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Abstract 

Background:  Personalized medicine tailors care based on the patient’s or pathogen’s genotypic and phenotypic 
characteristics. An automated Clinical Decision Support System (CDSS) could help translate the genotypic and phe-
notypic characteristics into optimal treatment and thus facilitate implementation of individualized treatment by less 
experienced physicians.

Methods:  We developed a hybrid knowledge- and data-driven treatment recommender CDSS. Stakeholders and 
experts first define the knowledge base by identifying and quantifying drug and regimen features for the prototype 
model input. In an iterative manner, feedback from experts is harvested to generate model training datasets, machine 
learning methods are applied to identify complex relations and patterns in the data, and model performance is 
assessed by estimating the precision at one, mean reciprocal rank and mean average precision. Once the model per-
formance no longer iteratively increases, a validation dataset is used to assess model overfitting.

Results:  We applied the novel methodology to develop a treatment recommender CDSS for individualized treat-
ment of drug resistant tuberculosis as a proof of concept. Using input from stakeholders and three rounds of expert 
feedback on a dataset of 355 patients with 129 unique drug resistance profiles, the model had a 95% precision at 1 
indicating that the highest ranked treatment regimen was considered appropriate by the experts in 95% of cases. Use 
of a validation data set however suggested substantial model overfitting, with a reduction in precision at 1 to 78%.

Conclusion:  Our novel and flexible hybrid knowledge- and data-driven treatment recommender CDSS is a first 
step towards the automation of individualized treatment for personalized medicine. Further research should assess 
its value in fields other than drug resistant tuberculosis, develop solid statistical approaches to assess model perfor-
mance, and evaluate their accuracy in real-life clinical settings.
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Introduction
Evidence-based medicine aims to integrate individual 
clinical experience with the best available external sci-
entific evidence to develop trustworthy clinical prac-
tice guidelines and optimize clinical decision making 
[1, 2]. Under the evidence-based medicine paradigm, 
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the clinician uses sound evidence to formulate the best 
therapeutic choice for their patient, most often through 
a standardized public health approach where national or 
international guidelines are implemented. More recently, 
increasing attention is given to personalized medicine 
where medical decisions are tailored to the individual 
patient based on their predicted response to treatment 
in order to administer “therapy with the right drug at 
the right dose in the right patient” [3, 4]. To implement 
personalized medicine, diagnostic tests are performed to 
determine the patient’s and/or the pathogen’s phenotypic 
and genetic characteristics. Integrating individual patient 
genomic information into a clinical decision is challeng-
ing however, especially for non-experts, given the rapid 
evolution in knowledge on the genotype–phenotype 
associations. The use of a clinical decision support sys-
tem (CDSS) could facilitate the use of personalized medi-
cine approaches by less experienced physicians and other 
health care workers at the time and location of patient 
care [5, 6].

CDSSs for guiding treatment decisions can either be 
data-driven or knowledge-driven. Knowledge-driven 
CDSSs use a rule-based system, implement guidelines 
developed by national or international organizations 
such as CDC and WHO, and operate at a rather coarse 
level and do not consider all available patient or patho-
gen information [7, 8]. In contrast, data driven CDSSs 
use techniques such as machine learning and data mining 
and aim to use all relevant data to learn complex relations 
and dynamics from past experience and reveal patterns 
in the data in order to assist with the complex decision 
making. For personalized medicine, data-driven CDSSs 
are attractive as data is increasingly being collected and 
stored [9–13].

Recommender systems use machine learning and 
data mining techniques to predict the preference a user 
would give to a specific item based on their preference 
history [14]. Recommender systems are mostly used to 
make personalized recommendations in e-commerce 
(e.g. Amazon), online media (e.g. Netflix), social media, 
and online news feeds [15]. Most recommender systems 
either use collaborative filtering, content-based filter-
ing, or a combination of the two. Collaborative filtering 
recommender systems predict which items a user might 
like based on other similar users that liked similar items 
[16] and implicit (i.e. a user watched a movie) or explicit 
(i.e. a user gave a 5-star rating) preferences by the user. 
Content-based recommender systems predict which new 
items the user will like by learning a classifier of the likes 
and dislikes of a user using the features associated with 
the items they like. [14, 17]. Data driven CDSSs and rec-
ommender systems are uncommon in clinical practice, 
mostly due the perception that they are a ‘black box’ tool 

[6] with a decision process that lacks transparency, even 
though transparent recommender systems exist [18, 19].

