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Abstract 

Background: Critical trauma patients are particularly prone to increased mortality risk; hence, an accurate prediction 
of their conditions enables early identification of patients’ mortality status. Thus, we aimed to develop and validate a 
real-time prediction model for physiological changes, organ dysfunctions and mortality risk in critical trauma patients.

Methods: We used Dynamic Bayesian Networks (DBNs) to model complicated relationships of physiological variables 
across time slices, accessing data of trauma patients from the Medical Information Mart for Intensive Care data-
base (MIMIC-III) (n = 2915) and validated with patients’ data from ICU admissions at the Changhai Hospital (ICU-CH) 
(n = 1909). The DBN model’s evaluation included the predictive ability of physiological changes, organ dysfunctions 
and mortality risk.

Results: Our DBN model included two static variables (age and sex) and 18 dynamic physiological variables. The 
differences in ratios between the real values and the 24- and 48-h predicted values of most physiological variables 
were within 5% in the two datasets. The accuracy of our DBN model for predicting renal, hepatic, cardiovascular and 
hematologic dysfunctions was more than 0.8.The calculated area under the curve (AUC) from receiver operating char-
acteristic curves and 95% confidence interval for predicting the 24- and 48-h mortality risk were 0.977 (0.967–0.988) 
and 0.958 (0.945–0.971) in the MIMIC-III and 0.967 (0.947–0.987) and 0.946 (0.925–0.967) in ICU-CH.

Conclusions: A DBN is a promising method for predicting medical temporal data such as trauma patients’ mortal-
ity risk, demonstrated by high AUC scores and validation by a real-life ICU scenario; thus, our DBN prediction model 
can be used as a real-time tool to predict physiological changes, organ dysfunctions and mortality risk during ICU 
admissions.
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Background
Trauma is a universal health challenge that leads to 
numerous deaths and disabilities at any age [1]. The com-
mon causes of trauma include road injuries, falls, self-
harm, interpersonal violence, and so on. In 2017, there 
were more than 4.4 million trauma deaths and 520 mil-
lion trauma cases globally, which resulted in 3267 DALYs 
per 100,000 [2]. Critical trauma patients admitted to the 
intensive care unit (ICU) are particularly vulnerable and 
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prone to increased mortality risk. Thus, accurate predic-
tion of the complications and death probability of trauma 
patients in ICU could enable early identification and 
intervention for patients at high mortality risks [3].

Although some prognostic scoring systems such as the 
Simplified Acute Physiology Score (SAPS) [4] and Acute 
Physiology and Chronic Health Evaluation (APACHE) [5] 
exist and are used for risk stratification of ICU patients, 
and some trauma score instruments such as the Injury 
Severity Scale (ISS) [6] and Trauma and Injury Severity 
Score (TRISS) [7] are used for risk stratification of trauma 
patients, the predictive ability of these scoring systems 
for mortality trauma patients was still conflicting [8–10]. 
Besides, two other reasons might hinder the clinical 
application of these scoring systems. First, these scoring 
systems’ items are too complex, and some of them need 
to be measured manually. Second, these scoring systems 
are based on the baseline information (usually admission) 
to predict an outcome. However, in clinical practice, 
patient status changes over time, and doctors adjust their 
prognostic prediction based on the latest status. Hence, a 
real-time prediction tool based on the latest data outper-
forms the tools based on baseline data in timeliness and 
accuracy and actualize precision-medicine-based deci-
sion making [11].

Advanced medical equipment can monitor the physi-
ological status of ICU trauma patients in real-time and 
accumulate massive patient-level temporal data in elec-
tronic health record (EHR) systems [12]. In contrast, 
advanced machine learning techniques are suited to deal 
with this voluminous data and complex relationships 
among physiological variables [13]. Bayesian Networks 
(BNs) have been applied to solve the medical tasks due 
to their capability to model complex systems in which 
relationships between the variables were previously 
completely unknown [14]. Dynamic Bayesian Networks 
(DBNs) add to BNs the ability to process temporal rela-
tionships, and thereby, have become popular in offering 
an approach to detailed prognostic models that capture 
the relationships between variables at different time 
slices and predict the variables in the next time slice from 
the variables in the previous time slice [15, 16].

Therefore, we sought to develop and validate a real-
time prediction model for physiological changes, organ 
dysfunctions and mortality risk in ICU trauma patients 
using DBNs based on the massive patient-level temporal 
data from two centers.

