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Abstract 

Background:  While multiple randomized controlled trials (RCTs) are available, their results may not be generalizable 
to older, unhealthier or less-adherent patients. Observational data can be used to predict outcomes and evaluate 
treatments; however, exactly which strategy should be used to analyze the outcomes of treatment using observa-
tional data is currently unclear. This study aimed to determine the most accurate machine learning technique to 
predict 1-year-after-initial-acute-myocardial-infarction (AMI) survival of elderly patients and to identify the association 
of angiotensin-converting- enzyme inhibitors and angiotensin-receptor blockers (ACEi/ARBs) with survival.

Methods:  We built a cohort of 124,031 Medicare beneficiaries who experienced an AMI in 2007 or 2008. For analyti-
cal purposes, all variables were categorized into nine different groups: ACEi/ARB use, demographics, cardiac events, 
comorbidities, complications, procedures, medications, insurance, and healthcare utilization. Our outcome of interest 
was 1-year-post-AMI survival. To solve this classification task, we used lasso logistic regression (LLR) and random forest 
(RF), and compared their performance depending on category selection, sampling methods, and hyper-parameter 
selection. Nested 10-fold cross-validation was implemented to obtain an unbiased estimate of performance evalu-
ation. We used the area under the receiver operating curve (AUC) as our primary measure for evaluating the perfor-
mance of predictive algorithms.

Results:  LLR consistently showed best AUC results throughout the experiments, closely followed by RF. The best pre-
diction was yielded with LLR based on the combination of demographics, comorbidities, procedures, and utilization. 
The coefficients from the final LLR model showed that AMI patients with many comorbidities, older ages, or living in 
a low-income area have a higher risk of mortality 1-year after an AMI. In addition, treating the AMI patients with ACEi/
ARBs increases the 1-year-after-initial-AMI survival rate of the patients.

Conclusions:  Given the many features we examined, ACEi/ARBs were associated with increased 1-year survival 
among elderly patients after an AMI. We found LLR to be the best-performing model over RF to predict 1-year survival 
after an AMI. LLR greatly improved the generalization of the model by feature selection, which implicitly indicates 
the association between AMI-related variables and survival can be defined by a relatively simple model with a small 
number of features. Some comorbidities were associated with a greater risk of mortality, such as heart failure and 
chronic kidney disease, but others were associated with survival such as hypertension, hyperlipidemia, and diabetes. 
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Background
Acute myocardial infarction (AMI), commonly known 
as a heart attack, is a life-threatening condition in which 
blood flow to the heart is abruptly blocked, causing dam-
age or death of the heart muscle. According to Benjamin 
et  al. [1], the overall prevalence of AMIs in adults over 
20 was 7.9 million (3 percent) in the United States. Each 
year, about 790,000 adults aged over 35 in the US experi-
ence AMIs. Unfortunately, readmission and mortality are 
not uncommon in the years following the initial AMI. Of 
the people who experience AMI in a given year, 1 in every 
4 has recurrent AMIs, and 1 in 7 results in death [1].

In order to reduce morbidity and mortality after the 
first AMI and prevent subsequent AMIs, multiple ran-
domized controlled trials (RCTs) have determined the 
relative value of different interventions to prevent or treat 
AMIs and to provide guidance for patients [2–9]. How-
ever, the results of RCTs do not always apply to all groups 
of patients and this absence is a particular problem for 
elderly patients with AMIs. The average age of the first 
AMI is approximately 65 years for males and 72 years 
for females [1]. RCTs may exclude patients for various 
reasons including age, specific comorbidities, or other 
health conditions. Thus, appropriate recommendations 
for treatment may not be evident because the results 
may not generalize to patients who do not meet the trial’s 
enrollment criteria.

In such cases, observational data are often used to 
make data-driven decisions about treatment. Applying 
machine learning to retrospective data can aid clinicians 
by identifying high-risk patients and understanding the 
factors that lead to that risk. Yet, to our knowledge, no 
studies have investigated exactly which machine learning 
technique is likely to be most accurate to analyze the risk 
of AMIs in elderly patients.

The objective of this study is to determine the most 
accurate machine learning technique to predict 1-year-
post-AMI survival of elderly patients, and to identify the 
types of predictive variables that lead to the most accu-
rate predictions. Among all predictive variables, we are 
specifically interested in the association of angiotensin-
converting enzyme inhibitors (ACEis) and Angioten-
sin II Receptor Blockers (ARBs), specific hypertension 
treatments that are recommended post AMI [10], with 
the elderly AMI patients’ survival. We examined the 

performance of widely used machine learning tech-
niques: lasso logistic regression (LLR) and random forest 
(RF).

