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Abstract 

Background:  Since no effective therapies exist for Alzheimer’s disease (AD), prevention has become more critical 
through lifestyle status changes and interventions. Analyzing electronic health records (EHRs) of patients with AD can 
help us better understand lifestyle’s effect on AD. However, lifestyle information is typically stored in clinical narratives. 
Thus, the objective of the study was to compare different natural language processing (NLP) models on classifying the 
lifestyle statuses (e.g., physical activity and excessive diet) from clinical texts in English.

Methods:  Based on the collected concept unique identifiers (CUIs) associated with the lifestyle status, we extracted 
all related EHRs for patients with AD from the Clinical Data Repository (CDR) of the University of Minnesota (UMN). 
We automatically generated labels for the training data by using a rule-based NLP algorithm. We conducted weak 
supervision for pre-trained Bidirectional Encoder Representations from Transformers (BERT) models and three tra-
ditional machine learning models as baseline models on the weakly labeled training corpus. These models include 
the BERT base model, PubMedBERT (abstracts + full text), PubMedBERT (only abstracts), Unified Medical Language 
System (UMLS) BERT, Bio BERT, Bio-clinical BERT, logistic regression, support vector machine, and random forest. The 
rule-based model used for weak supervision was tested on the GSC for comparison. We performed two case studies: 
physical activity and excessive diet, in order to validate the effectiveness of BERT models in classifying lifestyle status 
for all models were evaluated and compared on the developed Gold Standard Corpus (GSC) on the two case studies.

Results:  The UMLS BERT model achieved the best performance for classifying status of physical activity, with its 
precision, recall, and F-1 scores of 0.93, 0.93, and 0.92, respectively. Regarding classifying excessive diet, the Bio-clinical 
BERT model showed the best performance with precision, recall, and F-1 scores of 0.93, 0.93, and 0.93, respectively.

Conclusion:  The proposed approach leveraging weak supervision could significantly increase the sample size, which 
is required for training the deep learning models. By comparing with the traditional machine learning models, the 
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Background
Alzheimer’s disease (AD) is the most common cause of 
dementia, accounting for 60 to 80 percent of all demen-
tia cases [1]. Around 5.8 million Americans were living 
with AD in 2020, and this number is expected to increase 
to approximately 14 million by 2050 [2]. Currently, no 
treatments can cure AD, but different lifestyle statuses 
have been associated with a substantially reduced risk 
for AD with inconsistent findings. For example, high lev-
els of physical and cognitive activity showed the strong-
est associations with reduced AD risk ranging from 11 
to 44% [3]. Mul tiple lifestyle modifications, including 
physical activity, no-smoking, light-to-moderate alcohol 
consumption, cognitive activities, and high-quality diets 
were correlated with a 60% decreased risk for AD [4]. 
Fur thermore, the Finnish Geriatric Intervention Study 
to Prevent Cognitive Impairment and Disability (FIN-
GER) found that people at high risk of developing AD 
showed improvements in their cognitive abilities follow-
ing 2 years of lifestyle changes [5]. These findings led to 
the launch of multi-lifestyle intervention trials globally, 
such as the U.S. Pointer [6]. Few Randomized Controlled 
Trials (RCTs) have the resources of the U.S. Pointer to be 
able to enroll a large sample. Hence, alternative, innova-
tive, scalable, and cost-effective approaches to the use 
of electronic health records (EHRs) to establish causal 
effects are critically needed.

Since 2009 when the Health Information Technology 
for Economic and Clinical Health Act (HITECH Act) was 
enacted [7], EHRs have been adopted exponentially. Con-
sequently, studies using EHRs have increased dramati-
cally and have been acknowledged as a way of enhancing 
patient care and promoting clinical research [8–11]. EHR 
document information obtained during healthcare deliv-
ery, including detailed explanations of the occurrence, 
treatment, and progression of diseases. Secondary anal-
ysis of observational EHR data has been widely used in 
multiple clinical domains [12].

A study showed that a large portion of lifestyle infor-
mation was documented in EHRs in the unstructured 
narrative or mixed format rather than in the structured 
data [13]. The nature of EHRs making the lifestyle status-
related information be difficult to process and obtain 
desired information. To overcome this difficulty, natu-
ral language processing (NLP) techniques have been 
used to show promising results in extracting pertinent 

information from unstructured data for clinical research. 
For example, in our previous study, we demonstrated that 
extracting lifestyle factors using standard terminologies 
such as Unified Medical Language System (UMLS) and 
the existing NLP model (MetaMap) was feasible and reli-
able [14]. Our previous studies used standardized rule-
based NLP models without the aid of annotated data. 
Besides, we demonstrated the feasibility of using NLP 
methods to automatically extract lifestyle factors from 
EHRs in our latest research [15]. Previously [15], con-
ventional machine learning methods such as the random 
forest, support vector machine (SVM), conditional ran-
dom field, logistic regression, bagged decision trees, and 
K-nearest Neighbors have been used for extracting life-
style factors related to excessive diet, physical activ ity, 
sleep deprivation, and substance abuse. However, some 
limitations included working with a small-sized anno-
tated corpus mainly due to the labor-intensive process of 
developing the corpus [15].