Materials and methods
Data collection
Our prediction model was developed in Medical Infor-
mation Mart for Intensive Care database (MIMIC-III), 
an ICU database from the Beth Israel Deaconess Medical 

Center (Boston, MA) [17], and validated using patients 
at the Burn and Trauma ICU of the Changhai Hospital 
(ICU-CH) from January 2008 to December 2019, which 
is one of the major burn and trauma centers in East 
China [18]. Patients aged > 18 years who received trauma 
services in ICU were eligible for the study and included 
in our analysis. Trauma was defined as the injury caused 
by physical harm from an external source like traffic acci-
dent, fight, fall from height and so on. Our study was per-
formed in accordance with the Declaration of Helsinki 
and the protocol was approved by the Ethics Committee 
of the Naval Medical University. The MIMIC-III is pub-
lic de-identifed databases thus informed consent and 
approval of the Institutional Review Board was waived. 
Written informed consent was obtained from individual 
at ICU-CH.

Clinical data were obtained from the patients’ elec-
tronic health records (EHR). Baseline patients’ data at the 
time of ICU admission were extracted, including age, sex, 
ICU admission time, ICU discharge time, and in-hospital 
death time. The physiological items in SAPS II [19] and 
APACHE II [20] were used as temporal physiological var-
iables in our study. They included temperature, respira-
tory rate, heart rate, systolic pressure, diastolic pressure, 
Glasgow coma scale, leukocyte count, platelet count, 
hematocrit, bilirubin, blood glucose, serum sodium, 
serum potassium, arterial pH value, serum creatinine, 
serum urea nitrogen levels, central venous pressure and 
 PO2/FIO2 Ratio.

Data preparation
(1) Outliers’ processing: We considered the influence 
of outliers in the model construction by setting a series 
of criteria based on clinical experience to filter out and 
delete the outliers in the database (Additional file  1: 
Table  S1). (2) The length of time slice: The recording 
interval of vital signs data range from 15  min to 4  h, 
and the interval of laboratory tests was about 1 day. The 
length of the time slice in our DBNs was set to 4 h. If vital 
signs were measured multiple times in a one-time slice, 
the average value was used to avoid a fluctuation due to 
random errors (Fig. 1A). (3) Data collation: All temporal 
records were organized into longitudinal data by patient 
identification and time points; baseline data were rep-
licated at each timepoint (Fig.  1B). (4) Normal trans-
formation: Continuous variables should obey normal 
distribution in DBNs, so all variables were converted to 
logarithmic values. (5) Data imputation: Different vari-
ables were measured with different frequencies, which 
resulted in missing values of variables at some time 
points. The missing proportion of temporal physiologi-
cal variables were shown in Additional file  1: Table  S2. 
For these missing values, the common filling strategy was 
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Fig. 1 The overview of data extraction, data collation and model evaluation
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to impute with the last observation of that variable until 
the next measurement of the particular value was avail-
able or until the end of the time series, and we used this 
filling strategy in our study [21]. The remaining missing 
values were imputed with the expectation–maximization 
algorithm.

Model development
The construction of a DBN consists of two steps: struc-
ture learning and parameter learning. In our study, struc-
ture learning of the network was data-driven with some 
logical constraints. We assumed that the state of physi-
ological variables at time slice t1 was only related to the 
state of the variables at previous time slice t0. The DBN 
structure learning was performed using the PC algo-
rithm, a prototypical constraint-based structure learn-
ing method. After building the network structure, we 
conducted parameter learning to estimate the condi-
tional probabilities that quantify the arcs of the network. 

Maximum likelihood parameter estimation was used to 
fit the parameters of DBN.

Our prediction model was built on the collated data 
derived from MIMIC-III using the DBN. The DBN was 
implemented using the R package bnlearn. In our study, a 
simple description of DBN and R codes are shown in the 
Additional file 1. A detailed description of DBN theory, 
structure, and parameter learning is provided in a book 
by Nagarajan et al. [14].

Model evaluation
The evaluation of our prediction model included three 
parts: prediction ability of physiological changes, organ 
dysfunctions and mortality risk at the next 24 h and 48 h.

