the consid-
ered event types with the MIMIC-III tables.

Event types and the associated timestamps
For each patient, we converted the EHR to events with 
the following sequence:

First, we considered the admission type event with the 
admission time as its timestamp. Admission type event 
was important since it distinguished whether the admis-
sion was planned or unplanned. The second event was 
the insurance type event with a timestamp of 1 ms after 
the timestamp of the admission type to maintain the 
order of the events. Insurance type was chosen since it 
could possibly affect the discharge/transfer rate.

The next set of events was the lab measurements. 
Specific HF-related lab measurements were chosen 
based on the literature [11, 17] and experts’ opin-
ions. The lab measurements might be measured once 
or several times for each patient. Two types of events 
were created for each lab item, out of which one was 

the Mean of the specific lab item and the other was the 
Standard Deviation (std) of each lab item.

In the cases in which the lab item was measured once, 
the timestamp of the Mean event was set to the times-
tamp at which the lab item was measured initially. The 
timestamp for the std event was set to 1  ms after the 
timestamp of the Mean event. For the lab measure-
ments, which were measured several times, we per-
formed similarly for the Mean event. However, for the 
std event of such cases, the timestamp was set to the 
last time at which the lab item was measured.

We considered a separate set of events representing 
the comorbidities. Elixhauser comorbidity score was 
calculated by using the ICD-9 diagnosis codes for each 
hospital visit [26]. A specific comorbidity group can be 
determined by assigning points through the Elixhauser 
comorbidity score if particular ICD-9 codes are pre-
sent. These comorbidity events were created because 
they represent what diseases have been diagnosed, 
whether the diseases are chronic, and the criticality 
of the patients. Additionally, based on the literature, 
these events were strongly associated with ICU read-
mission risk [27]. In cases where a point was assigned 
to a specific group, an event was created with the same 
name as in the comorbidity group. Since the focus of 
this paper was on readmission prediction, we needed 
specific event logs that separated all the timestamps of 
the events from the discharge timestamp (which was 
the final event). Therefore, the timestamps for these 
events were set to be very close to the discharge time 
of the relevant hospital visit. In cases where multiple 
comorbidity events were created, the timestamp for the 
second comorbidity event was set 1 ms after the times-
tamp of the first event. The same logic was applied for 
the next comorbidity events as well.

The artificial events were created from the sequence of 
CPT, and ICD-9-CM observations codes as by Theis et al. 
[21]. We considered these events since they represented 
the diagnoses and procedures of a patient which were 
likely to be important factors to predict readmission. The 
artificial events’ timestamps were set to the timestamps 
of the sequence of the observations plus 1  ms. These 
timestamps accordingly were compared with timestamps 
of the discharge event, and they were set to a time before 
the discharge timestamp to ensure the orders of the 
events were maintained.

In the end, the discharge event was created for each 
hospital admission and the timestamp of this event was 
set to the discharge time of the patient for the corre-
sponding admission. This event was created since this 
was a point at which the next event (admission type 
event) would be predicted by using Decay Replay Mining 
(DREAM) algorithm [28].

Table 1 Mapping of the medical health records of the patients 
from the MIMIC-III database to the event logs

BUN, blood urea nitrogen; Pro-BNP, Pro-brain natriuretic peptide; std, standard 
deviation

Events

Admissions
Patients

Admission type event
Admission Insurance event
Discharge event

Admissions
Labevents
D-Labitems

BUN Mean event
Serum Creatinine Mean event
NT_ proBNP Mean event
Sodium-ion Mean event
BUN std event
Serum Creatinine std event
NT_ proBNP std event
Sodium-ion std event

Admissions
Diagnoses_ICD

Elixhauser Comorbidity Score events

Diagnoses_ICD
Procedures_ICD
Cptevents

30 Artificial event abstractions
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Note that the addition of 1 ms to the timestamps in our 
conversion did not alter any information since the time 
dimension in MIMIC-III was days and subsequently neg-
ligible in our analysis.

Label setup
A column was created to label the patients. If a HF 
patient was readmitted unplanned within 30-day, the 
label was set to TRUE. Otherwise, the label was set to 
FALSE. Moreover, a column was created to indicate the 
point at which the TSS information needs to be collected 
to prevent the data leakage. The collection of the TSS 
information was set at the discharge event, which means 
no time information regarding the future admission was 
collected by the DREAM algorithm.