Methods
Study cohort
In order to build data models to predict 1-year-post-AMI 
survival of elderly patients, we used a cohort of 124,031 
Medicare beneficiaries who experienced an AMI (an 
inpatient stay with the primary diagnosis code 410.x1) in 
2007 or 2008. The Chronic Condition Data Warehouse 
provided all Medicare claim information (e.g., providers, 
diagnoses, and procedures), enrollment information (e.g., 
demographics), and part D prescriptions (specific infor-
mation about each prescription).

We considered only Medicare beneficiaries who have 
complete information for one year before and after the 
index date or until the date of death. The index date was 
defined as the admission date of inpatient stay for AMI. 
To ensure data completeness, a Medicare beneficiary 
with AMI was included if he or she (1) was 66 years or 
older at the index date; (2) did not have an AMI in the 
year prior to the index date; (3) was discharged alive from 
the index stay and survived for at least 30 days after the 
index stay; (4) did not use hospice or skilled nursing care 
for the 30 days after the index stay; (5) had Medicare part 
A (hospitalization coverage) and part B (medical insur-
ance) for the entire year prior to the index date; (6) had 
Medicare part D (prescription drug coverage) for the 6 
months prior to the index date; (7) had Medicare parts A, 
B, and D for either the entire one year after the index date 
or until the date of death. Moreover, if a patient had mul-
tiple AMIs in 2007 or 2008, then only the record relevant 
to his or her first AMI was included in the dataset.

In an effort to control for potential confounders, 
we included a wide range of covariates; for example, 
patient demographics; socioeconomic characteristics of 
the patient’s residential area from the 2000 U.S. Census 
(based on a postal code) (e.g., low income area, high pov-
erty area, etc.); medical conditions (cardiac events and 
comorbidities) during the pre-index period and the index 
stay; medications taken for the 180 days before the index 
date and post-AMI; complications; procedures; insur-
ance (e.g., benefit phase); and the use of different facilities 
during the index stay.

In addition, patients who live in urban areas and areas with large numbers of immigrants have a higher probability of 
survival. Machine learning methods are helpful to determine outcomes when RCT results are not available.

Keywords:  Acute myocardial infarction (AMI heart attack), Machine learning, Lasso logistic regression (LLR), Random 
forest (RF), Sampling methods, Hyper-parameter optimization, Nested cross-validation (CV)
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Further, we adjusted some of these variables in an 
attempt to examine their impacts in various approaches. 
For example, summary measures of comorbidities (e.g., 
the total number of comorbidities, Charlson Comorbid-
ity Index (CCI, from CCW), and Elixhauser Comorbid-
ity Index (ECI (see Additional file 1))) were measured to 
check the burden of disease mix for the pre-index and 
index periods. For these variables, the change between 
the two periods (index stay score minus pre-index score) 
was also calculated. In the case of dual eligibility, when 
the patient was eligible for both Medicare and Medicaid, 
because Medicaid eligibility changes, we recorded how it 
had changed over the periods (e.g., dual eligible for both 
periods, only eligible for the pre-index period, only eligi-
ble for the index period, and ineligible for both periods).

ACEi/ARB use was defined as a filled prescription for 
either an ACEi or an ARB in the 30 days after the index 
date to perform analysis “on an intention-to-treat basis” 
[7].

For the purpose of analysis, all variables were cat-
egorized into nine different groups: ACEi/ARB use, 
demographics (age, gender, race, etc.), cardiac events 
(cardiac arrest, arrhythmia, stroke, etc. across different 
time frames), comorbidities (myopathy, angioedema, 
hyperlipidemia, etc. across different time frames), com-
plications (cardiogenic shock, sepsis, and pneumonia 
during the index period), procedures (cardiac catheteri-
zation, stent, etc. across different time frames), medica-
tions (diuretics, beta blockers, etc. during the pre-index 
period), insurance (cumulative beneficiary responsibility 
amount, cumulative total cost, etc. during either index or 
pre-index period), and utilization (acute inpatient stay, 
post-acute care, etc. during the index period). The list of 
all variables in each category can be found in more detail 
(see Additional file 2).

The institutional review board of the University of Iowa 
approved this study.

Model design
Our outcome of interest was 1-year-post AMI survival 
(to be precise, mortality). This binary dependent variable 
was recorded as 1 if a patient died within one year after 
the index date of AMI and 0 otherwise.