Recently, more advanced neural network-based repre-
sentations, such as Bidirectional Encoder Representation 
from Transformers (BERT) [16], have further improved 
performance in multiple NLP tasks, such as question 
answering. BERT models have been further applied in 
the biomedical domain, and their variants have been pre-
trained on various biomedical corpora, such as biomedi-
cal literature and clinical records (e.g., MIMIC [17]), to 
gain a deep representation of biomedical information. In 
general, these domain-specific BERT models have shown 
promising performance in clinical applications [18–20]. 
For instance, Lee et al. [21] presented that Bio BERT, pre-
trained on large-scale biomedical corpora, significantly 
exceeds the standard BERT model on some popular bio-
medical NLP tasks, i.e., named entity recognition, rela-
tion extraction, and question answering. Michalopoulos 
et  al. [22] also showed similar results by comparing the 
general BERT model with their proposed domain-spe-
cific model, UMLS BERT.

On the other hand, BERT based model requires a large 
amount of labeled training data for achieving better per-
formance. To reduce human efforts to generate anno-
tations, weak supervision is one approach that trains 
machine learning models using weak labels generated 
by rule-based methods. Previously, we [23] have dem-
onstrated the feasibility of using weak supervision and 
deep representation using word embeddings for clinical 

study also demonstrates the high performance of BERT models for classifying lifestyle status for Alzheimer’s disease in 
clinical notes.
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text classification tasks. This approach involved train-
ing word2vec models on clinical notes from the Mayo 
Clinic and used these representations to train Convo-
lutional Neural Networks and MLP Neural Networks. 
We describe an approach using pre-trained contextual 
embeddings and demonstrate improvements over the 
baseline models.

There have been several clinical applications utilizing 
attention-based models, such as BERT and Bio BERT, 
with weak or distant supervision to extract information 
from unstructured clinical notes. Specifically, in terms of 
the NER task, Fries et  al. [24] presented Trove, a novel 
framework combining weakly supervised entity classi-
fication using medical ontologies and expert-generated 
rules with a Bio BERT model. This framework demon-
strated promising performance for classifying risk fac-
tors of COVID-19. Similarly, Chen et  al. [25] proposed 
BOND, a NER task pipeline with a two-stage training 
process: a BERT training on distant labels with an early 
stop followed by a self-training strategy on fine-tuning 
the model. Besides NER tasks, the fashion of combining 
the weak supervision with BERT models was also proved 
to be very effective on other clinical NLP tasks, such as 
medication regimen extraction [26]. By comparison, our 
approach uses only the raw text with weak labels gener-
ated by simple rules as input to various models, meaning 
our pipeline is much more simple and direct than those 
proposed in the aforementioned studies. We also con-
sider a wider collection of biomedical BERT variants to 
assess how each performs on clinical data.

Hence, the objective of this study was to compare the 
performance of the rule-based model, conventional 
machine learning models, and BERT models with weak 
supervision on classifying the status of lifestyle from the 
clinical notes with the unstructured format. Our contri-
butions include: (1) evaluating traditional machine learn-
ing models and state-of-the-art biomedical and clinical 
BERT models on the classification of the lifestyle status-
related sentences in clinical notes of patients with AD, 
(2) using weak supervision to overcome the burdensome 
task of creating a hand-labeled dataset, and (3) compar-
ing models’ performance when training on various pro-
portions of the weakly supervised data.

Methodology
We conducted our experiments on two categories of 
lifestyle status: physical activity and excessive diet. For 
each case study, we followed the same steps: (1) collect-
ing clinical notes from patients with AD; (2) applying 
the rule-based NLP classifier to assign weak labels to 
the lifestyle-based sentences; (3) Training three tradi-
tional machine learning models and fine-tuning BERT 
models on the data with weak labels for each case study 

described below; (4) manually annotating a small portion 
of the selected sentences to develop the Gold Standard 
Corpus (GSC); 5) evaluating the performances of various 
machine learning models and BERT models in the GSC. 
Figure1 demonstrates the whole workflow for this study.