Unplanned 30‑day readmission prediction
We proposed a process mining/deep learning approach 
for unplanned 30-day readmission prediction which is 
shown in Fig. 1. The resultant event logs were fed to the 
process mining discovery algorithm to produce a pro-
cess model. The resultant process model along with the 
event logs were fed to the DREAM algorithm to gener-
ate the time information (TSS). The severity scores on 
admission day including the Charlson [29] and Elix-
hauser scores were used as variables. Charlson score 
method assigns higher weights to more severe and crit-
ical conditions as compared to Elixhauser that assigns 
the same weight to all conditions. To prevent data 
leakage, the severity scores were calculated based on 
the information that was available up to the discharge 
event of the current admission, and no information 

after the discharge event of the current admission was 
used for the calculation of the severity scores. Hence 
there is no data leakage involved. The generated TSS, 
together with the demographic information and the 
severity scores were then fed to a NN model to predict 
unplanned 30-day readmission of the ICU patients with 
HF. The architecture of the NN model is shown in Fig. 2 
and is as follows: the time information, demographics 
information, and the severity scores were fed separately 
to three branches which each branch contains three 
hidden layers. These hidden layers were then concat-
enated and fed to a subsequent layer. For all hidden 
layers, a Rectified Linear Unit activation function was 
used to improve the performance of the model. Moreo-
ver, to improve the stability, a batch normalization layer 
was added after the first hidden layer of each branch 
[21]. Additionally, for regularization [21], a dropout 
with a rate of 20% was used after the first, second, and 
third hidden layers [21]. Moreover, the NN model was 
trained for 100 epochs using a batch size of 10. In the 
end, the output layer included a softmax activation 
function to predict unplanned 30-day readmission of 
ICU HF patients. Also, Adam optimizer was used as 
an optimizer function [30]. The corresponding source 
code is publicly available on our Github repository.

The proposed model was evaluated by calculat-
ing Area Under the Receiver Operating Characteris-
tic curve (AUROC), precision, sensitivity, accuracy, 
and F-score on the test set. To obtain 95% Confidence 
Intervals (CIs) of the AUROC value, DeLong’s method 
was used [31].

Fig. 1 Overview of the methodology. This Figure illustrates the overview of the methodology. The admission, insurance, lab measurements, 
Elixhauser comorbidity, and the discharge information of the patients were extracted from MIMIC-III database and converted to an event log. The 
resultant event log was used as an input to the process mining discovery algorithm to produce a process model. The resultant process model along 
with the event logs were then fed to the DREAM algorithm and resulted in some time information related to the variables. The time information 
with the demographic and the severity scores of the patients were then fed to a NN to predict unplanned 30-day readmission of the ICU HF 
patients
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Baseline model development
To compare the results of the process mining/deep learn-
ing approach, several baseline models were utilized. 
These models were developed using ML algorithms. The 
baseline models were trained based on the MIMIC-III 
data cohorts to explore other ML algorithms for the pre-
diction. The development of these models was utilized 
first by feeding the same possible variables as fed to the 
proposed model, but kept in the original tabular format, 
as opposed to the event logs format. The intuition behind 
this experiment was to compare the performance of the 
process mining approach, which consists of both the 
TSS information and the NN model, with that of the ML 
algorithms. Therefore, in this experiment we did not use 
the TSS information as an input to the ML algorithms. 
On the other hand, in another experiment, we compared 
the performance of the NN model with that of the ML 
algorithms. In this case, to make a fair comparison, we 
fed the TSS information to both the NN model and the 
ML algorithms. That means the ML algorithms and the 
NN model all received the same values of inputs, i.e. TSS, 

demographics, and severity scores. A variety of popu-
lar ML algorithms were evaluated to classify unplanned 
30-day readmission of ICU patients with HF. These algo-
rithms included Support Vector Machine [32], K-nearest 
neighbors [33], Decision Trees [34], Random Forest [35], 
XGBoost [36], and CatBoost [37]. The training process of 
these models included a grid search of model parameters. 
This search process aimed to find the best model which 
was determined based on the AUROC of the validation 
cohort.

Statistical analysis between cohorts
The train and validation cohorts were compared using 
Chi-Square and two-sided t-tests. For the compari-
son of the categorical variables, Chi-Square tests were 
performed, and for continuous variables, t-tests were 
implied. The significant level was determined based on 
P < 0.05. Descriptive statistics, model development, and 
statistical analysis were conducted using Python, version 
3.6.