For our classification task, we experimented with 
(1) logistic regression and (2) random forest (RF) 
approaches. Logistic regression was chosen as a com-
monly used model for linear fitting. RF was selected to 
take into account the possible complex interactions 
among features with non-linear relationships. More 
information about these two algorithms is provided later 
in this paper.

We used the area under the receiver operating charac-
teristics (ROC) curve, or simply AUC as a measure for 

assessing the performance of predictive algorithms. AUC 
is considered the better performance evaluation metric 
than other widely used ones, such as accuracy and the 
Matthews correlation coefficient (MCC), to effectively 
evaluate and compare classification models over imbal-
anced datasets as in our case [11]. However, we also con-
sidered other performance evaluation metrics including 
accuracy, sensitivity, and specificity.

The dataset was imbalanced with total 19,418 out of 
124,031 elderly patients (15.66%) who died within one 
year after the index AMI. To deal with this class imbal-
ance, we compared three common strategies: under-
sampling, over-sampling, and a combination of the two 
(both-sampling). In under-sampling, records from the 
majority class (0, survived) were randomly removed. 
In contrast, in over-sampling, records from the minor-
ity class (1, died) were duplicated to provide a balanced 
dataset. Both-sampling is a mix of under-sampling and 
over-sampling to balance the majority and minority.

We took different approaches to category and variable 
selection: forward selection for category selection and 
backward elimination for feature selection. In the case 
of category selection, we started to build a model with a 
single category and then kept adding other categories one 
by one. We continued until adding more categories did 
not significantly increase prediction performance. On the 
other hand, we applied backward elimination for variable 
selection for RF. This is an iterative method that starts 
with all features and removes the least significant variable 
that enhances the performance until no enhancement is 
observed. Since LLR includes the feature selection pro-
cedure in its optimization function, we did not use back-
ward elimination for LLR. Specifically, LLR performs L1 
regularization to shrink the coefficients towards zero and 
eliminate comparatively insignificant variables from the 
model [12].

Nested 10-fold cross-validation (CV) was performed to 
create an unbiased estimate of AUC as well as to handle 
feature and hyper-parameter selection. Hyper-param-
eter selection is the procedure for optimizing the set of 
parameters used in machine learning models, so that they 
can yield the best performing predictions [13]. Hyper-
parameters that we estimated here are lambda for LLR; 
the number of variables available for splitting at each tree 
node, and the number of trees to grow for RF. A detailed 
explanation for each hyper-parameter will be provided 
in the following section. In the inner loop, we selected 
a subset of categories and different combination of vari-
ables within each category and a value of hyper-parame-
ters that enhanced AUC of the inner loop the most. Note 
that the feature selection was treated as an extension of 
the hyper-parameter optimization problem, so we used 
the same inner AUC for the optimization of both features 
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and hyper-parameters. In the outer loop, the model was 
trained with the selected category/variable subset and 
hyper-parameters and was used to estimate the AUC in 
the outer loop.

Figure  1 illustrates the entire process of model devel-
opment. First, the dataset was partitioned into 10 subsets 
(folds) of nearly equal size with roughly equal propor-
tions of target patients. In the outer loop, while hold-
ing out one fold as a test set, the rest were assigned as 
a training set. Likewise, in the inner loop, the training 
set was split and assigned to another test set and train-
ing set. Then, the sampling method was applied to the 
inner training set. We extracted a subset of categories/
variables and tried different values of the hyper-param-
eters to train the model and compare its performance 
as estimated with the inner test set. The feature subset 
and hyper-parameter with the highest inner AUC were 
selected for each inner loop. Repeating the same pro-
cess throughout the inner 10 folds, the most frequently 
appearing (or the averaged) feature subsets and hyper-
parameters were finally chosen to train a model with the 
outer training set. The model performance was evaluated 
by averaging the outer AUC.

All analysis was performed using R statistical software 
version 3.5.0 and Python version 3.7.1.

Algorithms
Lasso logistic regression (LLR)
Logistic regression is a widely used model when the 
dependent variable is binary, y ∈ {0, 1} . Unlike linear 
regression, its goal is to model the probability p that the 

output variable Y takes on 0 or 1 given the input variables 
x ∈ {x1, x2, . . . xn} . It can be expressed mathematically as:

By applying the logistic function, it can be converted into:

With a large number of predictors, reducing the coef-
ficients of less predictive variables along with fitting 
the parameters of the model is vital not only for pre-
diction accuracy but also for model interpretability. To 
fit the parameter, the principal of maximum log-likeli-
hood is often applied, which maximizes the product of 
probabilities.