Crowdsourcing is a problem-solving model in which a 
large open group of actors try to collectively solve a larger 
problem [20] with many applications such as street map-
ping (OpenStreetMap; a collaborative effort of mappers 
contributing to create and maintain world map data), 
and data science (Netflix Prize; an open competition to 
develop the best collaborative filtering algorithm for Net-
flix [21]).

In this study we aimed to develop a fully automated 
hybrid knowledge- and data-driven treatment recom-
mender CDSS, utilising crowdsourcing to train and asses 
model performance, to identify the optimal treatment 
regimen for individual patients. In addition, we apply the 
personalized medicine approach to drug resistant tuber-
culosis as a use case to explain the novel CDSS method 
development process and its potential application in 
global health. Drug resistant tuberculosis was chosen as 
a proof-of-concept as it is recommended that a patients’ 
treatment regimen is individualized upon receipt of drug 
susceptibility testing results. However, due to the lengthy 
and complex process treatment individualization is not 
always implemented in routine care [22].

Methods
To ensure a transparent and standardized process, we 
adapted the multi-step approach for the development of 
a decision aid [23] (Fig.  1). This standardized approach 
provides a framework that can easily be adapted for the 
development of a CDSS [23]. In this methods section, we 
describe the complete process of developing the treat-
ment recommender CDSS. In the results section, we 
present the results of the application of this developed 
treatment recommender CDSS for the individualized 
treatment of drug resistant tuberculosis.

Defining the scope and assembling the expert panel
After defining the purpose and target audience of the 
treatment recommender CDSS (scoping step), an expert 
panel was assembled (steering step). To ensure a multi-
disciplinary and holistic approach, the panel represented 
expertise in pathogen genomics (knowledge of geno-
type–phenotype associations), pharmacology (character-
istics of the drugs, drug-drug interactions, and synergy 
and antagonism between drugs), clinical experts, a health 
informatics technology or computer science expert, as 
well as health system and health economic experts. In 
addition, patients were consulted to provide their per-
spective (e.g. the impact of side effects on their quality of 
life).
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Assembling the knowledge base
The knowledge base was developed in an iterative 
manner by combining review of published literature, 
non-published data when gaps in the literature were 
identified, and consensus building between experts 
using a standardized format for efficient expert feed-
back. First, the key features of relevant individual drugs 

were determined. Next, the features of the treatment 
regimen were established, hereafter referred to as regi-
men features, including the number of effective drugs 
required and how drug features are aggregated into 
regimen features. Third, data input requirements and 
decisions on user-friendly design of the treatment rec-
ommender and communication of the recommendation 
were made.

Fig. 1  Steps in the development process of an automated clinical treatment recommendation system
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Model development
Development of the model consists of 6 steps (Fig.  1). 
First, a prototype was developed to rank all possibly 
valid treatment regimens for an individual patient. Sec-
ond, expert feedback was harvested on a sample of the 
top scoring regimens for patients that are representative 
of the target population. Third, the expert feedback was 
used to develop a training dataset. Fourth, the model 
performance in recommending the optimal individual 
treatment regimen was assessed. When the model per-
formance was shown to be suboptimal, the rankings for 
the patient-regimen pairs obtained by the random forest 
classifier were used in determining the sampling for the 
next round of expert feedback harvesting. This process of 
machine learning, expert data harvesting and assessment 
of model performance was repeated until the model no 
longer substantially improved. Fifth, the final model was 
tested on a different real-life clinical dataset to assess the 
degree of overfitting to the training data and verify that 
the model is transferable to new data. Overfitting occurs 
when a model corresponds too closely or exactly to the 
data on which it was trained and may therefore under-
perform on new and unseen data [24]. The final step in 
the development process is a field test to assess the effec-
tiveness of the treatment recommender CDSS model for 
individualized treatment in clinical trial participants. 
In the intervention arm, the minimum required patient 
information and data on genomics information (treat-
ment recommender CDSS input) is used by the treatment 
recommender CDSS to proposes the optimal individual-
ized treatment for that patient (treatment recommender 
CDSS output). In the section below, we describe the first 
three steps in greater detail.

