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Abstract 

Background:  Coronary heart disease (CHD) has become the leading cause of death and one of the most serious epi-
demic diseases worldwide. CHD is characterized by urgency, danger and severity, and dynamic treatment strategies 
for CHD patients are needed. We aimed to build and validate an AI model for dynamic treatment recommendations 
for CHD patients with the goal of improving patient outcomes and learning best practices from clinicians to help 
clinical decision support for treating CHD patients.

Methods:  We formed the treatment strategy as a sequential decision problem, and applied an AI supervised rein-
forcement learning-long short-term memory (SRL-LSTM) framework that combined supervised learning (SL) and 
reinforcement learning (RL) with an LSTM network to track patients’ states to learn a recommendation model that 
took a patient’s diagnosis and evolving health status as input and provided a treatment recommendation in the form 
of whether to take specific drugs. The experiments were conducted by leveraging a real-world intensive care unit 
(ICU) database with 13,762 admitted patients diagnosed with CHD. We compared the performance of the applied 
SRL-LSTM model and several state-of-the-art SL and RL models in reducing the estimated in-hospital mortality and 
the Jaccard similarity with clinicians’ decisions. We used a random forest algorithm to calculate the feature importance 
of both the clinician policy and the AI policy to illustrate the interpretability of the AI model.

Results:  Our experimental study demonstrated that the AI model could help reduce the estimated in-hospital mor-
tality through its RL function and learn the best practice from clinicians through its SL function. The similarity between 
the clinician policy and the AI policy regarding the surviving patients was high, while for the expired patients, it was 
much lower. The dynamic treatment strategies made by the AI model were clinically interpretable and relied on sensi-
ble clinical features extracted according to monitoring indexes and risk factors for CHD patients.

Conclusions:  We proposed a pipeline for constructing an AI model to learn dynamic treatment strategies for CHD 
patients that could improve patient outcomes and mimic the best practices of clinicians. And a lot of further studies 
and efforts are needed to make it practical.

Keywords:  Dynamic treatment strategies, Coronary heart diseases, Artificial intelligence, Supervised reinforcement 
learning, Deep sequential recommendation
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Background
Coronary heart disease (CHD) has become the lead-
ing cause of death and one of the most serious epidemic 
diseases worldwide [1]. It is estimated that 126.5 million 
people worldwide have CHD, that 8.9 million people 
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died of CHD per year [1], and that 18.2 million Ameri-
can adults have CHD and 363, 452 died from CHD in 
2016 [2]. Eleven million Chinese residents had CHD, and 
the mortality rate was 120.18 per 100 thousand in 2017 
[3]. CHD is characterized by urgency, danger and sever-
ity; thus, personalized dynamic treatment in the ICU is 
particularly important [4]. A series of general guidelines 
on rational drug use for CHD have been made by experts 
[5–7]. However, one ideal treatment strategy may be 
effective for some patients but not for others, and even 
the same patient might need different treatment strate-
gies during different stages of the CHD process. Addi-
tional file 2: Figure S1 shows an example of the dynamic 
treatment strategies administrated to a CHD patient.

Early studies of dynamic treatment strategies were con-
ducted mainly on simulation and clinical trial datasets 
that were limited in their reflection of real-world situa-
tions [8–10]. With the increasing availability of electronic 
health records (EHRs), leveraging massive real-world 
EHRs to improve treatment strategies has become an 
ad hoc research direction [11]. Some studies have been 
conducted on treatment recommendations for multi-
morbidity [12–17], while others have focused on spe-
cific diseases, including sepsis [18–20], oncology [21], 
non-small-cell lung cancer [8, 9], breast cancer [22–24], 
cerebral infarction disease [25], diabetes [26, 27], hyper-
tension [28], hypercholesterolemia [29], AIDS [30], ado-
lescent depression [31–34], bipolar disorder [35, 36], 
anxiety disorders [37], paediatric generalized schizophre-
nia [38], graft versus host disease [39], thrombosis [40], 
and paediatric cystic fibrosis [41]. Several works have 
modelled personalized treatment pathways [42, 43], built 
automatic clinical guidelines [44–46], and developed 
optimized exercise prescription systems [47] for cardio-
vascular diseases. Few works have been conducted on 
intelligent learning of dynamic treatment strategies for 
CHD [48], especially dynamic drug recommendations 
according to the evolving health status of CHD patients.

The methods used to design artificial intelligence (AI) 
to identify dynamic treatment strategies can be classified 
into three main categories: (1) rule-based expert systems, 
which map diseases to treatments based on heuristic rules 
[44]; (2) supervised learning (SL) methods, which generate 
treatment recommendations by utilizing the similarity of 
patients or match diseases with treatments via classifica-
tion, including pattern-based methods and deep learning 
[12, 49], and more recently attention and memory-aug-
mented network (AMANet) [50]; and (3) reinforcement 
learning (RL) methods [51, 52], which address delayed 
rewards and infer an optimal strategy based on non-opti-
mal treatment behaviours, including value-based RL [18–
20] and direct policy optimization [53]. Other methods 
include outcome weighted learning [54], augmentation 

and relaxation learning [55], and ensemble machine learn-
ing [56]. Each kind of method has respective advantages 
and drawbacks. Taking SL methods as an example, on 
the one hand, they are adept at mining the experience of 
doctors from labelled data; on the other hand, their pre-
requisite of assuming that the treatment label provided by 
doctors is optimal is not always the case [57], so they may 
learn some wrong things. RL methods infer an optimal 
treatment strategy according to the delayed reward set up 
mainly by a patient outcome, but they may recommend 
treatments that are obviously different from a doctor’s 
prescription due to the lack of supervision, which may 
cause high risk in clinical practice [58]. These two kinds 
of methods can supplement each other by combining an 
evaluation signal and an indicator signal to learn an inte-
grated treatment policy [14, 15].