LLR adds an L1-norm penalty term to the likelihood 
optimization [14]. The complexity is controlled with the 
parameter �.

As � increases, this penalty forces the coefficients to 
shrink toward zero. In this way, Lasso regularizes and 
selects variables. To fit the regularization parameter 
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Fig. 1  Schematic of model development for survival prediction. We optimized feature and hyper-parameter selection in the inner CV loop, while 
we evaluated the model performance with the optimal feature subsets and hyper-parameters in the outer CV loop. Both inner and outer layers 
consist of ten repeated folds (training/testing repetitions)
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lambda � , we performed cross-validation (grid search) to 
find a value of � at the minimum of mean squared error.

Random forest (RF)
Random forest (RF) is an ensemble classification tech-
nique, where multiple decision trees are constructed on 
random samples of features in order to boost accuracy 
and protect against overfitting [15].

A decision tree is a top-down logical tree that splits 
the given samples based on the value of a chosen feature 
that can divide the sample into homogeneous groups. Its 
fundamental limitation is high variance in model predic-
tion. Trees tend to overfit the training data as they grow 
in complexity. In RF, this limitation is solved by employ-
ing an ensemble method called bootstrap aggregation 
(bagging), where each tree is built using randomly drawn 
samples from the original data and each tree gives an 
independent vote for its predicted class label [16, 17]. 
Although any individual tree in the ensemble may be 
sensitive to the training set and thus inaccurate, the final 
majority vote across numerous trees greatly reduces the 
variance and is often remarkably accurate [16].

We tuned two hyper parameters of RF, the level of ran-
domness (mtry) and the size of the forest (ntree). The for-
mer is decided by number of variables to be examined at 
each split. A lower value generates less correlated trees, 
so it leads to more stable but potentially less accurate 
performance. The latter is controlled by the number of 
trees in the model. A higher value can achieve improved 
performance but increases the computation time linearly 
[13].

Results
The results of the two algorithms, LLR and RF , built 
with each individual feature category are summarized in 
Tables  1 and 2 respectively, and the bold text indicates 
the selected category subset in each selection step with 

the highest AUC. As discussed, we chose the average 
value of the parameter or the most frequently selected 
value of the parameter with the highest inner AUC for 
optimization and reported the average of outer AUCs. 
In the table, the category subset used, the best sampling 
method, the optimum value of parameters, and the cor-
responding outer AUC value and its standard deviation 
are presented.

LLR and RF showed comparable performance across 
all category subsets, with the performance of LLR slightly 
better than that of RF. Both of these models generated the 
best result with the comorbidity-category subset (AUC = 
0.7531 for LLR and 0.7459 for RF).

By adding different categories one by one to the 
selected subset with the best AUC result, the experiments 
continued until the increase of AUC was not significant. 
The results are presented in Tables 3, 4, 5, 6, 7 and 8. The 
best AUC performance was achieved with the same com-
bination of category subsets (comorbidities, procedures, 
demographics, and utilization) for both LLR and RF, but 
with different sampling methods, both-sampling for LLR 
and under-sampling for RF.

Table 1  Lasso logistic regression with one category subset

The AUC and the SD columns show the average of outer AUC and its standard 
deviation respectively. The most commonly selected sampling method and the 
average of lambda were reported under the Sampling and the Lamda columns 
as well

One category subset Sampling Lambda AUC (SD)

Demographics Under 0.000655 0.6798 (0.0077)

Cardiac events Both 0.001200 0.6359 (0.0086)

Comorbidities Both 0.000595 0.7531 (0.0053)
Complications Under 0.002252 0.5822 (0.0067)

Procedures Under 0.000900 0.7241 (0.0043)

Medications Under 0.001153 0.6369 (0.0055)

Insurance Both 0.000453 0.6196 (0.0064)

Utilization Under 0.001875 0.6243 (0.0065)

Table 2  Random forest with one category subset

The AUC and the SD columns show the average of outer AUC and its standard 
deviation respectively. The most frequently selected sampling method and 
parameters (mtry and ntree) are reported accordingly

One category subset Sampling mtry ntree AUC (SD)

Demographics Under 3 250 0.6695 (0.0059)

Cardiac Events Under 3 2250 0.6327 (0.0093)

Comorbidities Under 3 2750 0.7459 (0.0045)
Complications Under 3 1500 0.5804 (0.0069)

Procedures Under 3 1250 0.7183 (0.0061)

Medications Under 3 1500 0.6317 (0.0055)

Insurance Under 3 1250 0.6127 (0.0068)