Step 1: Developing the treatment recommender prototype
Based on the knowledge base assembled, the prototype 
computes a quality score for every valid patient-regimen 
pair (Fig. 2). A valid regimen is defined as a regimen that 
only contains valid drugs, and valid drugs are defined as 
drugs that are effective (no resistance detected) and can 
be included in the individualized treatment regimen 
because of absence of clinical contraindications, drug 
stock outs, or country-specific drug licensing issues.

The number of possible regimens r for a given patient 
is:

where n is the number of drugs available for a specific 
patient and k is the number of effective drugs required 
in a treatment regimen. If the number of drugs to be 
included in the individualized treatment regimen can 
vary, then the total number of possible regimens for each 

(1)r =

(

n
k

)

= n!
k!(n−k)!

patient equals the sum of formula 1 for all possible values 
of k.

The total number of unique resistance profiles rp for a 
disease is:

where d is the total number of available drugs for the 
disease of interest.

In the prototype, all regimen features were normalized 
from 0 (bad) to 1 (good) on the patient level, meaning 
that the entire 0 to 1 interval is used to represent each 
regimen feature even in patients with few available drugs. 
A higher score can be interpreted as better for the patient 
and the highest scoring regimen is assumed to be the 
best regimen for that patient. After normalizing all regi-
men features and inverting negative features, such that 
for all regimen features a lower score means worse for 
the patient, the sum of all features equates to the qual-
ity score for that regimen, which is then used to rank the 
regimens for individual patients.

Step 2: Harvesting expert feedback
For each of the patients selected to represent the tar-
get patient population, a sample of the top scoring regi-
mens was reviewed by clinicians experienced in treating 
the condition of interest (Fig.  2). The number of cases 
reviewed was fixed and set to be large enough to gener-
ate sufficient data to train the machine learning model 
but small enough so that the experts were able and will-
ing to carefully review every case presented. We sampled 
with replacement to allow that multiple experts provide 
feedback on the same patient-regimen pair, to allow 
that experts can provide feedback on the same patient-
regimen pair multiple times, and to ensure that a single 
expert cannot veto a top scoring regimen. The sampling 
function randomly samples 1 regimen from the top 3 reg-
imens (based on the ranking) for that patient. A regimen 
i that has been sampled before however has a probability 
pi

where pinitial is the initial probability and fi is the 
amount of feedback already received for regimen i, to be 
removed from the top 3 making room for the next regi-
men in the ranking. Parameter pinitial can be tuned to 
make regimens more or less likely to be removed from 
the top 3. After tuning, we found pinitial = 0.2 to give a 
good balance between resampling a regimen and allow-
ing new, lower ranked regimens to be sampled.

(2)rp =

d
∑

k=0

(

d
k

)

= 2d

(3)pi = 1− p
fi
initial
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Fig. 2  The model development flow
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To harvest the experts’ feedback on the regimen-
patient pairs, we developed a secure web interface (Fig. 3) 
that captured the feedback in a structured format. The 
web interface contained four components: list of drugs 
that are not valid for this patient (due to resistance, con-
traindications or not being available), list of valid drugs 
for the patient, and the recommended treatment regi-
men. Upon review of this information, the expert is asked 
whether they would prescribe this regimen for the indi-
vidual patient. If the expert responded they would not 
prescribe the recommended regimen to the individual 
patient, they were asked why (open field) and were asked 
to list the regimen they would prescribe. The alternative 
regimen increased the number of patient-regimen pairs 
with positive feedback. The reasons for rejection were 
used to identify recurring topics that were then discussed 
with the experts. The outcome of these discussions led to 
additional literature review and possible addition, modi-
fication, or removal of drug or regimen features.