The DBN model evaluation was conducted in MIMIC-
III and ICU-CH, respectively. For patients in ICU stay 
of > 24  h, we extracted true data in the final time slice 
(within 4  h before death or discharge) and the last 7th 
slice (24 h before death or discharge); then we computed 
the predicted data in a final time slice by DBN after six 
iteration imputations on data in the last 7th slice. For 
patients with ICU stay of > 48  h, we extracted real data 
in the final time slice and the last 13th slice (48 h before 
death or discharge), and the predicted data in the final 
time slice were computed by a DBN after 12 iteration 
imputations on data in the last 13th slice. Then predic-
tion ability of physiological changes, organ dysfunctions 
and mortality risk at the next 24 h and 48 h was tested in 
patients’ ICU stay for > 24 h and > 48 h, respectively.

For evaluating the prediction accuracy of physiologi-
cal changes (Fig. 1C), we used the absolute difference and 
different ratios to measure the distinction between the 
true and predicted data, which reflected the prediction 
accuracy of physiological changes for our DBN. For the 
evaluation of organ dysfunctions risk prediction accu-
racy (Fig.  1D), the true state of organ dysfunctions was 
judged by the true physiological data, and the predicted 
state of organ dysfunctions was judged by the predicted 
physiological data. The criteria of organ dysfunctions 
were developed according to Multiple Organ Dysfunc-
tion Score (Additional file  1: Table  S3). The prediction 
performance for organ dysfunctions was evaluated by 
sensitivity, specificity and accuracy. For the evaluation 
of mortality risk prediction accuracy (Fig.  1E), we used 
real data in the final time slice of MIMIC-III to build a 
mortality discrimination model by logistic regression 
with a restricted cubic spline function. Subsequently, this 
mortality discrimination model was used to calculate 
the predicted mortality risk based on the predicted data 
of the final time slice computed by the DBN. The pre-
diction performance for mortality was evaluated by the 
areas under the curves (AUCs) of the receiver operating 
characteristic (ROC) and calibration curves. Moreover, 

Table 1 Baseline characteristics of study population from 
MIMIC-III and ICU-CH

a Other included dislocation, sprains and strains of joints and adjacent muscles, 
open wound of trunk, open wound of limb, etc.

Variable Training set Validation set

N 2915 1909

Sex, male (%) 1960 (67.2) 995 (52.1)

Death during admission, yes 
(%)

286 (9.8) 199 (10.4)

Death time during admission

 < 24 h (%) 58 (20.3) 43 (21.6)

 24–48 h (%) 42 (14.7) 35 (17.6)

 ≥ 48 h (%) 186 (65.0) 121 (60.8)

Length of ICU stay, hour

 Median (Q1,Q3) 51.70 (28.95, 121.14) 46.08 (25.87, 98.22)

 < 24 h (%) 485 (16.6) 366 (19.2)

 24–48 h (%) 893 (30.6) 628 (32.9)

 ≥ 48 h (%) 1537 (52.7) 915 (47.9)

Primary diagnosis

 Fracture of skull (%) 571 (19.6) 353 (18.5)

 Fracture of neck and trunk 
(%)

574 (19.7) 442 (23.2)

 Fracture of limb (%) 310 (10.6) 259 (13.6)

 Intracranial injury (%) 570 (19.6) 340 (17.8)

 Internal injury of trunk (%) 460 (15.8) 355 (18.6)

 Other (%)a 428 (14.7) 160 (8.4)

Age, mean ± SD 51.06 ± 22.38 54.54 ± 17.38

SAP II score, mean ± SD 35.15 ± 12.21 34.17 ± 11.74

APACHE II score, mean ± SD 8.63 ± 5.00 6.85 ± 4.48

GCS 10.90 ± 4.26 12.17 ± 2.85
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we calculated mortality prediction performance using 
SAPS II and APACHE II based on the data at the last 7th 
or 13th slices to compare the prediction ability of mortal-
ity between our DBN model and SAPS II and APACHE II 
scores. The mortality discrimination model, ROC curves, 
and calibration curves were implemented using R pack-
age rms.

In practice, to display intuitively and facilitate the use 
of our DBN model, an interactive web-based calculator 

was developed using the R "Shiny" package (https:// www. 
shiny apps. io/).