Data source
The clinical notes were sourced from the Clinical Data 
Repository (CDR) of the University of Minnesota (UMN). 
More than 180 million clinical notes are currently held 
by the aforementioned CDR, containing more than 2.9 
million patients from 8 hospitals and more than 40 local 
clinics. All of the records were in English. Approval was 
obtained to access the EHRs for patients with AD from 
the Institutional Review Board (IRB). Then, by using the 
online UMLS Metathesarus browser based on our pre-
vious work, we manually collected all concept unique 
identifiers (CUIs) associated with physical activity and 
excessive diet [15]. After collecting all AD clinical notes 
labeled with related CUIs in a database, each note was 
broken down to the sentence level. The cleaning included 
removing repeated sentences, stripping of punctua-
tion and extra spaces, and setting the whole sentence to 
lowercase.

To generate the GSC, three annotators independently 
annotated 50 sentences for each case study using INCEp-
TION [27], a semantic annotation platform. In total, 
200 sentences were annotated for physical activity and 
88 sentences were annotated for excessive diet. Based 
on the presence of the lifestyle status entities of interest 
on the GSC, labels were assigned at sentence level for 
all selected sentences. Physical activity, we set labels as 
“yes” or “no” (“no” indicates physical inactivity) to sen-
tences. The category of “physical inactivity” does not 
include sentences with “no physical activity mentions.” 

Fig. 1  Overview of the study design
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For excessive diet, sentences were assigned as “high calo-
rie diet,” “high salt diet,” “high fat diet,” “normal diet,” and 
“non-specific abnormal” (indicating no clear diet men-
tions). Since most sentences had explicit mentions of the 
lifestyle status, they could be distinguished quickly based 
on semantic understandings. Hence, for any pair of the 
three annotators, Cohen’s Kappa score reached 1. The 
entity names and their example can be found in Table 1. 
Note that the GSC and training data with weak labels 
were mutually excluded by ensuring their note ids were 
not overlapping.

Weak supervision
For generating weak labels for the sentences, we utilized 
a rule-based classifier written in Python. This rule-based 
classifier was based on keyword mentions by consid-
ering tokens within a neighborhood of the keywords. 
Keywords for excessive diets were ‘normal,’ ‘high calorie 
diet,’ ‘high fat diet,’ and ‘high salt diet.’ For physical activ-
ity, the keywords included ‘active,’ ‘activity,’ ‘inactive,’ and 
‘inactivity.’ A window of 5 terms immediately before the 
search term was used.

For both excessive diet and physical activity, a “1” 
would be returned if a match was found and a “0” if not. 
If a negation term was found within the window, a “− 1” 
would be returned for determining the final classifica-
tion. More specifically, for physical (in)activity, in cases 
where a “− 1” was returned, the final class assignment 
was for the opposite class (e.g. opposite class for “physi-
cal activity” − 1 is “physical inactivity”). For diet, negation 
of “normal diet” counted towards “non-specific abnor-
mal”, because the other classes were abnormal, negation 
did not necessarily mean normal and so, for simplic-
ity, the negation of any of the “high X diet” rows were 
assigned “0”. There was an additional step used to check 
if the patient was on a normal diet or not. If any of the 
terms ‘can’, ‘resume’, ‘begin’, ‘start’, ‘going’, ‘may’ were in 
the window before “normal diet”, a “4” was returned for 
“nonspecific abnormal.” Furthermore, the only instances 
where negation of the term occurred was in the class 

‘normal diet’, in which case the classification was ‘nonspe-
cific abnormal. Each sentence was assigned to one class 
only. The same model later would be used on the GSC for 
comparison.

Model
With transfer learning, a model can be trained on 
a large open-domain data set, then fine-tuned on a 
smaller domain-related corpus based on the task’s 
requirements. Some benefits of transfer learning 
include how, for relatively high performance, rela-
tively less annotated data is required during the pro-
cess of fine-tuning after pre-training on large amounts 
of unlabelled corpora. In this study, we evaluated six 
BERT models, including: BERT base model [28], Pub-
MedBERT (pre-trained on the abstracts and full text of 
biomedical literature) [20], PubMedBERT (pre-trained 
on only abstracts) [20], Bio BERT [21], Unified Medical 
Language System (UMLS) BERT [22], and Bioclinical-
BERT [19]. Fine-tuning BERT models constitute a form 
of transfer learning. Besides the BERT base model, 
the other BERT variations can be classified into two 
groups, which are biomedical focus and clinical focus, 
based on their domains. One group was biomedical-
specific. PubMedBERT (Abs+Ft) was pretrained from 
scratch using the abstracts and full text of PubMed arti-
cles, which included approximately 16.8 billion words 
(107 GB). The PubMedBert (Abs) model pre-trained 
from scratch using the abstracts alone, which included 
3.2 billion words (21 GB). Similarly, BioBERT was ini-
tialized from Base BERT then additional pre-training 
was done using PubMed abstracts and PubMed Central 
full-text articles. The remaining two variations of BERT 
models were clinical domain-specific BERT models. 
Their training dataset includes Medical Information 
Mart for Intensive Care III (MIMIC III) dataset [17], 
besides open-domain training dataset. The MIMIC III 
corpus has approximately 0.5 billion words (3.7 GB). 
Note that the Bio-clinical BERT model was pre-trained 
starting from BioBERT, and the UMLS BERT model 