We aimed to build and validate an AI model for 
dynamic treatment recommendations for CHD patients 
with the goal of improving patient outcomes and learn-
ing the best practices of clinicians to help clinical deci-
sion support in treating CHD patients. Inspired by 
Wang et  al. [15] and the aforementioned studies, we 
applied an AI model of supervised reinforcement learn-
ing-long short-term memory (SRL-LSTM) to learn 
dynamic treatment strategies for CHD patients by using 
real-world EHRs and compared it with several state-of-
the-art SL models and RL models. We used a random 
forest algorithm to calculate the feature importance of 
both the clinician policy and the AI policy to illustrate 
the interpretability of the AI model. Case studies were 
conducted to analyse the similarities and differences 
between the AI-recommended treatment actions and 
the clinicians’ actual treatment decisions.

Figure  1 shows the framework of our study. To help 
clinicians prescribe efficiently and efficaciously to treat 
patients admitted to ICU with CHD, as shown in Fig. 1, 
we first train an AI model SRL-LSTM based on his-
torical CHD cohort extracted from MIMIC-III V1.4, an 
open access and anonymized real-world ICU database. 
The model combines SL and RL with an LSTM network 
to track the patients’ states and learns dynamic treat-
ment policies. When a patient with CHD is admitted 
to the ICU, we feed the patient’s evolving health status 
to the model, including diagnoses, demographics and 
time-series variables of the patient till the current day 
extracted according to CHD guidelines. The model can 
then provide us a daily treatment recommendation in 
the form of whether to take specific drugs.

Material and methods
Overall approach and cohort
We formed the treatment strategy as a sequential deci-
sion problem and applied an AI SRL-LSTM framework 
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that combined SL and RL with an LSTM network to track 
patients’ states to learn a recommendation model that 
took the patient’s diagnosis and evolving health status as 
input and gave a daily treatment recommendation in the 
form of whether to take specific drugs. The outcome of 
interest was the hospital mortality of the selected cohort.

The cohort was selected from MIMIC-III V1.4, an 
open access and anonymized real-world ICU database 
containing 58,976 admissions from 2001 to 2012 in 5 
ICUs of a teaching hospital in the Northeast United 
States [59–61]. We included adult patients diagnosed 
with CHD. CHD is a class of heart diseases caused by 
myocardial ischaemia, hypoxia, or necrosis because of 
narrowing or occlusion of the lumen as a result of coro-
nary atherosclerosis [7], which is also called ischaemic 
heart disease [62]. Following [2], we used the Interna-
tional Classification of Diseases (ICD), 9th edition revi-
sion codes 410 to 414 [63] to indicate CHD. The patient 
admission inclusion diagram is shown in Fig. 2.

Data extraction and preprocessing
We extracted the prescriptions of the CHD cohort, 
which contained 1,292,650 records and 2477 drugs. 
To ensure statistical significance, we selected the top 
500 drugs that covered 98.0% of the prescriptions. The 
prescription action was coded as one-hot for each day. 

If the prescription of a patient contained drugs out of 
the selected drug list on one day, then the patient was 
still included and only the drugs within the list were 
scanned and coded. The data were included from hos-
pital admission to discharge, resulting in a total of 
140,176 action days.

Each patient had 1 to 39 diagnoses coded by ICD-9, and 
a total of 3719 diseases were involved. All the diagnoses 
of a CHD patient were used as the input layer, and each 
of them was embedded with 40 hidden nodes regard-
ing to the maximum number of diagnoses observed. The 
embedding was conducted as follows. First, all ICD-9 
codes used to identify the CHD cohort were sorted in fre-
quency descending order; then, the ICD-9 codes of each 
CHD patient were replaced by their indexes in descend-
ing order, and zeros were padded to make the length of 
each patient’s diagnosis sequence equal to that of the 
largest diagnoses sequence. The model can be adjusted to 
deal with longer or shorter sequence and easily retrained 
on new dataset containing new patients with more or 
less diagnoses. Finally, the embedding layer in Keras 
[64] was applied to turn the positive integers (indexes) 
into dense vectors of fixed size. We analysed the ration-
ality of the embedding method in both development set 
and test set. For both the development set and test set, 
we first calculated the Euclidean distances between each 
two patients in both the original index space and the 

Fig. 1  Framework of the study design. An AI model SRL-LSTM is learned from historical CHD cohort. For a patient with CHD admitted to the ICU, the 
model takes the patient’s static and time-series features as input and provides a daily treatment recommendation
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embedding space respectively. Then we divided the dis-
tances in the original index space into 3 equal groups: the 
closer group, the middle-distance group, and the distant 
group. We calculated the mean distances of each group 
in the original index space and the mean distances of 
corresponding patient pairs in each group in the embed-
ding space. Additional file  1: Table  S1 shows that, for 
both development set and test set, the closer groups in 
the original index spaces have closer mean distances in 
the embedding spaces, the distant groups in the original 
index spaces have greater mean distances in the embed-
ding spaces. And the mean distances of corresponding 
groups in the development set and test set are close. This 
demonstrated that the embedding method could ration-
ally keep the relative distances between patients in terms 
of their diagnoses.