Step 3: Data driven machine learning model development
Most recommender systems are machine learning 
systems that help users discover new products and 

services based on the user’s history and preferences. 
Our recommender model is different from standard 
recommender systems in that it does not use a patient’s 
history to propose a new treatment for that patient. 
Instead, our recommender model learns the underly-
ing qualities of treatment regimens such that a good 
regimen can be recommended for an individual patient 
with a specific Mycobacterium tuberculosis drug resist-
ance profile. The feedback given by the experts on what 
was considered a good treatment regimen was stored in 
a database and served as training data for the machine 
learning model. We used a random forest classifier 
to learn the importance of features and interactions 
between the features of a treatment regimen because 
random forest classifiers are robust against overfitting 
and easy to develop. An additional advantage of ran-
dom forests is that they are constructed by having many 
decision trees vote and taking the consensus of these 
trees [25, 26]. The concept of a decision tree and the 
way they are used in random forests is very intuitive, 
making these more likely to be accepted by clinicians. 
Using the normalized features, the model learns which 
regimen is good for a given patient, accounting for 

Fig. 3  Layout of the web interface
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the fact that not all options are available. The model is 
trained on the patient-regimen-feedback pairs obtained 
through the expert feedback harvesting step and tries 
to predict the probability that a patient-regimen pair 
was deemed good by the experts (Fig.  2). These prob-
abilities are then again used to rank all patient-regimen 
pairs for a given patient, with the highest ranked regi-
men being the optimal treatment for that patient.

We used a patient level leave-one-out cross valida-
tion strategy to predict the new ranking of regimens for 
a given patient. In other words, when using the model 
to predict the ranking for patient p, we used the entire 
training data excluding all training data on p to train the 
random forest classifier.

Step 4: Assessing model performance
We used three patient level performance measures: 
Precision at 1 (P@1) which assesses the highest ranked 
regimen, Mean Reciprocal Rank (MRR) which repre-
sents the average of how high the first regimen is ranked 
over all patients by the model, and Mean Average Preci-
sion (MAP) which takes the position of all appropriate 
regimens into account. P@k, MRR, and MAP are per-
formance metrics often used in information retrieval 
[27–29]. Information retrieval (IR) is defined as finding 
material (documents) that satisfies and information need 
from within large collections [27]. Our CDSS closely 
resembles the IR problem in that we try to identify a few 
-in our case just one, the highest ranked- regimens for 
a specific resistance profile given the regimen features 
among a large collection of possible treatment regimens.

P@1 is a performance parameter where precision at N 
is defined by Eq. 4.

P@1 is the fraction of patients for which the top ranked 
regimen is classified by the experts as an appropriate 
regimen, with appropriate regimen defined as a regimen 
the expert would be willing to prescribe for that patient. 
When experts disagreed on the highest ranked regimen, 
a majority voting was used to determine whether the reg-
imen is appropriate.

The mean reciprocal rank is defined by Eq. 5,

where P is the set of patients and rankp the position of 
the first regimen classified by the experts as appropriate 
for patient p.

The mean average precision is defined by Eq. 6,

(4)P@N =
#good treatments in topN

#total treatments in topN

(5)MRR = 1
|P|

P
∑

p

1
rankp

where AvgP(p) is defined in Eq. 7

where GTp is the set of appropriate treatments for 
patient p, TXp is the set of all valid treatment regimens 
for patient p, and rel(i) indicates whether treatment i is 
an appropriate treatment for patient p (rel(i) = 1), or an 
inappropriate treatment (rel(i) = 0).

Results
In this section, we present how the newly developed 
method was applied as a proof-of-concept to develop a 
treatment recommender CDSS to guide the individuali-
zation of treatment for Rifampicin Resistant Tuberculosis 
(RR-TB).