Fig. 2 Architecture of Neural Network (NN). This Figure shows the details of the NN architecture. The timed state samples, demographics 
information, and the severity scores were fed separately to three branches which each branch contains three hidden layers. A batch normalization 
layer was added after the first hidden layer of each branch. Also, a dropout with a rate of 20% was used after the first, second, and third hidden 
layers. At the end, the output layer included softmax activation function to predict unplanned 30-day readmission of ICU HF patients
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Variables impacts and ablation study
Shapley value analysis [38] was conducted on the test 
set to find out the impact of each variable in our pro-
posed model prediction and to figure out which vari-
able was particularly associated with readmissions. 
The Shapley values described the Mean contribution of 
each variable to the outcome across different coalitions 
[21]. Moreover, a variable ablation study was conducted 
on demographic information, severity scores, and event 
type in the event log to find out how the results change 
by removing specific variables. Furthermore, a layer-
wise ablation study on the NN was done to demonstrate 
the architecture of the proposed NN was optimized.

Results
Cohort characteristics model completion
Following the approach for selection of HF patients dis-
cussed before in this paper, a subset of 3411 patients 
was selected from the MIMIC-III database. The 
selected cohort was then split into train/validation/ 
and test cohorts randomly with a ratio of 73.1/12.9/ 
and 14, which yielded a result of 2422 patients for train, 
434 patients for validation, and 555 patients for the test 
cohorts. Moreover, the train and validation cohorts 
were used to discover the process model and the NN 
training. Furthermore, the best model was chosen 
based on its AUROC performance on the validation set, 
the model which led to the highest value of AUROC 
by using the validation dataset were chosen as the best 
model. Moreover, it was used for further evaluation on 
the test cohort. The description of the train and valida-
tion cohorts is presented in Table  2. The readmission 
rate for train, validation, and test were 23.9, 23.5, and 
23.4% respectively, out of 2422 patients in the training 
cohort, 581 of them were readmitted unplanned within 
30-day, out of 434 patients in the validation cohort, 
102 of them were readmitted, and out of 555 patients 
in the validation cohort, 130 of them were readmit-
ted. In terms of age, the validation cohort (70.4 years) 
was slightly older than the training cohort (69.9 years) 
with a P of 0.228 which showed there were no signifi-
cant differences between cohorts. In terms of gender, 
the training cohort (47.6%) contained slightly more 
females compared to the validation cohort (46.3%). The 
whole distribution of the race was not significantly dif-
ferent between the cohorts [P = 0.270], of which the 
details are shown in Table 2. The proportions of white 
patients in the train and validation cohorts were 75.8%, 
and 74.9% respectively. The lab measurements were not 
significantly different between cohorts except for Urea 
Nitrogen which was 0.017.

Evaluation metrics, proposed and baseline models 
performance
The summary of the results for both proposed and 
baseline models are shown in Table  3, 4 and 5. The 
proposed approach resulted in the following met-
rics, AUROC = 0.930, 95% CI = [0.898–0.960], preci-
sion = 0.886, sensitivity = 0.805, accuracy = 0.841, and 
F-score = 0.800.

On the other hand, the baseline model development 
utilizing the MIMIC-III Cohort, RF proved to be the 
best baseline model in both cases, that we used tabular 
format of data or the transformed data as inputs. In the 
case that we used the tabular format of the data as inputs 
RF resulted in the following metrics, AUROC = 0.713, 
95% CI = [0.691–0.761], precision = 0.750, sensitiv-
ity = 0.801, accuracy = 0.826, and F-score = 0.760. Also, 
in the case that we used TSS, demographics, and the 
severity scores as inputs, RF resulted in the following 
metrics, AUROC = 0.841, 95% CI = [0.793–0.864], pre-
cision = 0.820, sensitivity = 0.803, accuracy = 0.826, and 
F-score = 0.771. It can be observed that the results of the 
proposed approach are far better than the results of the 
best baseline model.