Results
In total, we included 2915 ICU admissions from MIMIC- 
III and 1909 ICU admissions from ICU-CH in this study. 
The general characteristics of the study participants are 
shown in Table 1. Cause of injury and ISS from ICU-CH 

Table 2 Prediction accuracy of variables at 24th hour and 48th hour in development datasets (MIMIC-III)

a Difference ratio = (True value − Predicted value) × 100%/ True value

Variable 
name

24th hour 48th hour
True value Predicted 

value
Difference
(95% CI)

Difference 
ratio
(95% CI)a

True value Predicted 
value

Difference
(95% CI)

Difference 
ratio
(95% CI)a

Temperature, 
℃

37.23 ± 0.72 37.31 ± 0.24 − 0.09 (− 0.12, 
− 0.06)

− 0.3 (− 0.4, 
− 0.2)

37.22 ± 0.80 37.36 ± 0.21 − 0.14 (− 0.18, 
− 0.10)

− 0.4 (− 0.5, 
− 0.3)

Respiratory 
rate, beat Per 
Minute

19.32 ± 4.77 18.93 ± 2.00 0.38 (0.21, 0.55) − 2.6 (− 3.5, 
− 1.6)

19.92 ± 5.35 19.40 ± 1.42 0.52 (0.27, 
0.77)

− 3.6 (− 4.9, 
− 2.2)

Heart Rate, 
beat Per 
Minute

88.73 ± 15.36 87.39 ± 9.71 1.34 (0.84, 1.84) − 0.3 (− 0.9, 
0.3)

89.25 ± 16.58 87.16 ± 7.36 2.08 (1.38, 
2.79)

− 0.3 (− 1.1, 
0.6)

Systolic pres-
sure, mmHg

127.49 ± 16.46 127.70 ± 5.61 − 0.21 (− 0.84, 
0.42)

− 1.6 (− 2.2, 
− 1.1)

128.22 ± 17.70 127.55 ± 4.01 0.68 (− 0.21, 
1.56)

− 1.3 (− 2.0, 
− 0.6)

Diastolic 
pressure, 
mmHg

63.48 ± 10.84 63.22 ± 5.47 0.26 (− 0.13, 
0.65)

− 1.8 (− 2.5, 
− 1.2)

63.66 ± 11.88 62.62 ± 4.84 1.03 (0.47, 
1.59)

− 1.3 (− 2.2, 
− 0.4)

GCS 11.63 ± 2.98 12.10 ± 2.29 − 0.48 (− 0.58, 
− 0.38)

− 9.9 (− 11.3, 
− 8.5)

10.98 ± 3.16 11.55 ± 2.02 − 0.57 (− 0.71, 
− 0.43)

− 14.3 (− 16.5, 
− 12.2)

Leukocyte 
count, K/uL

12.04 ± 4.91 10.97 ± 4.03 1.07 (0.94, 1.21) 4.2 (3.2, 5.3) 12.32 ± 5.01 11.18 ± 3.77 1.13 (0.93, 
1.33)

2.3 (0.8, 3.9)

Platelet 
count, K/uL

263.17 ± 160.94 266.39 ± 171.15 − 3.22 (− 5.69, 
− 0.75)

− 2.9 (− 3.9, 
− 1.9)

278.86 ± 179.24 312.20 ± 194.47 − 33.34 
(− 38.12, 
− 28.57)

− 17.8 (− 19.7, 
− 15.8)

Hematocrit, 
%

31.26 ± 5.51 30.06 ± 4.16 1.20 (1.06, 1.34) 2.8 (2.4, 3.2) 30.22 ± 4.90 29.21 ± 3.43 1.01 (0.82, 
1.20)

2.0 (1.4, 2.7)

Bilirubin, mg/
dL

0.95 ± 1.80 0.96 ± 1.65 − 0.01 (− 0.03, 
0.01)

− 7.1 (− 9.0, 
− 5.1)

1.03 ± 1.95 1.01 ± 1.84 0.02 (− 0.01, 
0.05)

− 6.1 (− 9.4, 
− 2.8)

Blood glu-
cose, mg/dL

130.98 ± 37.38 124.59 ± 20.34 6.39 (4.97, 7.81) 1.5 (0.7, 2.3) 133.98 ± 37.85 125.43 ± 15.97 8.55 (6.68, 
10.41)

2.6 (1.6, 3.6)

Sodium, 
mEq/L

139.76 ± 4.20 139.20 ± 3.83 0.56 (0.44, 0.69) 0.4 (0.3, 0.5) 139.82 ± 4.34 139.38 ± 3.73 0.44 (0.25, 
0.63)