Utilization Under 3 2500 0.6224 (0.0055)

Table 3  Lasso logistic regression with two category subset

Two category subset Sampling Lambda AUC (SD)

Comorbidities + demograph-
ics

Both 0.000508 0.7785 (0.0049)

Comorbidities + cardiac 
events

Both 0.000665 0.7568 (0.0054)

Comorbidities + complica-
tions

Both 0.000581 0.7537 (0.0054)

Comorbidities + proce-
dures

Both 0.000489 0.7849 (0.0039)

Comorbidities + medications Both 0.000543 0.7553 (0.0053)

Comorbidities + insurance Both 0.000385 0.7563 (0.0056)

Comorbidities + utilization Both 0.000567 0.7573 (0.0053)
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For potential clinical utility, in addition to AUC, the 
performance of LLR and RF with the best corresponding 
settings of category subset, sampling method, and hyper 

parameters was further evaluated using other supple-
mentary metrics (accuracy, sensitivity, and specificity). 
The cross-validated values are reported in Table 9. Nev-
ertheless, those values can be changed by simply modi-
fying a predictive threshold (in this study, it is 0.5). LLR 
showed outstanding classification performance in terms 
of not only AUC but also sensitivity. When studying sur-
vival, models with high levels of sensitivity are preferable.

Due to its superior performance as determined by 
AUC, LLR with the final category subset (comorbidities, 
procedures, demographics, and utilization) and both-
sampling method was chosen as a final model. Again, 
note that we used AUC as a base performance evalua-
tion metric to deal with the class imbalance problem. 
Table 10 shows the coefficients of the variables from the 
final model. The variables with zero coefficients were 
excluded by the LLR as the feature selection proceeded. 
Variables from the final model are cross-tabulated with 
survival (see Additional file 3).

Table 4  Random forest with two category subset

Two category subset Sampling mtry ntree AUC (SD)

Comorbidities + demo-
graphics

Under 3 750 0.7705 (0.0044)

Comorbidities + cardiac 
events

Under 3 750 0.7503 (0.0049)

Comorbidities + complica-
tions

Under 3 1250 0.7467 (0.0046)

Comorbidities + proce-
dures

Under 3 2500 0.7804 (0.0039)

Comorbidities + medica-
tions

Under 3 2000 0.7502 (0.0045)

Comorbidities + insurance Under 3 1750 0.7501 (0.0044)

Comorbidities + utilization Under 3 1000 0.7512 (0.0049)

Table 5  Lasso logistic regression with three category subset

Three category subset Sampling Lambda AUC (SD)

Comorbidities + procedures + demographics Under 0.000489 0.7942 (0.0035)
Comorbidities + procedures + cardiac events Both 0.000565 0.7851 (0.0039)

Comorbidities + procedures + complications Both 0.000481 0.7850 (0.0040)

Comorbidities + procedures + medications Both 0.000467 0.7860 (0.0040)

Comorbidities + procedures + insurance Both 0.000362 0.7860 (0.0039)

Comorbidities + procedures + utilization Both 0.000480 0.7862 (0.0040)

Table 6  Random forest with three category subset

Three category subset Sampling mtry ntree AUC (SD)

Comorbidities + procedures + demographics Under 3 2000 0.7894 (0.0035)
Comorbidities + procedures + cardiac events Under 3 500 0.7810 (0.0038)

Comorbidities + procedurse + complications Under 3 2000 0.7804 (0.0036)

Comorbidities + procedures + medications Under 3 2000 0.7829 (0.0039)

Comorbidities + procedures + insurance Under 3 1500 0.7827 (0.0038)

Comorbidities + procedures + utilization Under 3 2750 0.7825 (0.0040)

Table 7  Lasso logistic regression with four category subset

Four category subset Sampling Lambda AUC (SD)

Comorbidities + procedures + demographics + cardiac events Under 0.000527 0.7946 (0.0036)

Comorbidities + procedures + demographics + complications Under 0.000466 0.7944 (0.0036)

Comorbidities + procedures + demographics + medications Under 0.000919 0.7948 (0.0035)

Comorbidities + procedures + demographics + insurance Both 0.000409 0.7949 (0.0034)

Comorbidities + procedures + demographics + Utilization Both 0.000441 0.7955 (0.0036)
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The result of the final model illustrates that the more 
comorbidities the patient has, the lower the survival 
rate with AMI; CCI both on and prior to the index 
admission date most clearly shows this association. 
Regardless of the diagnosis date, having serious myo-
pathy, heart failure, metastatic cancer, atrial fibrillation, 
depression, COPD, CKD, hyperkalemia, hepatic events, 
or renal failure have critical impacts on the mortality 
of AMI patients. Meanwhile, those with angioedema, 
hyperlipidemia, asthma, non-serious myopathy, diabe-
tes, hypertension, and bradycardia were more likely to 
survive after one year of initial AMI.