We identified monitoring indicators and risk factors for 
the CHD patients by searching CHD related guidelines 

[5–7], handbooks [4], reports [3], and papers [1, 2]. Then, 
for each hospital admission, we extracted static variables 
and time-series variables that were recorded for at least 20% 
of the sampled hospital admissions. Finally, the model fea-
tures included diagnoses, demographics, electrocardiogram 
and haemodynamic monitoring results, vital signs, venti-
lation parameters, lab values, and output events. Among 
them, demographics such as gender, age, and weight are the 
basic risk factors for the CHD patients, and electrocardio-
gram monitoring of heart rhythm and heart rate are basic 
monitoring items for the CHD patients for detecting each 
kind of arrhythmia and the situation of myocardial ischae-
mia. Haemodynamic instability is a prominent manifes-
tation in patients with severe cardiovascular disease. The 
monitoring of haemodynamic indexes is particularly impor-
tant in the condition evaluation and rescue treatment of 
patients with severe cardiovascular disease. Systolic, dias-
tolic, and mean blood pressure, systolic, diastolic, and mean 

Fig. 2  Patient admission inclusion diagram. n is the number of hospital admissions, and d is the hospitalization days
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pulmonary artery pressure (PAP), central venous pressure, 
shock index, cardiac index, and systemic vascular resistance 
index (SVRI) are important haemodynamic indexes. Other 
vital signs, such as temperature, respiratory rate, SpO2, and 
Glasgow coma scale (GCS) score, are important indexes for 
severity grading in the ICU and are also suitable for CHD 
patients in the ICU. FiO2 and mechanical ventilation are 
important indicators for admission to the ICU and for judg-
ing the prognosis of the CHD patients. Both hyperglycae-
mia and hypoglycaemia are important cardiovascular risk 
factors; thus, blood glucose values were included. Lactate 
dehydrogenase, creatine kinase (CK), CK-MB isoenzyme, 
and troponin T are markers of myocardial injury and play 
important roles in clinical diagnosis, condition monitor-
ing and risk stratification of acute myocardial infarction 
and other diseases associated with myocardial injury. Renal 
insufficiency is a common and important complication in 
patients with severe cardiovascular disease and is one of 
the predictors of poor prognosis; thus, we included indexes 
such as creatinine, blood urea nitrogen, and daily urine out-
put, which could reflect renal injury. Heart disease is often 
associated with liver insufficiency, so indexes that could 
reflect liver function were included, such as alkaline phos-
phatase, serum glutamic-oxaloacetic transaminase (SGOT), 
serum glutamic pyruvic transaminase (SGPT), total biliru-
bin, albumin, partial thromboplastin time (PTT), prothrom-
bin time (PT), and international normalized ratio (INR). 
Partial pressure of oxygen (PaO2) was included to reflect 
hypoxia. Other basic laboratory values were also used, 
including routine blood indexes such as haemoglobin, white 
blood cell count, and platelet count; electrolyte indexes such 
as potassium, sodium, magnesium, calcium, ionized cal-
cium, and chloride; and acid base balance indexes including 
pH, carbon dioxide (CO2), PaCO2, base excess, bicarbo-
nate, and lactate.

Variable heart rhythms were divided into 25 sub-types, 
including atrial fibrillation, atrial flutter, A paced, V 
paced, AV paced, left bundle branch block, right bundle 
branch block, sinus arrhythmia, sinus bradycardia, sinus 
rhythm, sinus tachycardia, supra ventricular tachycardia, 
ventricular tachycardia, ventricular fibrillation, multi-
focal atrial tachycardia, paroxysmal atrial tachycardia, 
wandering atrial pacemaker, first degree AV block, sec-
ond degree AV block Wenckebach—Mobitz1, second 
degree AV block—Mobitz 2, complete heart block, junc-
tional rhythm, idioventricular, asystole, and others, which 
were coded as one-hot sub-variables. We divided the 
time-series data of each hospital admission into different 
units, which were set to 24 h following [15] since it was 
the minimum interval of prescription in MIMIC-III. Fol-
lowing [15, 18], variables with multiple data points in one 
unit were averaged (for instance, systolic blood pressure) 
or summed (for instance, urine output).

The quality of the data was improved in the preprocess-
ing step. Variables with different measurement units were 
unified. For example, pound weights were converted to 
kilograms, and temperatures in Fahrenheit were con-
verted to temperatures in Celsius. Variables extracted 
from different tables, such as labevents and chartevents in 
MIMIC-III, were combined, and duplicates were dropped 
according to the keys of hospital admission ID and chart 
time. Several composite variables were calculated by their 
composing sub-variables. For instance, some of the GCS 
values were summed by their sub-variables: GCS eye, 
GCS verbal, and GCS motor; and the shock index was 
calculated by heart rate dividing systolic blood pressure. 
Because pulse was not available in MIMIC-III, it was 
replaced by heart rate according to [18]. We detected the 
outliers with a frequency histogram and normal prob-
ability graph and removed them to cap all the variables 
to clinically plausible values. Variables not normally dis-
tributed were transformed to their logarithms as appro-
priate, all the variables were normalized, and the missing 
variables were imputed by k-nearest neighbours (KNN).