Table 1  Example sentences with weak labels for excessive diet and physical activity

Category Class Sentence example

Excessive diet High fat diet Pt is having fatty food

High calorie diet He had token high calorie diet for 2 weeks

High salt diet His current diet contains too much food with high salt

Normal diet She backs to normal diet

Non-specific abnormal She has no knowledge of salt restrictions

Physical activity Physical activity Pt has increase regular physical activity

Physical inactivity He didn’t maintain daily exercise
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was initialized from bioclinical BERT and further pre-
trained using additional information from CUIs and 
UMLS semantic types during the Masked Language 
Modeling portion of pretraining.

For comparing BERT models’ performance, tradi-
tional machine learning models were used as baselines. 
Specifically, support vector machine (SVM), logistic 
regression, and random forest. Those conventional 
machine learning have been successfully applied in sev-
eral clinical NLP tasks. The feature set used the bag-of-
words representation method for generating features 
for those three machine learning models, including 
unigrams, bigrams, and trigrams. In addition, term 
frequency-inverse document frequency (TF-IDF) was 
applied for adding weights on that n-gram-related fea-
tures. The rule-based model used in weak supervision 
would also be used for comparison.

Training and evaluation
For both case studies, we split the sentences into train-
ing (90%), validation (10%) in the weak-labeled corpus. 
Random seeds for train and test set splitting was kept 
the same for all models during all three runs. Seeds 
were chosen as 24, 48, and 128. The final result was cal-
culated for each model by taking the average of three 
results for each metric. First, we trained the machine 
learning models and fine-tuned BERT models on the 
training dataset and evaluated on the validation set. The 
parameters for all traditional machine learning mod-
els were found using a fivefold CV with a grid search 
over the parameter space, including but not limited 
to kernel-related parameters for SVM (i.e., gamma), 
penalty related parameters for logistic regression (i.e., 
penalty type), and tree-related parameters for random 
forest (i.e., number of trees). The final parameters used 
for SVM were C = 10 and kernel = ‘linear’. For logistic 
regression: C = 100, and penalty = ‘12’. For random for-
est: n estimators = 10, criterion = ‘gini’, and min sample 
split = 2.

For all BERT models, the team fine-tuned them on 
training data for ten epochs with a learning rate of 
2 * 10−5. While keeping the trade-off with efficiency in 
mind, we picked a batch size of 512 for the case study on 
physical activity. The batch was set as 64 for the exces-
sive diet case study. We used a dropout layer for regulari-
zation purposes and a fully connected layer in the end. 
The dropout rate was set to be 0.3 and Adam was used 
for optimization. The cross-entropy loss function was 
used as the loss function. In terms of padding, we padded 
the sentence to length 50 since the majority of sentences 
were shorter. The best models in the validation set were 
further evaluated on the GSC.

Results
Corpus statistics
We here describe the corpora for the two case stud-
ies to evaluate BERT models’ effectiveness with weak 
supervision.

Case 1: physical activity
We collected 23,559 sentences by searching for physical 
activity related CUIs from the database. After removing 
duplicates, there were 12,086 sentences left. A large pro-
portion of the duplicate sentences were related to “physi-
cal inactivity” and were largely from common phrases 
that would be populated into patient notes. Of all the 
sentences, 11,571 (95.7%) sentences were assigned as 
“physical activity,” and 515 (4.3%) mentions were “physi-
cal inactivity.” In the GSC, the number of sentences in the 
category of physical activity and physical inactivity is 78 
and 122, respectively.

Case 2: excessive diet
In total, 886 sentences were used as training data with 
weak labels. Training data were distributed as 300 
(33.8%), 153 (17.4%), 133 (15%), 250 (28.2%), and 50 
(5.6%) respectively, for “high calorie diet,” “high fat diet,” 
“high salt diet,” “normal diet,” and “nonspecific abnor-
mal.” In the GSC, the corresponding numbers were 18, 
20, 20, 18, and 12, respectively.