Regarding procedures, having echocardiography, per-
cutaneous coronary intervention, or a stent on the day 
of the AMI is associated with mortality. On the other 
hand, having pacemaker implantation, CABG, a stress 
test, or cardiac catheterization was associated with 
survival.

Some demographic characteristics also influence 
post-AMI mortality. For example, patients with older 
ages or who received a low-income subsidy are at 
greater risk of death within a year after AMI. Likewise, 
the patients who had been consistently eligible for both 
Medicare and Medicaid have a lower survival rate. 
The patient’s dual eligibility during the index period is 
more strongly linked to mortality than the dual eligibil-
ity during the pre-index period. In addition, black or 
female patients have lower survival rates than males or 
patients of other races.

The characteristics of the patient’s residential area are 
another set of factors. The mortality risk increases if 
the patient lives in an area with a low income rate, low 
high school diploma rate, or in the first quartile of aver-
age life expectancy. However, the survival probability 
increases when the patient lives in a metro area, an area 

with high poverty or high immigrant rates, or a high 
portion of non-English speakers.

Using the emergency room or post-acute care, as well 
as increased inpatient length of stay are associated with 
a lower probability of survival, but patients who are 
transferred to another facility have higher probability 
of survival.

Lastly, ACEi/ARBs use is associated with survival. If an 
elderly AMI patient does not fill a prescription of either 
ACE or ARB in the 30 days after AMI, the risk of mortal-
ity increases.

Discussion
In this paper, we used machine-learning methods to pre-
dict survival in post-AMI Medicare beneficiaries. We 
found that ACEi/ARB use is associated with 1-year sur-
vival for elderly patients who have suffered an AMI.

RCTs are the gold standard for studying treatment 
effectiveness [18]. However, because RCTs are expen-
sive, time consuming, and often exclude elderly patients 
and those with comorbidities, treatment effectiveness 
needs to be determined for excluded patients in other 
ways. Using insurance claims data and machine-learning 
methods are an alternative solution to determine treat-
ment effectiveness when RCTs are difficult or impossible 
to perform. In fact, the Food and Drug Administration, 
which has relied on RCT data in the past, is now inter-
ested in obtaining “Real-World Evidence” from “Real-
World Data” including electronic medical records, 
insurance claims and data obtained directly from patients 
[19].

However, unlike RCTs where data analysis is usually 
straightforward, when using real-world data, determin-
ing the optimal data-analysis method is often difficult. In 

Table 8  Random forest with four category subset

Four category subset Sampling mtry ntree AUC (SD)

Comorbidities + procedures + demographics + cardiac events Under 6 1750 0.7902 (0.0040)

Comorbidities + procedures + demographics + complications Under 3 2000 0.7898 (0.0038)

Comorbidities + procedures + demographics + medications Under 6 2750 0.7901 (0.0031)

Comorbidities + procedures + demographics + insurance Under 6 3000 0.7907 (0.0036)

Comorbidities + procedures + demographics + utilization Under 6 2750 0.7911 (0.0037)

Table 9  Performance evaluation with final category subset (comorbidities + procedure + demographics + utilization)

Model Sampling AUC (SD) Accuracy (SD) Sensitivity (SD) Specificity (SD)

LLR Both 0.7955 (0.0036) 0.7104 (0.0039) 0.7490 (0.0076) 0.7033 (0.0054)

RF Under 0.7911 (0.0037) 0.7890 (0.0043) 0.5322 (0.0090) 0.8367 (0.0051)
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Table 10  Coefficients of features selected by final model

Category Features Time periods Coef.