0.3 (0.1, 0.4)

Potassium, 
mEq/L

4.00 ± 0.44 3.93 ± 0.28 0.06 (0.04, 0.08) 0.7 (0.3, 1.1) 4.01 ± 0.44 3.94 ± 0.22 0.07 (0.05, 
0.09)

0.8 (0.2, 1.3)

PH value 7.40 ± 0.05 7.41 ± 0.03 − 0.01 (− 0.01, 
− 0.01)

− 0.1 (− 0.1, 
− 0.1)

7.41 ± 0.06 7.42 ± 0.02 − 0.01 (− 0.01, 
− 0.01)

− 0.2 (− 0.2, 
− 0.1)

Creatinine, 
mg/dL

0.89 ± 1.17 0.81 ± 0.96 0.08 (0.02, 0.13) 2.1 (− 3.9, 8.1) 0.90 ± 1.46 0.79 ± 0.93 0.10 (0.02, 
0.19)

2.6 (− 4.7, 9.9)

Urea nitro-
gen, mg/dL

17.98 ± 12.72 17.03 ± 12.64 0.95 (0.76, 1.13) 3.8 (2.7, 4.9) 19.76 ± 14.42 18.94 ± 13.65 0.82 (0.45, 
1.20)

− 1.2 (− 3.2, 
0.8)

Central 
venous pres-
sure, mmHg

8.70 ± 2.11 8.84 ± 1.29 − 0.13 (− 0.20, 
− 0.06)

− 5.5 (− 7.1, 
− 3.9)

8.95 ± 2.31 9.10 ± 1.17 − 0.15 (− 0.26, 
− 0.05)

− 7.5 (− 9.5, 
− 5.6)

PO2/FIO2 
Ratio, mmHg

283.22 ± 78.87 266.62 ± 43.22 16.61 (13.55, 
19.66)

1.3 (0.2, 2.4) 281.52 ± 98.74 257.19 ± 29.49 24.32 (19.62, 
29.03)

0.1 (− 1.5, 1.7)

https://www.shinyapps.io/
https://www.shinyapps.io/
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are shown in Additional file  1: Table  S4. The structure 
of our DBN model is shown in Additional file 1: Fig. S1, 
where the arrows represent the impact path from vari-
ables in t0 to variables in t1.

Table  2 shows the prediction accuracy of our DBN 
model for physiological changes at the 24th hour and 
48th hour in MIMIC- III. The difference ratios between 
the real values and the 24-h predicted values of most 
physiological variables were within 5%. The errors of 

48-h predicted values were slightly larger than that of 
24-h predicted values. In the ICU-CH, the different ratios 
between the real values and the 24-h or 48-h predicted 
values of all variables were within 15%; indeed, most were 
within 5% (Table  3). Also, we assessed the prediction 
accuracy for physiological changes in patients whose out-
come was death (Additional file 1: Tables S5, S6). Some 
physiological variables (like GCS) had large prediction 
errors in death patients.

Table 3 Prediction accuracy of variables at 24th hour and 48th hour in testing dataset (ICU-CH)

a Difference ratio = (True value − Predicted value) × 100%/True value

Variable 
name

24th hour 48th hour
True value Predicted 

value
Difference
95% CI)

Difference 
ratio
(95% CI)a

True value Predicted 
value

Difference
(95% CI)

Difference 
ratio
(95% CI)a

Temperature, 
℃

36.95 ± 0.65 37.17 ± 0.24 − 0.22 (− 0.25, 
− 0.18)

− 0.6 (− 0.7, 
− 0.5)

37.02 ± 0.71 37.25 ± 0.19 − 0.23 (− 0.28, 
− 0.19)

− 0.7 (− 0.8, 
− 0.5)

Respiratory 
rate, beat Per 
Minute

18.48 ± 4.36 18.52 ± 2.06 − 0.04 (− 0.24, 
0.16)

− 3.9 (− 5.0, 
− 2.8)

18.96 ± 4.40 18.99 ± 1.28 − 0.03 (− 0.30, 
0.25)

− 4.7 (− 6.3, 
− 3.2)

Heart Rate, 
beat Per 
Minute

79.31 ± 14.21 82.17 ± 9.49 − 2.86 (− 3.48, 
− 2.24)

− 5.6 (− 6.4, 
− 4.7)

80.58 ± 15.30 83.37 ± 6.09 − 2.79 (− 3.69, 
− 1.90)