In terms of model cost, all the tests were performed 
on a computer running Windows 10 with an Intel 
i7-6700 CPU and 16  GB RAM. Also, the associated 
computational times to the different steps of the pro-
posed methods were as follows: Conversion of EHR to 

Table 2 Comparison of the variables including outcome, 
demographics, and laboratory findings between train and 
validation cohorts

Pro-BNP, Pro-brain natriuretic peptide

Characteristics Train cohort (N = 2422) Validation 
cohort 
(N = 434)

P

Outcome variable N, (%)

Readmission 581 (23.9) 102 (23.5) 0.270

Demographics

Age mean (std) 69.9 (14.3) 70.4 (13.9) 0.228

Female (%) 47.6 46.3 1.00

Race N (%) 0.270

African American 291 (12.0) 51 (11.8)

Hispanic 76 (3.10) 18 (4.15)

Others, non-Hispanic 170 (7.00) 37 (8.53)

White 1835 (75.8) 325 (74.9)

Asian 50 (2.10) 3 (0.691)

Laboratory findings mean (std)

Sodium 138.6 (4.58) 138.5 (4.80) 0.835

Urea nitrogen 34.4 (24.0) 32.6 (22.3) 0.017

NT proBNP 0.187 (0.380) 0.181 (0.385) 0.613

Serum creatinine 0.002 (0.04955) 0.004 (0.062) 0.083
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the event logs = 55  min, generating a process model 
through process mining discovery algorithm = 15  min, 
producing Timed State Sample thorough DREAM algo-
rithm = 20 min, training the model = 60 min, and testing 
the model took less than 30 s.

Shapley value analysis
Figure 3 illustrates the results of the Shapley value analy-
sis. Based on this figure, severity scores had the most sig-
nificant impact on the prediction of unplanned 30-day 
readmission of the HF ICU patients, followed by admis-
sion events and demographic information that seemed 
to have a similar impact on prediction. Whereas artifi-
cial events, comorbidity events, and lab measurement 
events were the least important variables for the predic-
tion of the outcome in order. Among the severity scores, 
Charlson had a higher impact on prediction compared to 
that of Elixhauser which showed that the severity of the 
conditions played an important role in the prediction of 
unplanned 30-day readmission of ICU HF patients since 

Charlson score assigns higher weights to the severity 
level of the conditions than Elixhauser.

The Shapley value analysis confirmed that the sever-
ity scores had the highest impact on prediction in our 
model. However, other contributing factors impacted the 
prediction of the outcome including admission events, 
demographics, artificial events, comorbidity events, and 
lab measurement events which were all ignored by health 
calculators as the inputs for prediction.

Variable ablation study
The selection of the variables initially was done based on 
the existing literature and the experts’ opinions which 
was explained in detail in the variable selection sub-
section. Moreover, variable ablation was performed to 
find out the importance of each selected variable. Vari-
able ablation was performed, firstly, by removing sever-
ity scores, and the rest of the data were used as inputs to 
the proposed model which led to the AUROC of 0.892. In 
the next step, the demographic information was removed 

Table 3 Summary of the results for proposed model on train, validation, and test sets

Models AUROC AUROC 95% CI Precision Sensitivity Accuracy F‑score

Proposed model performance on test set 0.930 [0.898–0.960] 0.886 0.805 0.841 0.800

Proposed model performance on validation set 0.942 [0.908–0.990] 0.905 0.831 0.881 0.863

Proposed model performance on train set 0.971 [0.914–1.00] 0.926 0.843 0.901 0.901

Table 4 Summary of the results for the baseline models on test set using the same possible inputs as fed to the proposed model, but 
in the original tabular format

RF, random forest; SVM, support vector machine; KNN, K-nearest neighbors

Models AUROC AUROC 95% CI Precision Sensitivity Accuracy F‑score

RF 0.713 [0.691–0.761] 0.750 0.801 0.828 0.760

XGBoost 0.701 [0.685–0.756] 0.731 0.804 0.826 0.763

CatBoost 0.704 [0.674–0.759] 0.692 0.800 0.829 0.752

SVM 0.680 [0.657–0.712] 0.691 0.801 0.828 0.753

Decision tree 0689 [0.669–0.721] 0.724 0.691 0.688 0.710

KNN 0.696 [0.657–0.731] 0.725 0.802 0.815 0.751

Table 5 Summary of the results for the baseline model on test set using the same inputs (TSS, demographics, and severity scores) as 
fed to the proposed model