AI models
Model preliminaries
In this paper, the dynamic treatment strat-
egy was modelled as a partially observed Markov 
decision process with finite time steps. Let 
D =

{(
Si,t ,Ai,t , Si,t+1, ri,t

)
: t = 1, . . . ,Ti

}n
i=1

 denote 
the observed dataset, where n is the number of patient 
admission trajectories. For each patient admis-
sion trajectoryi , Ti is the total hospitalization days; (
Si,t ,Ai,t , Si,t+1, ri,t

)
 shows the transitions from the 

t th day to the (t + 1) th day, where Si,t is the current 
observed state; Ai,t=(a1i,t,a

2
i,t , …,aki,t , . . . , a

K
i,t ) is the 

actual medications prescribed by clinicians, where 
K = 500 and aki,t ∈ {0, 1} represents whether or not to 
take drugk ; Si,t+1 is the state on the next day after tak-
ing actionAi,t , Si,Ti+1 = 0 denotes the termination of 
the trajectory, and ri,t is the reward gained. Given the 
current observed stateSi,t , our goal was to learn a pol-
icy µ(Si,t |θµ) to select an action (drug combinations) 
Âi,t by maximizing the expected return and minimiz-
ing the difference from clinicians’ decisionAi,t , where θ 
refers to the parameters within the respective network. 
A critic network Q(S,A|θQ) was built to estimate the 
expected return, which was the accumulated discount 
reward from this state to the end of the trajectory [65].

SRL‑LSTM
We applied an AI SRL-LSTM framework [15] to mini-
mize the following objective loss function:
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where LRL(θµ) is the loss for RL, which aims at mini-
mizing the negative expected return to maximize the 
positive expected return; LSL(θµ) is the loss for SL, 
which aims at minimizing the difference between the 
recommended action and the real action made by the 
clinicians; and ε is a weight parameter to trade off the 
objective between them.

We used a deep deterministic policy gradient (DDPG) 
for the RL part and cross entropy as the supervisor. In 
DDPG [66], there are two agents, actor µ(S|θµ) and critic 
Q(S,A|θQ) , each of which has a target network µ′

(S|θµ
′

) 
and Q′

(S,A|θQ
′

) with the same structure but different 
parameter update frequencies to ensure the robustness 
of the model. LSTM with a time window of 5  days was 
adopted to track the historical observed states within the 
actor and critic networks. Their network architectures 
are shown in Additional file 3: Figure S2, and the param-
eters were updated by the Adam optimizer.

For a random minibatch of N  transitions (
Si,t ,Ai,t , Si,t+1, ri,t

)
 from D , the critic Q

(
S,A|θQ

)
 can be 

updated by minimizing the mean square error (MSE) 
loss:

where yi = ri,t + γQ
′
(Si,t+1,µ

′
(Si,t+1|θ

µ
′

)|θQ
′

) , and γ 
is the discount ratio of reward. The RL loss of the actor 
µ(S|θµ) is defined as:

The SL loss of the actor is defined as:

Then, the target networks are updated by:

where τ is a weight to control the updating ranges of the 
parameters.

(1)L
(
θµ

)
= ε ∗ LRL

(
θµ

)
+ (1− ε) ∗ LSL

(
θµ

)
,

(2)LQ

(
θQ

)
=

1

N

∑N

i=1
(yi − Q

(
Si,t ,Ai,t |θ

Q
)
)
2
,

(3)Âi,t = µ
(
Si,t |θ

µ
)
=

(
â1i,t , â

2
i,t , . . . , â

K
i,t

)
,K = 500

(4)
LRL

(
θµ

)
=− E

[
Q
(
S, Â|θQ

)]
≈

−
1

N

∑N

i=1

(
Q
(
Si,t , Âi,t |θ

Q
))

,

(5)LSL
(
θµ

)
= −

1

N

∑N

i=1

∑K

k=1
aki,t log

(
âki,t

)
,

(6)θQ
′

= τθQ + (1− τ )θQ
′

,

(7)θµ
′

= τθµ + (1− τ )θµ
′

,

Models for comparison
We compared the SRL-LSTM model with the following 
state-of-the-art models that were suitable for learning 
daily medication recommendation strategies:

Dual-LSTM: Dual-LSTM [50] took the treatment 
recommendation as a classification problem, which 
encodes disease information and time-series variables 
using LSTM respectively and then concatenates the 
two encoding vectors for the final classification layer.
AMANet: AMANet is a classification model for 
dual-view sequential learning based on atten-
tion and memory mechanisms [50]. The original 
AMANet predicted medications for each patient 
visit based on ordered diagnoses and medical pro-
cedures by treating the diagnoses and procedures 
in the current visit as two sequential views. Our 
purpose was to predict the daily medications based 
on diagnoses and daily time-series variables, so we 
replaced the token embedding of procedures in the 
original AMANet with an LSTM layer for the time-
series variables.
Direct policy optimization (DPO) with LSTM: DPO 
is a RL method to directly learn a policy without 
learning an extra model of treatment effectiveness 
[53]. We used the same architecture of the actor 
network and reward r as defined in the SRL-LSTM 
model and learned a single model that directly pre-
dicts which treatment is optimal by optimizing a 
surrogate loss:

	 where Vi,t = γ Ti−t ri,Ti , 
V = 1∑N

i=1Ti

∑N
i=1

∑Ti
t=1Vi,t , and 

S(V ) =

√∑N
i=1

∑Ti
t=1(Vi,t−V )

2

∑N
i=1Ti−1

.