− 6.4 (− 7.6, 
− 5.2)

Systolic pres-
sure, mmHg

127.58 ± 16.64 128.57 ± 6.85 − 0.99 (− 1.82, 
− 0.16)

− 2.1 (− 2.8, 
− 1.5)

131.07 ± 18.35 128.43 ± 4.04 2.64 (1.42, 
3.86)

0.2 (− 0.7, 1.2)

Diastolic 
pressure, 
mmHg

65.22 ± 11.39 63.38 ± 5.51 1.84 (1.31, 
2.37)

0.7 (− 0.1, 1.5) 66.50 ± 11.94 62.51 ± 4.10 3.98 (3.24, 
4.72)

3.5 (2.4, 4.6)

GCS 12.38 ± 3.04 12.52 ± 2.55 − 0.14 (− 0.25, 
− 0.02)

− 5.3 (− 6.9, 
− 3.7)

12.01 ± 3.18 12.03 ± 2.22 − 0.02 (− 0.18, 
0.15)

− 6.7 (− 9.1, 
− 4.4)

Leukocyte 
count, K/uL

11.09 ± 4.79 10.56 ± 3.95 0.53 (0.37, 
0.70)

− 0.3 (− 1.9, 
1.2)

11.35 ± 4.77 10.35 ± 3.38 1.00 (0.76, 
1.24)

2.0 (− 0.1, 4.0)

Platelet 
count, K/uL

274.61 ± 125.19 271.43 ± 123.69 3.18 (0.45, 
5.92)

− 0.1 (− 1.0, 
0.8)

282.15 ± 131.37 294.73 ± 134.14 − 12.57 
(− 17.86, 
− 7.29)

− 7.9 (− 9.8, 
− 6.0)

Hematocrit, 
%

33.09 ± 5.58 31.91 ± 4.48 1.18 (1.01, 
1.34)

2.8 (2.3, 3.3) 32.57 ± 5.65 30.93 ± 3.90 1.64 (1.39, 
1.88)

3.8 (3.1, 4.5)

Bilirubin, mg/
dL

0.62 ± 0.90 0.65 ± 0.89 − 0.02 (− 0.04, 
− 0.01)

− 6.8 (− 8.7, 
− 4.8)

0.64 ± 0.89 0.67 ± 0.96 − 0.03 (− 0.05, 
− 0.01)

− 8.2 (− 11.3, 
− 5.0)

Blood glu-
cose, mg/dL

143.57 ± 58.15 133.68 ± 23.77 9.89 (6.84, 
12.95)

2.5 (1.5, 3.6) 139.87 ± 33.67 131.81 ± 18.01 8.06 (6.04, 
10.08)

2.7 (1.4, 3.9)

Sodium, 
mEq/L

138.90 ± 4.28 139.12 ± 4.12 − 0.22 (− 0.41, 
− 0.03)

− 0.2 (− 0.3, 
− 0.1)

138.98 ± 4.41 139.02 ± 3.79 − 0.04 (− 0.30, 
0.21)

− 0.1 (− 0.3, 
0.1)

Potassium, 
mEq/L

3.96 ± 0.44 3.93 ± 0.30 0.03 (0.01, 
0.05)

− 0.1 (− 0.6, 
0.5)

3.93 ± 0.45 3.92 ± 0.20 0.01 (− 0.02, 
0.04)

− 0.7 (− 1.4, 
− 0.0)

PH value 7.43 ± 0.04 7.42 ± 0.03 0.00 (0.00, 
0.01)

0.1 (0.0, 0.1) 7.44 ± 0.04 7.43 ± 0.02 0.01 (0.01, 
0.02)

0.2 (0.1, 0.2)

Creatinine, 
mg/dL

0.85 ± 0.56 0.81 ± 0.48 0.05 (0.04, 
0.06)

3.7 (2.8, 4.6) 0.84 ± 0.53 0.78 ± 0.45 0.07 (0.05, 
0.08)

5.1 (3.8, 6.3)

Urea nitro-
gen, mg/dL

17.50 ± 11.35 17.14 ± 11.29 0.36 (0.13, 
0.59)

− 0.7(− 2.0, 
0.7)

17.99 ± 12.25 18.00 ± 11.85 − 0.01 (− 0.44, 
0.41)

− 5.4 (− 7.7, 
− 3.2)