Computing power and time
During the experiment, all machine learning models 
were conducted on a cluster of 16 Intel® Xeon® Platinum 
8268 Processors with 1 core and all BERT models were 
implemented on one NVIDIA® GRID V100D-32D GPU. 
In terms of the computing time, for excessive diet, the 
process took 2.87 s, 20.69 s, and 3.61 s for logistic regres-
sion, random forest, and SVM. Due to the complexity of 
BERT models, the average fine-tuning time was about 
37.39 s. For physical activity, since the training data size 
was ten times larger than the first case study, all training 
time increased. For logistic regression, random forest, 
and SVM, their training time was 8.51  s, 117.84  s, and 
320.22 s, respectively. For BERT models, the average fine-
tuning time was about 429.08  s, over ten times longer 
than the first case study.

Model performance
As shown in Table  2, in terms of the weighted average 
for physical activity, the UMLS BERT model performed 
the best with precision, recall, and macro F-1 score 0.93, 
0.93, and 0.92, respectively. The best machine learning 
models were logistic regression and SVM, with the same 
precision, recall, and macro F-1 scores of 0.91, 0.89, and 
0.89. The UMLS BERT model metric was 2%, 5%, and 
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3% higher than the baseline SVM and logistic regres-
sion models. Besides Bio-clinical BERT, the other BERT 
models’ performance did not exceed the baseline models. 
Regarding the class “physical activity”, the machine learn-
ing models, SVM and logistic regression had perfect pre-
cision but had relatively poorly recall. The UMLS BERT 
had better performance with recall and F1 0.98 and 0.94. 
All of the BERT models outperformed the machine learn-
ing models in recall and F1 score. However, for the “phys-
ical inactivity” class, BERT models performed better in 
precision instead of recall. UMLS BERT still delivered the 
highest precision and F1 score, which was 0.96 and 0.89, 
respectively. No BERT models outperformed traditional 
machine learning models in recall for this class. All mod-
els exceed the rule-based method in F1 for all scenarios.

In the use case on the excessive diet, the machine learn-
ing model with the best weighted average was the ran-
dom forest, with precision, recall, and F1 score 0.89, 0.86, 
and 0.86. Bio-clinical BERT outperformed the random 
forest in all metrics. Hence, Bio-clinical BERT was the 
model with the best performance overall. For the class 
“normal diet”, Bio-clinical BERT outperformed the other 
models in precision. Bio BERT had the highest F1 score, 
which was 0.74. All BERT models had higher precision 
than three machine learning models had. For the class 
“nonspecific abnormal”, the Bio-clinical BERT model 
had the highest recall and F1 scores. Compared with the 
machine learning models, BERT models had better scores 
in recall and F1. In addition, all models had nearly per-
fect precision, recall, and F1 scores for “high calorie diet” 
and “high salt diet”. For the class “high fat diet”, all BERT 
models had better performance than the three machine 
learning models. The rule-based model had good perfor-
mance in most of the metrics for this case study, except 
for the precision of the class “normal diet” and the recall 

of the class “nonspecific abnormal.” It had better perfor-
mance than most machine learning models and some of 
the BERT models in some scenarios. The full results can 
be found in Table 3.

Figure  2 demonstrated all models’ performance 
changes when training/fine-tuning with different pro-
portions of the weakly supervised data changed. When 
ratios of the weakly supervised data increased from 10 
to 30%, half of the models improved their performance 
in precision and F1. In terms of recall, only two models’ 
performance dropped. From the range 30% to 50%, only 
Bio BERT had a significant drop on all three model met-
rics. The rest models had better performance or stayed 
the same for all metrics. With the number of the weakly 
supervised data doubled from 50 to 100%, regarding F1 
and recall, except for PubMed BERT (Abs), PubMed 
BERT (Abs + Ft), the other models’ performance kept 
increasing or stayed the same. Meanwhile, no models had 
a better score for precision, and a few of the models’ per-
formances even dropped.

Discussion
The wide adoption of EHRs in the healthcare system gen-
erates big data about the healthcare delivery of patients. 
The rapid advancement of artificial intelligence (AI) 
methods and computational resources provide an alter-
native way to cost-effectively consider the impact of the 
lifestyle status on AD using rich EHR data [29]. In this 
study, we demonstrated the feasibility of using BERT 
models with weak supervision to classify the lifestyle 
status for AD in clinical notes. The approach described 
in this study can be further extended to another status 
of lifestyle factors, accelerating our investigation on the 
roles of the lifestyle status on AD.