SRL-Multimorbidity: SRL-Multimorbidity [15] was 
developed for dynamic medication recommenda-
tions for multimorbidity with a combination of SL 
and RL. Its time-series features only include diastolic 
blood pressure, fraction of inspiration O2, Glasgow 
coma scale score, blood glucose values, systolic blood 
pressure, heart rate, pH, respiratory rate, blood oxy-
gen saturation, body temperature, and urine output.

Experiment setup
We randomly split the CHD dataset into a develop-
ment set (80%) and a test set (20%) and applied 5-fold 
cross validation to the development set to investigate the 

LDPO = −
1

Ti

∑Ti

t=1

∑K

k=1
aki,t log

(
âki,t

)
∗

(
Vi,t − V

)

S(V )
,



Page 7 of 16Guo et al. BMC Medical Informatics and Decision Making           (2022) 22:39 	

balance of SL and RL. We trained the comparison mod-
els on the development set and compared them with the 
SRL-LSTM model on the test set. We trained the mod-
els through the TensorFlow (version 2.1.0) framework in 
Python (version 3.7.3) on a GPU- supported machine. 
The training process of the SRL-LSTM model is shown 
in Additional file  3: Figure S2 and described in the text 
in Additional file 1, and the hyperparameters are summa-
rized in Additional file 1: Table S2.

Evaluation
We adopted the estimated in-hospital mortality rates on both 
state-wise and trajectory-wise (or admission-wise) to meas-
ure whether the AI strategy model could reduce patient mor-
tality. The estimated mortality rate is a universal metric for 
computational testing of treatment recommendation models 
when only retrospective data are available [15, 18–20]. The 
state-wise estimated in-hospital mortality rate was computed 
as follows. Step 1: We obtained the recommended actions for 
each patient state by the actor evaluation network and the 
expected returns of both the clinicians’ actual actions and the 
AI model recommended actions by the critic evaluation net-
work. Step 2: We assigned the in-hospital mortality flag for all 
the expected returns of actual actions. Step 3: We discretized 
all the expected returns of actual actions into different units 
according to their distribution with 5% in each unit. Step 4: 
We calculated the average estimated mortality rate for each 
unit by the bootstrapping with 2000 re-samplings. Step 5: We 
discretized all the expected returns of recommended actions 
into each unit, and calculated the expected mortality number 
in each unit according to the number of states and the average 
mortality rate. Step 6: We calculated the state-wise expected 
in-hospital mortality rate by using the total expected mortal-
ity number to divide the total states.

The state-wise estimated in-hospital mortality rate 
took each patient state to represent a patient admission 
to make full use of the data; however, it was not the 
direct estimated in-hospital mortality rate. Therefore, 
we also calculated the trajectory-wise (admission-wise) 
estimated in-hospital mortality rate according to the 
above steps, with the expected returns of each state-
action pair replaced by that of the initial state-action 
pair in each trajectory.

We used the mean Jaccard coefficient to measure the 
degree of consistency between prescription actions 
taken by the clinicians and those recommended by the 
AI model since the task belongs to multilabel classifica-
tion [14–17]. The mean Jaccard is defined as follows:

(8)J =
1

M

∑M

i=1

1

Ti

∑Ti

t=1

∣∣∣Ai,t ∩ Âi,t

∣∣∣
∣∣∣Ai,t ∪ Âi,t

∣∣∣
,

where M is the number of patient admissions in the 
valid/test set. J ∈ [0, 1] , where J = 1 indicates that the 
daily treatment actions recommended by the AI policy 
are exactly the same as those proposed by the clinicians; 
in contrast,  J = 0 indicates that none of the drugs rec-
ommended by the AI policy are the same as the drugs 
proposed by the clinicians for each day.

We analysed how the observed in-hospital mortal-
ity rate varies with the difference in treatment actions 
between the AI policy and the clinician policy. The 
treatment difference for the ith patient on the tth hos-
pitalization day was defined as:

Furthermore, a case study was conducted to see the 
similarities and differences between the AI-recommend 
treatment actions and the clinicians’ actual treatment 
decisions on both the surviving and expired patients.

Interpretability analysis
We used a random forest model to estimate the impor-
tance of the features in decision making for the AI 
model and the clinicians [18] to gain some insight into 
the model representations and interpretability. The ran-
dom forest model was fitted by all the test data over 
all the treatment periods. The independent variables 
of the model are patients’ feature (except diagnosis). 
The dependent variable is the real prescription action 
taken by the clinicians when calculating feature impor-
tance for the clinician policy, and the recommended 
action generated by the AI model of SRL-LSTM when 
calculating feature importance for the AI policy. We 
calculated the importance of the heart rhythm by accu-
mulating the importance of its 25 sub-types.

Results
Distribution of the feature variables
Following the cohort selection and exclusion criteria, we 
included 13,762 admitted patients diagnosed with CHD. 
A detailed description of the cohort is provided in Addi-
tional file  1: Table  S3. Table  1 shows the distribution of 
model features before normalization and imputation by 
KNN. In all, 65.6% of the CHD patients were male. CHD 
is a disease of old age, and 79.8% of the patients were over 
60-years of age. A total of 29.1% suffered severe coma, 
and 38.0% suffered moderate coma during the hospital 
stay. The troponin T, CK and CK-MB isoenzyme levels 
were higher than the normal values because the patients’ 
myocardia were infarcted by the ischaemia hypoxia. The 
average values of blood glucose were higher than those 

(9)Bi,t =
∑K

k=1

∣∣∣∣a
k
i,t − âki,t

∣∣∣∣,
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in the common population, since four out of five patients 
had endocrine, nutritional, metabolic, and immune dis-
eases. More than half of the CHD patients suffered kid-
ney damage according to the creatinine and blood urea 
nitrogen values.