Central 
venous pres-
sure, mmHg

7.83 ± 1.87 8.24 ± 1.17 − 0.41 (− 0.48, 
− 0.34)

− 9.6 (− 12.1, 
− 7.1)

7.96 ± 2.30 8.59 ± 1.04 − 0.64 (− 0.77, 
− 0.51)

− 14.6 (− 16.9, 
− 12.4)

PO2/FIO2 
Ratio, mmHg

323.16 ± 70.65 289.80 ± 42.39 33.36 (29.79, 
36.94)

7.8 (6.7, 8.8) 308.68 ± 73.75 272.85 ± 25.43 35.84 (31.17, 
40.50)

7.5 (5.9, 9.2)
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As Table  4 shown, our model had good predicting 
ability for predicting renal, hepatic, cardiovascular and 
hematologic dysfunctions with accuracy more than 0.8 in 
MIMIC- III and ICU-CH. For the 48-h neurological dys-
function in MIMIC- III and the respiratory dysfunction 
in ICU-CH, the prediction accuracy of our DBN model 
was less than 0.8.

Figure  2 shows the prediction accuracy of our DBN 
model for mortality risk. In MIMIC-III, the AUC of the 
mortality discrimination model using the data predicted 
by DBN based on the 24th hour data before outcome 
was 0.977 (95%CI, 0.967–0.988). The AUCs of SAPS-
II and APACHE-II based on the 24th hour data before 
outcome were 0.954 (95%CI, 0.942–0.966) and 0.948 
(95%CI, 0.932–0.964). In a similar scenario, the AUC of 
the model using data predicted by DBN was higher than 
that of other models, and appeared in the 48-h mortal-
ity prediction in MIMIC- III and 24-h and 48-h mortal-
ity prediction in ICU-CH. Calibration plots in Additional 
file  1: Fig. S2 showed that the predicted mortality from 
the model using data predicted by DBN closely approxi-
mated the actual outcomes.

We developed a web-based calculator based on our 
DBN model to predict physiological changes and mor-
tality risk for new trauma patients available at the web-
site https:// jsong 67. shiny apps. io/ Predi ction2/. This 
web-based calculator requires the input of the partici-
pant’s baseline characteristics and physiological variables 
and then outputs the predicted results.

Discussion
Our study built a DBN model for predicting physiological 
changes, organ dysfunctions and mortality risk in critical 
trauma patients and validated the model in an external 
dataset with good discrimination and calibration. The 
DBN model was based on the variables in SAPS-II and 
APACHE-II and is accessible online by a web application. 
Compared with other machine learning-based models, 
our model can be readily calculated with a web applica-
tion that allows clinicians to use our model in practice 
and help to validate our model in their medical work.

In practice, a trauma patient’s current physiological 
variables’ values could be inputted in our DBN model to 
calculate and physiological changes, organ dysfunctions 
and the death risk in the future 24 and 48  h. As more 
physiological variables become available during ICU 
monitoring, our DBN model is able to update the pre-
dicted values dynamically. With the emergence of per-
sonalized medicine, our DBN model can not only predict 
the risk of death, but also predict physiological variables 
to predict the occurrence of organ dysfunctions. Then, 
our model can be used for clinical decision making, with 
a view of early interventions, thereby preventing a delay 
in the initiation of appropriate therapy that has been rec-
ognized as a risk factor for mortality among ICU patients 
[22, 23].

The relationship between ICU patients’ physiologi-
cal variables is highly complex (usually nonlinear and 
interactive), which is unlikely to be captured by common 
parametric methods (e.g., linear regression). Moreo-
ver, models designed to be intuitive for human experts’ 

Table 4 Prediction accuracy of organ dysfunctions risk at 24th hour and 48th hour

Sensitivity = (true positives)/(true positives + false negatives), specificity = (true negatives)/(true negatives + false positives), accuracy = (true positives + true 
negatives)/total

Organ dysfunction 24th hour 48th hour
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