Table 2  Comparison of results for models for the physical activity case study

*Bold numbers indicate best performance in each column

Model Weighted avg Physical active Physical inactivity

Precision Recall F1 Precision Recall F1 Precision Recall F1

Rule-based 0.88 0.53 0.62 0.87 0.32 0.47 0.89 0.85 0.87

Logistic regression 0.91 0.89 0.89 1.00 0.81 0.90 0.77 1.00 0.87

Random forest 0.89 0.88 0.88 0.95 0.85 0.89 0.80 0.93 0.86

SVM 0.91 0.89 0.89 1.00 0.82 0.90 0.79 1.00 0.88

BERT base 0.90 0.90 0.89 0.89 0.94 0.92 0.91 0.82 0.86

Bio BERT 0.89 0.89 0.89 0.91 0.92 0.91 0.88 0.85 0.60

PubMed BERT (Abs) 0.90 0.89 0.89 0.89 0.95 0.92 0.92 0.80 0.85

PubMed BERT (Abs + Ft) 0.88 0.88 0.87 0.86 0.95 0.90 0.91 0.76 0.82

Bio-clinical BERT 0.91 0.91 0.91 0.91 0.95 0.93 0.91 0.86 0.89
UMLS BERT 0.93 0.93 0.92 0.91 0.98 0.94 0.96 0.84 0.89
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To effectively train deep neural network models, exten-
sive training data is required. Similar to other studies [23], 
weak supervision can generate sufficiently large train-
ing data by leveraging a rule-based NLP system without 
requiring additional human efforts. After observing the 
performance of the rule-based classifier, which was used 
for weak supervision, we could see weakly labeled train-
ing data contain a certain noisy label. However, our find-
ing demonstrated BERT models’ promising performance 
on weakly labeled data on two classification tasks for the 
lifestyle status. By comparing the performance of BERT 
models on different proportions of the weakly supervised 
data, BERT models show some robustness to noise in 
the data. Figure 2 shows that after the proportions of the 
weakly supervised data went beyond 30%, the trend on 
three model metrics was not decreasing for most BERT 
models.

For each BERT model, their performances on different 
case studies were still distinguishable, but BERT mod-
els with clinical focus had better performance overall. 
For example, in the physical activity, UMLS BERT out-
performed the rest models; The latter model performed 
the best in classifying the excessive diet. In addition, all 

BERT models were robust to a dataset with imbalanced 
classes. Also, most BERT models outperformed tradi-
tional machine learning models in the weighted averages 
of the three metrics. It demonstrates the advantage of 
using BERT models on classification tasks for the status 
of lifestyle factors. On the other hand, unsurprisingly, 
BERT models’ computing time was usually ten times 
longer than the traditional machine learning models, 
even under GPU usage.

For physical activity classification, we noticed a gen-
eral trend for the BERT models’ F1-scores to improve as 
a larger portion of the weakly labeled data was used for 
training. Typically, there wasn’t much improvement in 
F1-scores when 100% of the data was used compared to 
when only 50% of the data was used. We did notice that 
both of the PubMed BERT models actually had decreas-
ing F1-scores when the proportion of the original data set 
used for training increased from 50 to 100%. All of the 
other BERT models either showed slight improvement 
or no improvement. We suspect this might be due to the 
pre-training procedures for these models. The PubMed 
BERT models were pre-trained exclusively on PubMed 
abstracts and/or text, which is a particularly academic 

Table 3  Comparison of results for models for the excessive diet case study

*Bold numbers indicate best performance in each column

Model Weighted avg Normal diet High calorie diet

Precision Recall F1 Precision Recall F1 Precision Recall F1

Rule-based 0.91 0.86 0.87 0.52 0.92 0.67 0.94 0.94 0.94

Logistic regression 0.88 0.85 0.85 0.50 0.83 0.63 1.00 0.94 0.97

Random forest 0.89 0.86 0.86 0.52 0.89 0.66 1.00 0.94 0.97

SVM 0.88 0.85 0.85 0.50 0.83 0.63 1.00 0.94 0.97

BERT base 0.91 0.91 0.91 0.66 0.75 0.70 1.00 0.98 0.99

Bio BERT 0.92 0.92 0.92 0.71 0.78 0.74 1.00 0.98 0.99

PubMed BERT (Abs) 0.91 0.90 0.90 0.59 0.81 0.68 1.00 1.00 1.00
PubMed BERT (Abs + Ft) 0.90 0.90 0.90 0.63 0.64 0.62 1.00 1.00 1.00
Bio-clinical BERT 0.93 0.93 0.93 0.73 0.75 0.73 1.00 1.00 1.00
UMLS BERT 0.92 0.92 0.92 0.72 0.69 0.70 1.00 1.00 1.00