Intercept Intercept – −1.1207

ACEi/ARBs use ACEi/ARBs (untreated) Post-index 0.1910

Comorbidities Charlson comorbidity index (CCI) Index 0.1102

Charlson comorbidity index (CCI) Pre-index 0.0932

Elixhauser comorbidity index (ECI) Pre-index 0.0420

Elixhauser comorbidity index (ECI) Index 0.0165

Number of comorbidities Pre-index 0.0027

Number of comorbidities Index 0.0005

Charlson comorbidity index (CCI) Change 0.0000

Elixhauser comorbidity index (ECI) Change 0.0000

Number of comorbidities Change 0.0000

Serious myopathy Pre-index 0.5637

General cancer Index 0.4801

Heart failure Index 0.3594

Metastatic cancer Pre-index 0.2553

Metastatic cancer Index 0.2453

Heart failure Pre-index 0.2102

Atrial fibrillation Index 0.1367

Serious myopathy Index 0.1205

COPD Pre-index 0.1183

Hypotension Pre-index 0.1108

Depression Pre-index 0.1020

Chronic kidney disease Index 0.0882

COPD Index 0.0842

Hyperkalemia Pre-index 0.0786

Atrial fibrillation Pre-index 0.0671

Hepatic events Index 0.0572

Hyperkalemia Index 0.0488

Depression Index 0.0464

Renal failure Pre-index 0.0264

Non-AMI ischemic heart disease Pre-index 0.0233

Hepatic events Pre-index 0.0115

Renal failure Index 0.0083

Chronic kidney disease Pre-index 0.0072

Hypotension Index −0.0028

Non-AMI ischemic heart disease Index −0.0076

Bradycardia Pre-index −0.0086

Hypertension (uncomplicated) Pre-index −0.0255

General cancer Pre-index −0.0515

Hypertension (complicated) Index −0.0608

Diabetes Pre-index −0.0624

Hypertension (complicated) Pre-index −0.0954

Non-serious myopathy Index −0.1136

Bradycardia Index −0.1146

Hypertension (uncomplicated) Index −0.1274

Diabetes Index −0.1290

Non-serious myopathy Pre-index −0.1372

Asthma Index −0.1573

Hyperlipidemia Index −0.2294
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Lasso with Four-Category Subset—Comorbidities, Procedures, Demographics, and Utilization—, and Both Sampling (LLR coefficients of the variables from the final 
model with four categories)

Table 10  (continued)

Category Features Time periods Coef.

Asthma Pre-index −0.2325

Angioedema Index −0.2511

Hyperlipidemia Pre-index −0.2883

Angioedema Pre-index −0.4396

Procedures Echocardiography Index 0.3932

Percutaneous coronary intervention Index 0.3223

Stent Index 0.2612

Stent Pre-index 0.1310

Pacemaker implantation Pre-index −0.0330

CABG Pre-index −0.2485

Pacemaker implantation Index −0.2629

Stress test Index −0.3152

Cardiac catheterization Index −0.5627

CABG Index −0.9250

Demographics Age: 85+ – 0.9877

Age: 81–85 – 0.5803

Age: 76–80 – 0.3469

Age: 71–75 – 0.1136

Metro area: unknown – 0.7015

Metro area: non-metro – 0.0183

Dual eligibility Steady [2] 0.3618

Dual eligibility Steady [1] 0.0004

Dual eligibility Steady [3] 0.0000

Dual eligibility Index 0.2281

Dual eligibility Pre-index 0.1213

Low income subsidy – 0.1231

Low income area – 0.0445

Low high school diploma area – 0.0279

High poverty area – −0.0398

High immigrant area – −0.0456

No English speaker area – −0.0469

Race: black – 0.0386

Race: white – −0.0096

Race: unknown – −0.0853

Race: Asian – −0.1035

Race: hispanic – −0.1974

Race: others – −0.3169

Average life expectancy: 4th quartile – −0.0513

Average life expectancy: 2nd quartile – −0.0589

Average life expectancy: 3rd quartile – −0.0681

Gender: male – −0.1724

Utilization ER use Index 0.1240

Acute inpatient stay days Index 0.0215

Post-acute care use Index 0.0001

Transferred to another facility Index −0.1429
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this paper, we examined two different machine-learning 
methods, LLR and RF. We found that LLR was better 
than RF for predicting the 1-year-after-initial-AMI sur-
vival of patients.

Interestingly, a similar conclusion, that regularized 
logistic regression models perform better than RF mod-
els when predicting survival after an AMI, was reported 
in [20–22]. In [20], ridge logistic regression with bina-
rized features resulted in the best 10-fold validated AUC 
at 0.832 among all models (decision tree, naive bayes, 
artificial neural network, etc.). This study differs from 
ours in several aspects, such as the prediction of 30-day 
AMI mortality and the limited number of patients (603) 
and attributes (23, mostly from blood tests). In [21], 
logistic model trees and simple logistic algorithms with 
all combined categories of dataset (demographics, admis-
sion, lab and chart, treatment, and diagnostic informa-
tion) resulted in the best 10-fold validated AUC at 0.901 
among all models, while RF with the same dataset scored 
0.893. It intended to predict long-term (1-year) mortal-
ity, but used a relatively small set of variables (79) and 
patients (5436). Lee et. al  [22] reported that penalized 
(Lasso and Ridge) logistic regression generally performs 
the best for predicting short and long-term (3 and 12 
months) survival of patients with ST-segment elevation 
myocardial infarction (STEMI) and non-ST-segment 
elevation myocardial infarction (NSTEMI). The study 
involved 14,183 adult patients in Korea and a wide range 
of their characteristics (demographics, past medical his-
tory, initial symptoms, lab findings, events before ED 
arrival and during the hospital stay, and coronary angio-
graphic findings).