MIMIC-III

 Respiratory 0.920 0.784 0.881 0.951 0.763 0.900

 Renal 0.735 0.985 0.953 0.821 0.989 0.967

 Hepatic 0.767 0.950 0.922 0.751 0.960 0.924

 Cardiovascular 0.724 0.914 0.873 0.676 0.872 0.813

 Hematologic 0.742 0.961 0.939 0.631 0.985 0.943

 Neurologic 0.719 0.947 0.859 0.679 0.777 0.725

ICU-CH

 Respiratory 0.852 0.739 0.781 0.951 0.634 0.796

 Renal 0.715 0.984 0.950 0.784 0.990 0.965

 Hepatic 0.707 0.983 0.970 0.690 0.989 0.967

 Cardiovascular 0.761 0.961 0.938 0.632 0.946 0.889

 Hematologic 0.773 0.991 0.979 0.711 0.993 0.977

 Neurologic 0.775 0.955 0.903 0.764 0.858 0.824

https://jsong67.shinyapps.io/Prediction2/
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understanding may not be computationally efficient or 
accurate for probabilistic modeling [24]. Methods that 
consider the complex conditional inter-dependencies 
between variables would be more precise in probabilis-
tic modeling. The DBN extends standard BNs with the 

concept of time and can handle arbitrary nonlinear and 
complicated time-dependent relationships, which can be 
used for a wide range of tasks, including prediction and 
decision making under uncertainty [25, 26]. Our study 
demonstrated that the DBN is a robust method, able to 

Fig. 2 Comparison of prediction models by ROC analysis
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predict physiological changes and improve the prediction 
accuracy of mortality compared with traditional tools 
like the SAPS-II and APACHE-II.

Compared with other studies that directly put out-
come variables into the DBN [15, 16, 25, 26], our study 
did not use this approach for two reasons. First, there is 
about 10% of patients’ death in our dataset (Table  1). If 
the mortality was included in the DBN model, it would 
lead to an imbalance in machine learning, causing over-
fitting and reducing the external accuracy [27]. Second, 
deaths are discrete data, while physiological variables are 
continuous data, and the combination of these data types 
yield mixed data. A simple way to learn DBN from mixed 
data is to convert all continuous variables to discrete ones 
[14]. However, there are many discretization methods; 
thus, it is difficult to determine the appropriate discre-
tization mode; also, our study’s purpose was to predict 
the specific value of physiological indicators. Therefore, 
death was not put into the DBN model, and the mortality 
risk was calculated based on the predicted physiological 
values.

There are four major limitations to our study. First, 
we included the variables in SAPS-II and APACHE-II, 
although more recent versions of SAPS and APACHE are 
available, partly because some variables in recent versions 
do not exist in our two databases, and partly because we 
wanted to keep our model as simple as possible. Second, 
some complications such as sepsis were not included 
in our model since the lack of the occurrence time of 
complications in our datasets. Third, although our DBN 
model performed well in external validation, our data 
were from two high-level hospitals with advanced medi-
cal conditions and rich medical experiences. The physi-
ological changes are not only affected by trauma but also 
affected by medical conditions. So, our DBN model still 
needs extensive validation in various types of hospitals in 
the future. Finally, participants with the same input val-
ues had the same output values calculated using the DBN 
model, but each person is unique with individual charac-
teristics. Therefore, although our DBN prediction model 
could support decision making, not all medical care deci-
sions need to be made by a clinician.

Conclusion
Our DBN model can be used as a real-time prediction 
tool to predict physiological changes, organ dysfunc-
tions and mortality risk in ICU trauma patients and 
achieve better performance than conventional severity 
scores. Moreover, our study demonstrates that the DBN 
is a promising method for predicting of medical tempo-
ral data. In the future, we should validate our DBN model 
to verify its prediction accuracy and further improve the 

web calculator to increase the user convenience of the 
models by a physician.

Supplement tables show the definition of non-fault 
value, the missing proportion of variables in MIMIC-
III, the criteria of organ dysfunctions, cause of injury 
and Injury Severity Score from ICU-CH, and prediction 
accuracy of physiological variables at 24th hour and 48th 
hour in death population. Supplement figures show the 
structure of DBN model and calibration curves. Supple-
ment texts show R codes of dynamic Bayesian network.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12911- 022- 01803-y.

Additional file 1: Table S1. The definition of non-fault value. Table S2. 
The missing proportion of temporal physiological variables in MIMIC-III. 
Table S3. The criteria of organ dysfunctions. Table S4. Cause of injury and 
Injury Severity Score from ICU-CH. Table S5. Prediction accuracy of vari-
ables at 24th hour and 48th hour in death population from development 
datasets (MIMICIII). Table S6. Prediction accuracy of variables at 24th hour 
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network.
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