High fat diet High salt diet Nonspecific abnormal

Precision Recall F1 Precision Recall F1 Precision Recall F1

Rule-based 1.00 0.90 0.95 1.00 0.95 0.97 0.92 0.61 0.73

Logistic regression 0.95 0.95 0.95 1.00 1.00 1.00 0.82 0.50 0.62

Random forest 0.95 0.95 0.95 0.98 1.00 0.99 0.87 0.50 0.64

SVM 0.95 0.95 0.95 1.00 1.00 1.00 0.81 0.50 0.62

BERT base 0.98 1.00 0.99 1.00 1.00 1.00 0.82 0.74 0.78

Bio BERT 0.98 0.98 0.99 1.00 1.00 1.00 0.85 0.80 0.82

PubMed BERT (Abs) 1.00 0.98 0.99 1.00 1.00 1.00 0.84 0.65 0.73

PubMed BERT (Abs + Ft) 1.00 0.98 0.99 1.00 1.00 1.00 0.77 0.76 0.76

Bio-clinical BERT 1.00 0.98 0.99 1.00 1.00 1.00 0.85 0.83 0.84
UMLS BERT 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.81 0.81
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style of language that would not be expected to be seen 
often in patient notes. All of the other models had addi-
tional pre-training from Base BERT using biomedical 
text and so started from a language model that would 
be closer to “typical” language that might be found in 
patient notes. When selecting BERT models, considera-
tion should be given to the pre-training and, if applica-
ble, continued pre-training corpora and what would most 
closely align with the dataset in question. Our results 
also suggest that experimenting with different propor-
tions of weakly labeled data can be a useful exercise to 
find an optimally performing model. The BERT variant 
and proportion of weakly labeled data should be treated 
as hyperparameters for individuals to experiment with to 
determine the best values for their use-case.

Due to the small number of training examples of exces-
sive diet, we did not believe that a similar set of experi-
ments using portions of the weakly labeled data would 
produce meaningful results. Even using 50% of the data 
would result in only 440 training examples.

During error analysis, we compared instances where 
the BERT model incorrectly classified a test case, but 
the traditional model correctly classified a test case, 
and vice versa. For the exercise test cases where the 
best traditional model, SVM, was incorrect but the best 
BERT model, UMLS BERT, was correct were all “physi-
cal inactivity” cases. The SVM model struggled to cor-
rectly determine the label if either (1) the sentence was 
long with multiple clauses or (2) the phrase “physically 
inactive” was present; in these cases, the UMLS BERT 
model made the correct classification. Interestingly, the 
cases that the UMLS BERT model missed but the SVM 
model correctly labeled were mostly “activity” sentences. 
The prevailing issue for the BERT model was sentences 
where some form of “activity” was present, but a negat-
ing term occurred elsewhere in the sentence in relation 
to another term. For example, UMLS BERT missed but 
SVM correctly labeled the sentence, “PT continues to be 
physically active without doing any aerobic exercise out-
side of cardiac rehab.”

We also examined test cases that the rules-based clas-
sifier correctly labeled but UMLS BERT or the SVM 
model labeled incorrectly, and vice versa. The majority of 
cases that the BERT and SVM models were able to cap-
ture but the rules-based classifier was not, were due to 
terms appearing outside of the five token window that 
we set for the rules-based classifier. Because BERT is able 
to ingest the entire sentence it does not have the issue of 
terms falling outside the window and it can consider the 
entire context. Similarly, the SVM model is not bound 
by a window. Cases that the rules-based classifier suc-
ceeded where the SVM model failed were, as above, due 
to the phrase “physical inactive” since there were rules 

Fig. 2  Results for training models on portions of physical activity 
data
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explicitly written to handle this exact string. The cases 
where UMLS BERT failed but the rules-based classifier 
succeeded also primarily contained negations of “activ-
ity”. As mentioned above, the BERT model struggled 
with these cases however, the rules-based classifier had 
rules that were explicitly written to handle negation and 
so could more accurately determine the proper class in 
cases where activity was negated with another term.