RF, random forest; SVM, support vector machine; KNN, K-nearest neighbors

Models AUROC AUROC 95% CI Precision Sensitivity Accuracy F‑score

RF 0.841 [0.793–0.864] 0.820 0.803 0.830 0.771

XGBoost 0.832 [0.748–0.843] 0.812 0.792 0.813 0.773

CatBoost 0.830 [0.779–0.859] 0.780 0.801 0.829 0.763

SVM 0.801 [0.763–0.843] 0.775 0.802 0.829 0.765

Decision tree 0.820 [0.740–0.851] 0.802 0.751 0.718 0.737

KNN 0.821 [0.737–0.853] 0.810 0.803 0.823 0.761
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and the rest of the data were fed to the proposed model 
and led to the AUROC of 0.905. Moreover, the stepwise 
event type removal from the original event logs was 
done. The impact of each event type was investigated by 
removing specific event types from the event logs and ten 
times running the proposed model by using the resultant 
event logs along with severity scores and demographics 
information as inputs. The discharge event was never 
removed from the event logs since they were required to 
be marked as the state in which the Timed State Samples 
were extracted, and the unplanned 30-day readmission 
was predicted. As a result, four different event logs were 
built. The details of the event types in each event log, and 
the resultant AUROCs are shown in Fig.  4. The results 
in Fig. 4 indicated that removing severity scores, demo-
graphics, admission/admission insurance type, artificial 
events, comorbidities event, and lab measurements were 
led to AUROC of 0.892, 0.905, 0.900, 0.915, 0.920, and 
0.920, respectively. As a result, the performance maximi-
zation was reached when severity scores, demographics, 
and all event types included in the event logs, were used 
as inputs to the proposed model.

Neural network layer ablation study
The proposed NN architecture was analyzed in two steps. 
First, an analysis was performed by adding further lay-
ers to each of the three inputs prior to the concatenation 
layer. Second, a step-wise decrease of layer after the con-
catenation was performed. The results are visualized in 

Fig.  5. Figure  5 indicates that having only one layer per 
input prior to concatenation led to AUROC of 0.902 over 
ten runs, adding the second layer led to the AUROC of 
0.909, adding the third layer led to the AUROC of 0.930, 
however, adding the fourth layer led to the AUROC of 
0.920. This justified that having three layers per input 
prior to concatenation is the optimal number of layers. 
On the other hand, the removal of the post concatenation 
layer (except for the softmax output) led to an AUROC 
of 0.914. As a result, having one post concatenation layer 
was the optimum which led to an AUROC of 0.930. The 
results indicated that the proposed architecture is locally 
optimized.

Discussion
Existing model compilation summary
Several methods have been concurrently developed 
to predict unplanned 30-day readmission of the ICU 
patients with HF aiming to benefit both health care pro-
viders and the patients. Table 6 shows the existing mod-
els that have been used MIMIC-III dataset to predict 
unplanned 30-day readmission of ICU patients with HF.

In this study, a process mining/deep learning technique 
was investigated for predicting unplanned 30-day read-
mission of ICU patients with HF, in which time infor-
mation associated with the events, severity scores, and 
demographics were fed into a NN model.

The effectiveness of our developed approach outper-
formed the best results of the existing literature in terms 

Fig. 3 The Mean range of Shapley Values for each variable type. This Figure illustrates the impact of each variable in predicting unplanned 30-day 
readmission of ICU HF patients. The severity scores (Charlson and Elixhauser) have the highest impact in prediction. Following the severity scores, 
admission events, demographics, artificial events, comorbidity events and lab measurements events have some impact in prediction in order
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of the AUROC value proposed by Lin et al. [11]. The effi-
cacy of our approach was demonstrated by a substantial 
improvement of + 10% on AUROC.

In addition, the presented results indicated + 6% 
and + 7% improvements in sensitivity and F-score met-
rics, respectively, compared to the best sensitivity and 
F-score values reported in the literature by Huang et al. 
[39].

Although the existing proposed methodologies in 
the literature were successful in predicting unplanned 
30-day readmission of ICU patients with HF, they 
possessed several drawbacks. First, most of the exist-
ing models did not use the time-series features, and 
to the best of our knowledge, none of them incorpo-
rated time information associated with the variables in 
their predictive modeling that could lead to significant 

Fig. 4 Ablation study on the variable types

Fig. 5 Ablation study on the variable types
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information loss and poor performance accordingly 
[40, 41].

Furthermore, the proposed approach was a process 
mining/deep learning approach that illustrated the care-
flows of patients through a process model. As a result, 
our framework was more interpretable compared to the 
existing methods, which is significant for clinical applica-
tions [42].

Moreover, the health calculators that computed out-
comes based on the severity scores ignored the past med-
ical history of the patients which could have a significant 
impact on the likelihood of unplanned readmission.