The outstanding performance of LLR is mainly due 
to its penalized effect with a Lasso regularization term, 
which reduces the variability of model by shrinking the 
coefficients of unnecessary features toward or possibly to 
zero and selecting only necessary features [23]. It helps 
LLR to have better predictive ability for datasets where 
the number of features is far greater than the number of 
samples, such as our case. In addition, the fact that the 
linear model was more effective for predicting our par-
ticular outcome indicates that a linear combination of 
features provides substantial information about the 
outcome while nonlinear models add respectively little 
marginal predictive value. In other words, this implies 
that the patterns and relationships between variables 
related to the 1-year-after-initial-AMI survival of elderly 
patients can be drawn by a relatively simple linear model 
with considerably fewer features. In addition to predic-
tive performance, the interpretability of RF is very lim-
ited compared to LLR. The association and importance 
of variables can be evaluated by using the estimated 
coefficients of LLR [24], providing a meaningful and 

easy-to-understand interpretation of results both for cli-
nicians to determine who is most at risk and researchers 
to begin further studies with appropriately automatic fea-
ture selection.

In addition to the effectiveness of ACEi/ARBs for post-
AMI treatment among Medicare beneficiaries, we have 
other interesting results. Many of our results are not sur-
prising. For example, patients who have a higher comor-
bidity burden, represented by a higher CCI, have a lower 
probability of survival. In addition, patients with serious 
comorbidities with high mortality rates, such as heart 
failure, metastatic cancer and CKD also have a lower 
probability of survival after AMI. Also, as has been found 
previously, poverty is associated with a lower probability 
of survival; those who are eligible for Medicaid or live 
in a low-income area or an area with lower educational 
attainment, have a lower probability of survival [25].

However, there were some surprising results. For exam-
ple, patients with hyperlipidemia, diabetes and hyperten-
sion have an increased probability of survival. Although 
most comorbidities are generally associated with lower 
rates of guideline treatment [26], in a previous study, we 
found that patients with comorbidities, especially diabe-
tes, were more likely to fill a prescription for at least one 
guideline-recommended post-AMI treatment than those 
without comorbidities [27]. The increased survival among 
patients with specific comorbidities may be related to 
increased rates of guideline-recommended treatment.

We also found that patients who live in urban areas, 
areas with large numbers of immigrants and non-Eng-
lish speakers also have increased probability of survival. 
Although many immigrants may have healthier lifestyles 
than native-born populations, one would expect that they 
would also have decreased access to healthcare. Indeed, 
previous findings have been mixed. One study in Israel 
found that mortality after AMI was increased for immi-
grants compared to native-born patients [28]. However, 
another study from Denmark found that, in general, 
immigrants had lower mortality after an AMI than 
native-born patients [29]. The effect of immigration on 
AMI survival should be examined in further work.

Our study has several limitations. First, considering med-
ications, we do not know if patients are actually taking the 
medications. We only know that they filled a prescription 
for the medication. Second, some of our features are eco-
logical. For example, not all patients living in a low-income 
area are low income. Third, all diagnoses, procedures and 
comorbidities were determined using diagnostic codes, and 
some codes have better sensitivity and specificity than oth-
ers. Fourth, despite our efforts to include a wide range of 
covariates, there may be other factors that are not included 
in this study but affect the patient’s survival, for instance, 
consecutive AMIs or other excluded cardiac events. Fifth, 
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ACEi/ARB use might be associated with outcomes other 
than survival, and these will be considered in future work. 
Last, but not least, the machine learning models provide 
an association between features and outcomes, but do not 
necessarily imply causation. Therefore, our models cannot 
support causal relationships with survival.

In conclusion, we found that LLR is an effective method 
for predicting the 1-year-after-initial-AMI survival of 
elderly patients. In addition, ACEi/ARBs are associated 
with patient survival among our cohort of post-AMI 
older adults, many with significant comorbidities.
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