The scope and purpose of the development of a RR-TB 
treatment recommender was defined as “improving 
RR-TB treatment outcomes by optimizing the individu-
alized treatment regimen in high TB burden resource 
limited settings”. The primary target audience were the 
clinicians treating patients with RR-TB in such setting.

Composition of the RR‑TB expert panel
A multidisciplinary steering group of experts was assem-
bled by inviting clinicians with experience in treating 
RR-TB, pharmacologists with expertise in TB drugs, 
molecular epidemiologists with expertise in interpreta-
tion of the genotype–phenotype associations regarding 
drug resistance in Mycobacterium tuberculosis, health 
systems experts to assess integration of individualized 
treatment in routine care, and ex-RR-TB patients.

Feature selection for the RR‑TB treatment recommender 
model
The design phase started with a stakeholder meeting 
where all the members of the steering group discussed 
the treatment recommender input parameters. Discus-
sions focussed on number of drugs needed in an effective 
treatment regimen, health system burden of treatment 
monitoring, monitoring burden, drug toxicity, drug fea-
tures, and clinical patient characteristics, and genomic 
drug resistance profile. Uncertainties regarding the input 
parameters identified during the meeting were resolved 
through literature search, identification of unpub-
lished data and iterative discussion until a consensus 
was reached on all features to be included in the model. 
These discussions resulted in a set of 24 drugs that are 
licensed for treatment of tuberculosis in South Africa, 9 

(6)MAP = 1
|P|

P
∑

p
AvgP(p)

(7)AvgP(p) = 1

|GTp|

TXp
∑

i

(P@i × rel(i))
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drugs features, 18 regimen features, and the consensus 
that 4 effective drugs need to be included in all individu-
alized regimens (Table 1). Based on these decisions, up to 
10,626 valid treatment regimens were possible (Eq. 1) for 
a patient without resistance.

Training and validation RR‑TB datasets
We used a dataset that contained both clinical and whole 
genome sequencing data on 355 patients diagnosed with 
RR-TB in three provinces in South Africa. The whole 
genome sequencing data represented 129 different drug 
resistance profiles. A group of 6 clinicians experienced in 
treatment of drug resistant tuberculosis were then asked 
to provide feedback on the recommended treatment 
using a structured online survey (Fig. 3).

Assessment of RR‑TB treatment recommender model 
performance
Assessment of the performance of the prototype model 
showed P@1 of 89%, mean average precision (MAP) of 
53% and mean reciprocal rank (MPR) of 90% (Table 2). 
The written comments on regimens judged to be inap-
propriate were discussed with the expert group which 
resulted in modifications to the treatment recom-
mender CDSS prototype. For example, the efficacy of 
the different drugs, which was initially quantified using 

a single feature was changed to three features: early 
bactericidal activity, bactericidal activity, and steriliz-
ing activity. Using the feedback, a random forest classi-
fier was used to identify complex relations and patterns 
in the data. Based on these results, the updated treat-
ment recommender CDSS reclassified the order of valid 
treatment regimens from which a sample was drawn for 
a second round of feedback harvesting from the expert 
clinicians. The model had improved, with an increase in 
all three performance parameters. P@1 increased from 
89 to 95%, MAP from 53 to 69% and MRR from 90 to 
97%. After three rounds, the performance no longer 
improved, with P@1 and MRR stabilizing at 95% and 
MAP around 70%. The increase in P@1 from 89% of 
all resistance profiles after the first round to 95% after 
the third round of feedback harvesting shows that the 
proportion of correct recommendations of an accepted 
regimen increased. The MRR shows that on average the 
first accepted regimen is ranked higher after multiple 
rounds of feedback harvesting with a small decrease 
after round 3. Combining the change in MMR with the 
increase of P@1 indicates that where the model still 
makes mistakes, the mistakes are less severe. Finally, 
the change in MAP shows that on average all the 
accepted regimens are ranked higher after three rounds 
of feedback harvesting, indicating that the model is 