For the diet test cases where the best traditional model, 
random forest, was incorrect but the best BERT model, 
Bio-clinical BERT, was correct were mostly “nonspecific 
abnormal” cases. The most noticeable pattern was the 
random forest model couldn’t reliably detect phrases 
that suggested the patient was not currently consum-
ing a normal diet (e.g., “can start”, “can resume,” etc.). 
The cases where Bioclinical BERT was incorrect but the 
random forest was correct were all “Nonspecific Abnor-
mal” cases. Similar to the case for the exercise cases, 
Bio-clinical BERT tended to pick up on negation terms 
in other parts of the sentence. For example, the sentence 
“she needn’t worry about her calcium if she is eating and 
drinking a normal diet” was incorrectly labeled as “non-
specific abnormal” by Bio-clinical BERT but correctly 
labeled as “normal diet” by the random forest model.

Similarly for excessive diet, we compared the rules-
based classifier against Bio-clinical BERT and the ran-
dom forest model. Similar to the BERT model above, the 
rules-based model tended to catch cases where phrases 
that suggested the patient was not currently consuming 
a normal diet but could begin to do so, (e.g. “can start”, 
etc.) while the random forest model often failed to cor-
rectly classify these cases. Of the cases correctly labeled 
by the rules-based classifier but incorrectly labeled by 
BERT, both cases were “nonspecific abnormal”. We sus-
pect this is due to the careful consideration given to 
crafting the rules for this particular class and, as we saw 
above, the BERT model struggled to reliably label. Thus, 
compared to the rules-based classifier, the BERT model 
often missed instances non-specific diets that the patient 
was or was not consuming while the rules-based classi-
fier tended to classify them properly.

Limitations
Our study has some limitations, while our performance 
metric was relatively high (0.92–0.93) for both case stud-
ies. For example, the size of the GSC is relatively small, 
especially for excessive diet. Furthermore, the highly 
imbalanced class in the case study on physical activity 
could be a limitation. The imbalanced ratio was about 
1:19 between the number of sentences of “Physical Activ-
ity” and “Physical Inactivity.” For the excessive diet, the 
dataset size, which was about 886 sentences, was still 
relatively small. In addition, the training samples were 

distributed unevenly among all the diet classes. The issue 
of the lack of data diversity was another major drawback. 
For the physical activity case study, we saw rule-based 
classifier used for weak supervision has the worst perfor-
mance among all models, which means using keywords 
could not be enough. However, for models considering 
contextual information, increasing the training data size 
could not significantly improve the model’s performance. 
We believe that this is because the variation between 
sentences was relatively small. Therefore, models could 
capture the most patterns without using all data. For 
excessive diet, this issue became more serious. Almost all 
models had nearly perfect performance in some classes, 
including the rule-based classifier. This result indicated 
the data was not diversified enough, and the pattern 
was easy to capture. For example, many mentions on a 
diet were in the format “high xxx diet/food”. The lack of 
diversified data might be due to the single data resource, 
which might contain some generic templates on some 
level.

Future work
Collectively, our findings have significant implications 
for further lifestyle research in AD. They provide a meth-
odology to use unstructured EHR data to enhance the 
strengths of association between the lifestyle status and 
AD risk, and allow the simultaneous examinations of 
multiple lifestyle status and their interactive/synergistic 
effects on cognitive changes and AD risk. Besides, they 
provide an approach for future casual modeling of life-
style changes on clinical outcomes in AD. Since EHRs 
offer a potential source of data, they can be evaluated 
and defined to address questions that aim to measure 
the causal effect of intervention or exposure on the out-
come of interest. Unlike RCTs that are time-consuming 
and expensive to carry out and have minimal generaliz-
ability, conducting studies using EHR data is scalable and 
affordable. Developing causal modeling methods using 
EHR data will allow large-scale and pragmatic trials. In 
addition, currently, we did not assess how the lifestyle 
information is documented in the structure data. In the 
future, we will compare the representation of lifestyle 
information in the structure data versus the unstructured 
notes.

Conclusion
In this study, we used weak supervision and three tra-
ditional machine learning model: logistic regression, 
random forest, and SVM, and six different BERT mod-
els: Bert base, PubmedBERT (Abs + Ft), Pubmed-BERT 
(Abs), Bio BERT, UMLS BERT, and Bio-clinical BERT, 
to classify the lifestyle status in AD from clinical notes. 
The purpose of using weak supervision was to prevent 
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the need for the laborious task of creating a hand-labeled 
dataset. In addition, we evaluated two text classification 
case studies’ effectiveness: classifying sentences regard-
ing their physical activity and excessive diet. UMLS BERT 
and Bioclinical BERT model performed the best for the 
two use cases. The study group can further expand this 
approach to other factors such as substance abuse to 
investigate their effects on AD and provide additional AD 
research opportunities.
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