Performance of the AI model
Figure  3 presents the performance of the models with 
different weights to balance RL and SL in 5-fold cross 
validation. The SL-LSTM model ( ε = 0.0, 100%SL ) 
achieved the highest Jaccard value, indicating that 
it had the best ability to learn the experience of the 
clinicians; however, it did not show any ability to 
improve the outcome of the CHD patients on either 

the state-wise or trajectory-wise estimated in-hospital 
mortality rate. The RL-LSTM model ( ε = 1.0, 100%RL ) 
seemed to have the ability to substantially reduce the 
state-wise estimated in-hospital mortality rate; how-
ever, it had the lowest Jaccard value, indicating that 
its recommendation was quite different from the cli-
nicians’ decision. The SRL-LSTM model with weight 
parameter ε = 0.4 exhibited a relatively high perfor-
mance in reducing both the trajectory-wise and state-
wise estimated in-hospital mortality rates, while its 
Jaccard value was not greatly harmed by RL, and all 
three evaluation indicators had relatively small varia-
tion. Therefore, the AI model with 40% RL and 60% SL 
was preferable.

Table 1  Distribution of the feature variables of the CHD cohort

Items Distribution Items Distribution

Diagnoses 3719, embedded with 40 hidden nodes Lab values (33, Mean, SD)
Blood glucose 132.95 (46.76)

Creatinine 1.60 (1.51)

Demographics (3) Blood urea nitrogen 31.08 (22.16)

Male gender (N, %) 9,024 (65.6%) Potassium 4.16 (0.52)

Age, years (Mean, SD) 69.87 (11.80) Sodium 138.35 (4.21)

Weight (Mean, SD) 83.83 (20.91) Magnesium 2.09 (0.32)

Electrocardiogram monitoring results (2) Calcium 8.54 (2.32)

Heart rhythm 25 sub-types, binary coded Ionized calcium 1.14 (0.14)

Chloride 103.25 (5.56)

Heart rate (Mean, SD) 83.76 (14.31) Carbon dioxide 26.37 (5.27)

Haemodynamic monitoring (10, Mean, SD) Troponin T 1.08 (2.37)

Systolic blood pressure 118.16 (17.30) Creatine kinase (CK) 448.85 (969.29)

Diastolic blood pressure 57.85 (10.22) CK-MB isoenzyme 27.09 (57.04)

Mean blood pressure 76.13 (10.98) Lactate dehydrogenase 408.74 (428.56)

Systolic PAP 38.37 (11.05) Alkaline phosphatase 138.89 (151.13)

Diastolic PAP 19.34 (5.68) SGOT 137.12 (512.22)

Mean PAP 29.45 (19.57) SGPT 118.87 (402.44)

Central venous pressure 14.39 (18.73) SGOT/SGPT ratio 1.15

Shock index 0.73 (0.18) Total bilirubin 1.87 (3.90)

Cardiac index 2.77 (0.62) Albumin 3.09 (0.81)

SVRI 1462.95 (380.42) Haemoglobin 10.42 (1.68)

Other vital signs (4, Mean, SD) White blood cells count 10.94 (6.20)

Temperature 36.83 (0.64) Platelet count 236.24 (122.62)

Respiratory rate 19.72 (4.26) PTT 42.73 (21.94)

SpO2 96.51 (3.03) PT 16.47 (6.69)

GCS 12.22 (3.44) INR 1.56 (0.88)

Output events (1, mean, SD) pH 7.39 (0.08)

Daily urine output 1672.33 (1215.37) PaO2 131.71 (70.42)

Ventilation parameters (2) PaCO2 41.60 (8.68)

FiO2 (Mean, SD) 24.84 (11.72) Base excess 0.51 (4.47)

Mechanical ventilation Binary, if the value = 1 in the source tables or the 
FiO2 > 21, then it was set to be 1;otherwise, it was set 
to be 0

Bicarbonate 25.98 (4.47)

Lactate 2.06 (1.73)

PaO2/FiO2 ratio 498.87 (311.30)



Page 9 of 16Guo et al. BMC Medical Informatics and Decision Making           (2022) 22:39 	

The proposed SRL-LSTM model 
( ε = 0.4, 40%RL, 60%SL ) was then tested against several 
recent methods, and was found to outperform them all 
(Table 2). The test dataset contained 2,752 patient admis-
sions (trajectories) with 28,417 hospitalization days (states). 
A total of 9.56% of the patients died in the hospital under 
the clinicians’ actual treatment policy, and the state-wise 
mortality rate was 9.59%. The preferred AI model of SRL-
LSTM could help reduce the trajectory-wise and state-wise 
estimated in-hospital mortality rate by 3.13% and 0.81% 
respectively, while keeping the Jaccard similarity (0.3110) 
close to the SL-LSTM model (0.3432), and its average rec-
ommended drug amount (27) was close to that of the cli-
nicians. Considering that diagnoses codes might not be 

available at bedside, we conducted an ablation experiment 
by removing the disease information out from the SRL-
LSTM model, and the result showed that it would slightly 
harm the performance by increasing the trajectory-wise 
estimated mortality rate by 0.98% and decreasing the Jac-
card similarity score by 8.77%.