Table 1  Knowledge base on drugs, drug features and regimen features included in the treatment recommender for drug resistant 
tuberculosis

a Binary features, bContinuous features

Drugs Amikacin, Bedaquiline, Clofazimine, Cycloserine, Delamanid, Ethambutol, Ethionamide, Imipenem, high or standard dose Isoniazid, 
Levofloxacin, Linezolid, Meropenem, high or standard dose Moxifloxacin, Para-aminosalicylic acid, Pretomanid, Prothionamide, 
Pyrazinamide, Rifabutin, high or standard dose Rifampicin, Streptomycin, Terizidone

Drug features Route of administration, toxicity, QT prolongation, cost, early bactericidal activity, bactericidal activity, sterilizing activity, mechanism 
of action, propensity to acquire resistance

Regimen features Core or companion druga [30], prevention of acquired resistancea, four different mechanisms of actiona, fully oral regimena, costb, 
toxicityb, QT prolongationa, high early bactericidal activitya, early bactericidal activityb, high early bactericidal activitya, bactericidal 
activityb, high sterilizing activitya, sterilizing activityb, synergismb, antagonismb, contra-indicationsa, same drug classa, first line drugs 
includedb

Table 2  Training and external validation of the treatment recommender CDSS model

a Number of observations include the alternative proposed by the expert in case the recommended regimen was not considered appropriate by the expert. The 
performance figures for the training rounds indicate the performance when training and validation on all currently available training data

Number of regimens 
presented to experts

Total number of 
observationsa

Number of 
participating 
experts

P@1 (%) Mean average 
precision (%)

Mean 
reciprocal 
rank (%)

Training round 1 479 855 5 89 53 90

Training round 2 445 719 6 95 69 97

Training round 3 360 607 6 95 72 95

Training round 1–3 1284 2181

External validation 375 592 5 78 68 87
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learning the underlying properties of what constitutes a 
good treatment regimen.

For the external validation, another dataset consist-
ing of 64 unique resistance profiles for patients diag-
nosed with RR-TB in another province of was used. On 
this external validation set, the model performance was 
lower, with a P@1 of 78%, MAP of 68% and MRR of 87% 
(Table 2). Based on the improvement in the metrics over 
three rounds and after review of the CDSS recommen-
dations that were not considered appropriate by the 
experts, the expert panel decided that additional rounds 
of feedback harvesting would most likely not substan-
tially improve the CDSS performance and that the per-
formance was sufficient for evaluation in a research 
setting.

Discussion
We developed a novel treatment recommender CDSS 
that combines a knowledge-driven approach using 
feedback harvesting methodology with a data-driven 
approach using machine learning methods to automate 
the individualisation of treatment. The knowledge-driven 
component consists of input and feedback from stake-
holders and experts. The data-driven component consists 
of the machine learning methods to identify complex 
relations and patterns.

Our approach is fundamentally different from stand-
ard knowledge-driven approaches to CDSSs and offers 
several advantages for personalized medicine. Standard 
knowledge-driven systems implement clinical guidelines 
using if–then rules which allow limited treatment indi-
vidualisation [6] and offer little flexibility as they need a 
complete overhaul when new drugs become available or 
new knowledge becomes available. In contrast, including 
new drugs and incremental knowledge on existing drugs 
in our novel methodology is possible without new model 
training through quantifying the features of the new drug 
or updating the relevant drug features.

Our approach is also fundamentally different from 
the data-driven methods that have been used for other 
CDSSs. Grasser et  al. developed two therapy decision 
support systems that use historical treatment data to 
individualise psoriasis treatment based on patient attrib-
utes and past treatment attributes to predict the response 
to different therapies [6]. The main limitations of this 
methodology are that it does not learn the underlying 
properties of optimal treatment but bases decisions on 
which treatments have worked well in the past similar 
patients. Consequently, this method suffers from concept 
drift where statistical properties of data change over time 
due to the discovery of a new drug or new knowledge on 
drug features. Our model is less subject to concept drift, 
as it is possible to assign features to a new drug or update 

the features of the drugs when statistical properties of 
drug or regimen features change.