Our proposed approach had several advantages over 
prior research papers which are as follows: (a) Process 
mining approach yielded a comprehensive analysis of 
careflows of patients through a process model which is 
understandable and can easily be interpreted compared 
to ML techniques. The process model provided a map 
that represented the possible diagnosis, procedures, per-
formed services, laboratory measurements, and more, 
that happened to a patient. Additionally, it eased the 
interpretability of a model prediction. An example of 
a process model can be found in the existing research 
paper [20, 43] (b) The EHR can be directly used as inputs 
to our proposed approach without any computationally 
expensive preprocessing steps. (c) The process mining/
deep learning framework was capable of modeling the 
time-related variables and incorporating the medical his-
tory of the patients from the previous hospital visits in 
the prediction algorithm unlike ML-based models and 
health calculators.

Study limitations
The proposed approach had some limitations. Even 
though MIMIC-III is a comprehensive database and 
many recent research projects have been using the 

same database for their experiments [21, 44], the data is 
almost 18 years old. Thus, we suggest that a newer mul-
tihospital database such as the Nationwide Readmission 
Database (NRD) [23, 45] should be used in the future to 
externally validate our proposed model and its results. 
Also, MIMIC-III readmission information is limited to 
several facilities, and for the cases that the patients are 
admitted to other facilities, the readmission information 
is not available, hence, it may bias the results. Since this 
approach was a process mining/deep learning approach, 
the availability of the past hospital visits of the patients 
was essential. This approach was not useful for patients 
whose admission histories were not available. However, 
this limitation can be overcome if the history of patients 
could be exchanged through a network system between 
health care providers. Application Program Interfaces 
(APIs) and similar innovations hold promise that soon 
these drawbacks can seemingly be curtailed.

Moreover, in our model development, the train and 
validation datasets were used to build the model. The test 
dataset was set aside from the beginning and only used 
to evaluate the performance of the model. The train, vali-
dation, and test sets were coming from the MIMIC-III 
dataset. However, using an independent dataset from a 
different system would be beneficial to test the perfor-
mance of the model [46], which provides room for future 
work.

Conclusions
A process mining/deep learning approach to model 
EHR data of ICU patients with HF to predict unplanned 
30-day readmission provided significant improvement 
in outcome prediction observed and compared to the 
results of the baseline ML models and existing litera-
ture. This improvement could be due to the capabil-
ity of the process mining approach of modeling time 

Table 6 Summary of the existing models and their performance on the MIMIC-III dataset

BUN, blood urea nitrogen; DBP, diastolic blood pressure; FIO, fraction of inspired oxygen; HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure; MBP, mean 
blood pressure; OS, oxygen saturation; LOS, length of stay; GCS eye, glasgow coma scale eye opening; GCS verbal, glasgow coma scale verbal response
a The mean and std were used for the continuous variables in Hu et al. [15] research papers

Study Method Variablesa Performance

Hu et al. [8] Constrained support vector machine (cSVM) BUN, DBP, FIO, Glucose, HR, RR, SBP, Temperature, 
Weight, pH, FIO, HR, MBP, OS, RR, SBP, Temperature, 
Weight, LOS, GCS eye, GCS verbal, Age, Gender, Race, 
Insurance, Discharge location

AUROC 0.680
95% CI: 0.651–0.722

Baruah [19] CNN Clinical notes AUROC 0.646
Precision 0.876
Sensitivity 0.697

Liu et al. [39] Random Forest (RF), Convolutional Neural, Networks 
(CNN)

Clinical notes Precision 0.698
Sensitivity 0.771
Accuracy 0.733

Huang et al. [40] bidirectional transformer model (Clinical Bert) Clinical notes AUROC 0.768
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information related to the variables and incorporating 
past hospital visits of the patients for prediction. Our 
framework can assist clinicians in identifying patients 
with a higher risk of unplanned 30-day readmission. 
Discharge planners may find this prediction tool useful 
in determining when a patient is safe to be discharged 
from the hospital and to guide post-discharge outpa-
tient management. Future studies may validate the pro-
posed approach using datasets from other healthcare 
systems or investigate its use for different diseases and 
outcomes. Moreover, the MIMIC-III dataset contains 
useful information such as clinical notes, and images, 
which can be fed to the models as inputs. Therefore, it 
potentially makes room for further research.
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