Figure  4 further indicates the effectiveness and sta-
bility of the AI model. Figure  4A shows the expected 
return and Jaccard value obtained in each learning 
epoch, demonstrating that the AI model can maximize 
both the expected return and the similarity to the clini-
cian policy and achieved stability after approximately 
200,000 epochs. Figure 4B shows that the observed mor-
tality rates varied with the difference in treatment actions 
between the AI policy and the clinician policy. The small-
est treatment action difference was associated with the 
best survival rates. When the difference was not greater 
than 6, the in-hospital mortality rate was zero; the greater 
the discrepancy was in the clinicians prescribed drugs 
and those recommended by the AI model, the worse the 
outcome. Figure  4C, D shows the correlation between 
the expected returns of the clinicians’ treatment actions 
and the trajectory-wise and state-wise in-hospital mor-
tality rates. We observed that treatment actions with low 
returns were associated with a high risk of mortalities, 
whereas treatments with high returns achieved better 
survival rates. This demonstrated that the estimated mor-
tality calculating method could effectively reflect that in-
hospital mortalities have clear negative correlation with 
the expected returns. Thus, the estimated mortalities 
generated according to the relationship between the dis-
tribution of the expected returns and the mortality rates 
were relatively reliable.

Feature importance reflects the interpretability
Figure  5 shows the feature (except diagnosis) impor-
tance gained from the random forest model for the 
clinician policy and the AI policy generated by SRL-
LSTM method respectively. These results confirmed 
that the treatment decisions made by both the clini-
cian policy and the AI policy were clinically inter-
pretable and relied primarily on sensible clinical and 
biological parameters. Among the ten most impor-
tant features, both the clinician policy and the AI 
policy emphasized heart rhythm, WBC, urine output, 
platelet count, GCS score, and age; the clinician pol-
icy paid more attention to weight, creatinine, blood 
urea nitrogen, and ionized calcium; the AI policy was 
more concerned with haemoglobin, albumin, PTT, 
and lactate dehydrogenase.

Fig. 3  Performance of models with different weights to balance 
reinforcement learning and supervised learning in 5-fold cross 
validation. The dark lines in the middle indicate the mean values, and 
the shaded areas indicate 1 standard deviation above and below the 
mean values

Table 2  Performance comparison on the test dataset

The bold indicates the prefered AI model to learn dynamic treatment strategies 
for CHD patients

Method Estimated mortality Jaccard

Trajectory-wise State-wise

Clinician’s policy 0.0956 0.0959 –

Dual-LSTM 0.0887 0.0935 0.3171

AMANet 0.0827 0.0895 0.3250

DPO-LSTM 0.0919 0.0930 0.2069

SRL-Multimorbidity 0.0948 0.0953 0.2610

SL-LSTM ( ε = 0) 0.0956 0.0967 0.3432

RL-LSTM ( ε = 1.0) 0.0752 0.0721 0.0342

SRL-LSTM (ε = 0.4) 0.0643 0.0878 0.3110
SRL-LSTM(ε = 0.4 , w/o 
diagnosis codes)

0.0741 0.086 0.2233
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Comparison of the clinician and AI policies in case studies
Figures  6 and 7 show the dynamic treatment strate-
gies generated by clinicians and AI for two patients 
on different hospital days. For patient 1 in Fig. 6, who 
survived to discharge after 5  days in the hospital, the 
similarity between the daily prescription of the clini-
cian and AI policies was high, indicating that AI was 
able to learn the best practices of the clinicians. For 
patient 2 in Fig. 7, who expired after 14 days in the hos-
pital, the daily prescription of the AI policy was quite 
different from that of the clinicians, and its rationality 
needs to be further examined by experts.

Discussion
Comparison with recent methods
The AI model of SRL-LSTM outperformed the recent 
methods in learning dynamic treatment strategies for 
CHD patients (Table 2). It could not only improve patient 
outcome, but also mimic the best practices of clini-
cians. The Dual-LSTM, AMANet and SL-LSTM were 
SL models with relatively high Jaccard values, indicating 
that they were capable of learning the experiences of the 
clinicians but had little ability to reduce the in-hospital 
mortality rate. The RL-LSTM model was supposed to be 
the most effective model for reducing the estimated in-
hospital mortality rate. However, the Jaccard value was 

only 0.0342, one-tenth of the SL-LSTM model, and the 
average number of drugs recommended per patient per 
day was 230, ten times the average amount (23) clinicians 
prescribed. It was obviously not reasonable. DPO-LSTM 
was inferior to the SRL-LSTM model in both reducing 
the in-hospital mortality rate and mimicking the behav-
iours of the clinicians. SRL-Multimorbidity was inferior 
to the SRL-LSTM model for the CHD patients in both 
improving patient outcomes and mimicking the behav-
iours of the clinicians, indicating that the AI model devel-
oped for multimorbidity should not be directly used for a 
specific disease, such as CHD. It is essential to modify the 
models according to the characteristics and risk factors 
for the specific disease.