Machine learning and artificial intelligence methods 
such as neural networks have been used in the framework 
of personalized medicine to learn complex and nonlinear 
relationships between prognostic features and an individ-
ual patient’s risk of treatment failure [11]. This approach 
requires a dataset with treatment outcomes. Because of 
the relative novelty of personalized medicine, such data-
sets with treatment outcome only allow the model to 
learn the underlying properties of the current standard of 
care instead of novel individualized treatment regimens.

The application of our newly developed treatment 
CDSS methodology to the individualization of treatment 
of RR-TB provided proof-of-principle by demonstrating 
that the novel approach is well suited to guide a person-
alized medicine approach when multiple combinations 
of drugs are possible in one individual patient. Using 
the proposed method, a treatment recommender CDSS 
for personalized treatment can be built in a relatively 
short period of time using a combination of stakeholder 
input, published and unpublished evidence, and expert 
feedback.

By harvesting expert feedback on patient scenario’s 
simulated from real-life data, we created a minimal data-
set consisting of diverse individual treatment regimens 
that are representative for patient care. By allowing the 
experts to provide an alternative regimen when disagree-
ing with the proposed regimen, the resulting dataset con-
tained a wide variety of accepted and rejected treatment 
regimens.

While our novel method has many strengths for the 
field of precision medicine, including the hybrid data- 
and knowledge-driven approach, the use of a structured 
‘crowdsourcing’ approach with predetermined experts 
for treatment decision making research [31], and the high 
degree of flexibility, several limitations should be noted. 
A first limitation relates to the assessment of the model 
performance. Given the novelty of our approach, there 
is no consensus method yet to assess the performance 
of the model and there are no clear decision boundaries 
on when to stop the iterative development process. The 
external validation of our model for drug resistant TB 
demonstrated substantial overfitting on the training data. 
There are several possible causes for the observed overfit-
ting. Two drugs (pretomanid and high dose rifampicin) 
were excluded from the validation model because they 
are not registered for clinical care. The model might have 
learned some intricate relations between regimens that 
do and do not include those drugs. Furthermore, the 
external validation set only included clinical drug resist-
ance profiles not yet seen in the training dataset. These 
resistance profiles are thus likely less prevalent, resulting 
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in less experience by the experts in treating patients with 
these drug resistance profiles. The decrease in perfor-
mance could however also suggest that the current per-
formance parameters may not accurately capture the 
model’s performance. Using a more diverse set of patient 
profiles and repeating the development process on this 
new dataset in combination with the already collected 
data is likely to reduce overfitting. As such the data now 
used for external validation could be included as training 
data before bringing this model into clinical practice. A 
second limitation is that the model was developed using 
a limited group of experts. It is unknown to which degree 
the model development is dependent of the number and 
composition of the expert group.

While our methodology shows promise to aid clini-
cians in prescribing the optimal treatment regimen for a 
patient, several steps are required to implement a treat-
ment recommender CDSS in a clinical setting. Use of 
other performance parameters and evaluation of the 
model in clinical trials in different regions of the world 
will be needed to determine its accuracy for real-life deci-
sion making in a personalized medicine. Second several 
safeguards should be put in place as the treatment rec-
ommender CDSS should always be viewed as a tool to aid 
decision-making and not a substitute for clinical exper-
tise and judgement. The health care worker should thus 
always review the proposed regimens before prescribing 
the regimen to their patient. Lastly, the treatment recom-
mender CDSS ideally has an easy-to-use interface that 
allows communication of the treatment recommendation 
to health care workers via a secure mobile phone app.

In conclusion, while novel and promising, our hybrid 
knowledge- and data-driven treatment recommender 
CDSS for individualising treatment is an important first 
step in the development of methods aimed to facilitate 
the widespread implementation of personalized medi-
cine. Further research should assess its value in fields 
other than drug resistant tuberculosis, develop solid sta-
tistical approaches to assess model approaches, and eval-
uate their accuracy in real-life clinical settings.
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