Comparison with similar studies
The results of this study complied with the theoretical 
analysis and experimental results in similar studies in the 
literature. Many studies [12–16] have demonstrated that 
SL approaches are adept at learning the behaviours of 
doctors. RL approaches generate treatment recommen-
dations by maximizing the expected return according 
to the reward mechanism, so they have the potential to 
recommend better treatment than those of the clinicians 
to improve patient outcomes [51]. For example, Weng 
[20] adopted an RL paradigm using policy iteration to 

Fig. 4  Model effectiveness and stability
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learn the optimal glycaemic control policy for septic 
patients and found that the best optimal policy could 
potentially reduce the estimated mortality rate by 

6.3%; Komorowski et  al. [18] developed an AI clinician 
by using an RL approach of policy iteration to learn 
the optimal dynamic dosing of intravenous fluids and 

Fig. 5  Feature importance in the clinician policy and the AI policy
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vasopressors for sepsis treatment. They found that the 
AI clinician recommended lower doses of intravenous 
fluids and higher doses of vasopressors than the clini-
cians’ actual treatments, the smallest dose difference was 
associated with the best survival rates, and the further 
away the dose received was from the suggested dose, the 
worse the outcome. Additionally, the SL approaches did 
not take the outcome of the patients into consideration 
when mimicking the practice of the clinicians; the RL 
approach, on the contrary, may recommend treatments 
that are obviously different from clinicians’ prescription 
due to the lack of supervision, which may be of high risk 
in the clinical practice [58]. These two approaches can 
complement each other. For example, Wang et  al. [15] 
proposed a SRL framework for dynamic medication rec-
ommendations for multimorbidity, and the experiment 
on MIMIC-III illustrated that the SRL-multimorbidity 
model could reduce the estimated mortality, while pro-
viding promising accuracy in matching doctors’ pre-
scriptions, which provided a prospect for combing SL 
and RL approaches.

Limitations and future directions
This study was a preliminary exploration of learning 
dynamic treatment strategies for CHD patients, and 
more work is needed to make it practical. It is worth-
while to explore how to combine the structured data 
and the unstructured information (including the narra-
tive diagnosis and other free-text records at bedside) to 
learn more practical dynamic treatment strategies. In 
addition, the AI model built in a pure data-driven way 
might be improved by leveraging domain knowledge of 
medicine and clinical guidelines to avoid major adverse 
drug-drug interactions. Moreover, this study focused 
only on whether to take specific drugs on each hospi-
talization day, and future studies need to further inves-
tigate the impact of drug doses. Further investigation is 
required to validate the effectiveness of the AI model 
in various CHD cohort and obtain careful evaluations 
from experts in medical domain.

This study aimed to learn optimal dynamic treat-
ment strategies by using real-world data, thus was based 
on the following assumptions [32]: a. the consistency 

Fig. 6  Case study of dynamic treatment strategies for a surviving patient
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assumption that the state and results observed in each 
stage for each patient are such that potentially would be 
seen after the patient actually receives the correspond-
ing treatment; b. the stable unit treatment value assump-
tion that the potential outcome for each patient is not 
affected by treatments applied to other patients; c. the no 
unmeasured confounders, also referred to as the sequen-
tial randomization assumption. These assumptions were 
defaulted in this study, and further clinical trials or other 
prospective studies are needed to make the AI model 
practical.

Besides, despite AI technologies have the promise to 
support clinicians making more efficient and high qual-
ity treatment decisions, there are formidable obstacles 
and pitfalls, including risks for bias and overfitting, lim-
ited generalizability, risks of privacy and data security, 
and cause or exacerbate inequities [67–70]. Many ini-
tially promising technologies have failed in broader test-
ing and applications. For example, Watson for Oncology 
that used by hundreds of hospitals worldwide for recom-
mending treatments for cancer patients, provided many 
erroneous treatment recommendations, such as suggest-
ing using bevacizumab in a patient with severe bleed-
ing, which is an explicit contraindication [67, 71]. The 
Automated Retinal Disease Assessment (ARDA) tool was 

developed by Google to detect a condition that causes 
blindness in diabetic patients. Though ARDA was effec-
tive working with sample data, it struggled with images 
taken in field clinics during the test in a hospital in India 
[72]. The potential for an AI algorithm inducing iatro-
genic risk is vast if it was widely applied. Therefore, when 
the AI algorithm is to be unleashed in clinical practice, 
systematic debugging, audit, extensive simulation and 
validation on various patient groups, along with prospec-
tive scrutiny and participation of different stakeholders, 
are required to ensure its efficiency and generalization 
[67–70]. Regulatory, governance and ethical guidelines 
are also necessary to ensure the information security, 
ethics and equity [67–70].

Conclusion
We proposed a pipeline for constructing an AI model 
to learn dynamic treatment strategies for patients with 
CHD, the leading cause of death and one of the most 
serious epidemic diseases worldwide [1]. The cohort was 
selected following strict inclusion and exclusion criteria, 
and the features were extracted according to monitoring 
indexes and risk factors for CHD patients by referring to 
CHD-related guidelines [5–7], handbooks [4], reports 
[3], and papers [1, 2]. The AI model combining SL and 

Fig. 7  Case study of dynamic treatment strategies for an expired patient
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RL resulted in better performance than using either SL or 
RL alone. The combined approach can help improve the 
outcomes of CHD patients and learn the best practices 
of clinicians and is clinically interpretable by relying on 
sensible clinical features. And a lot of further studies and 
efforts are needed to make it practical.
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