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Abstract 

Introduction:  For clinical decision-making, an estimate of remaining lifetime is needed to assess benefit against 
harm of a treatment during the remaining lifespan. Here, we describe how to predict life expectancy based on 
age, Charlson Comorbidity Index (CCI) and a Drug Comorbidity Index (DCI), whilst also considering potential future 
changes in CCI and DCI using population-based data on Swedish men.

Methods:  Simulations based on annual updates of vital status, CCI and DCI were used to estimate life expectancy at 
population level. The probabilities of these transitions were determined from generalised linear models using prostate 
cancer-free comparison men in PCBaSe Sweden. A simulation was performed for each combination of age, CCI, and 
DCI. Survival curves were created and compared to observed survival. Life expectancy was then calculated as the area 
under the simulated survival curve.

Results:  There was good agreement between observed and simulated survival curves for most ages and comorbidi-
ties, except for younger men. With increasing age and comorbidity, there was a decrease in life expectancy. Cross-
validation based on six regions in Sweden also showed that simulated and observed survival was similar.

Conclusion:  Our proposed method provides an alternative statistical approach to estimate life expectancy at 
population level based on age and comorbidity assessed by routinely collected information on diagnoses and filled 
prescriptions available in nationwide health care registers.
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Introduction
For clinical decision-making, an estimate of remaining 
lifetime is needed to weigh the benefit of a specific treat-
ment against its the potential harm during the remain-
ing lifespan. However, most life tables models available 
today do not take comorbidity into account [1], despite 
the fact that comorbidity strongly affects life expectancy 

[2, 3]. More recently, some new approaches have been 
presented to calculate comorbidity-adjusted life expec-
tancy [2, 4, 5]. Nevertheless, this methodology is usually 
based on the use of flexible parametric or semi-paramet-
ric models or a static baseline assessment of comorbid-
ity levels [4, 6], and may overestimate life expectancy as 
these models can only be applied to periods for which 
data is available, without taking into account comorbidity 
changes during follow-up [1].

Here, we present an alternative statistical model devel-
oped in a male cohort using age and measurements of 
comorbidity based on hospital discharge diagnoses as 
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well as filled drug prescriptions collected at a population-
based level to estimate life expectancy. We propose to use 
life tables for each level of age and comorbidity and allow 
this to change during follow-up by use of a state transi-
tion model [7].

Methods
To assess the risk of death and changes in comorbidity, 
we used the comparison cohort of Prostate Cancer data 
Base Sweden (PCBaSe) 4.0, a cohort of men without 
prostate cancer who were matched with men with pros-
tate cancer based on birth year and county of residence 
[8]. We included without prostate cancer as to account 
for health-seeking behaviour (i.e. many men get diag-
nosed with localised PCa due to opportunistic screening 
and are therefore often healthier than the general popu-
lation [9]). All men aged 65–90 years at entrance to the 
cohort between 1 Jan 2007 to 31 December 2013 were 
included (N = 230,223). Follow-up ended at date of death, 
date of emigration, or 21 December 2017, whichever 
occurred first.

Charlson Comorbidity Index (CC) [10] was calculated 
based on data on discharge diagnoses in the National 
Patient Registry [11]. Similarly, a Drug Comorbid-
ity Index (DCI) [3, 12] was calculated based on data on 
filled prescriptions in the Prescribed Drug Registry [11]. 
Both the CCI and DCI were calculated at date of entry 
to the cohort and in each consecutive year until end of 
follow-up. For CCI, we used a cumulative CCI includ-
ing all events dating back to 10 years prior to entry to the 
cohort. For the DCI, we used prescriptions filled in the 
previous year.

Our method thus predicts life expectancy at a popu-
lation-level based on current age, CCI and DCI, whilst 
taking into account future changes in comorbidity as a 
dynamic process, using population-based data on Swed-
ish men as a first application.

Simulation algorithm to estimate life expectancy
Life expectancy was calculated based on the output from 
a state transition model microsimulation. The algorithm 
applied to each man in the microsimulation involved the 
following steps:

1.	 Has the man already died according to the simula-
tion? If yes, exit the update process. If no, continue to 
step 2.

2.	 Will the man die in the next year according to the 
simulation? If yes, record the death and exit the 
update process. If no, continue to step 3.

3.	 Will a change in CCI occur during the next year 
according to the simulation? If no, record the old CCI 
and go to step 5. If yes, continue to step 4.

4.	 Determine the size of CCI change according to Lind-
hagen et al. [13] and record the new CCI.

5.	 Will a change in DCI occur during the next year 
according to the simulation? If no, record the old 
DCI and exit the update process. If yes, continue to 
step 6.

6.	 Will the DCI increase according to the prediction? 
If yes, determine the size of increase and record the 
new DCI and exit the update process. Otherwise go 
to step 7.

7.	 Determine the size of decrease and record the new 
DCI.

8.	 Increase age by one and go to step 1 and repeat until 
all men are dead or of age = 105.

Note that the algorithm will give the same output if steps 
5–7 are performed prior to steps 3–4.

The algorithm was implemented in R [14] and the sim-
ulation code is presented in the “Appendix”.

Estimation of model parameters in the state transition 
model
The comparison cohort of PCBaSe 4.0 was used to esti-
mate model parameters. The follow-up of the men in our 
cohort was transformed into long format, i.e. one row 
of data with updated age, CCI and DCI for each year of 
follow-up (Table  1 in “Appendix”). Probabilities of state 
transitions in 1 year were determined from generalised 
linear models as described below—the parameters from 
these models were then used for the micro-simulation 
(see below). Logistic regression was used for modelling 
dichotomised events such as death (yes/no), any change 
in CCI (yes/no), and any change in DCI (yes/no,) whereas 
size of changes was modelled through Poisson- and 
Gamma regression (Table 2 in “Appendix”).

Modelling of the probability of death
For the probability of death, we used a standard life table 
modelling approach [15]. First, we noted that CCI and 
DCI were associated with death in a non-linear manner 
since an increase from zero to one unit affected the risk of 
death more strongly than a one-unit change in higher lev-
els CCI and DCI. Therefore, we used a function that was 
constant for all x-values above a specific value (cut point) 
and joined to a half parabola to the left of the cut point, 
i.e., a second-degree polynomial with its maximum/mini-
mum in the cut point (Table 2). We further described this 
quadratic-constant spline (QCS) as follows. For CCI, we 
used the cut-point seven in the QCS, whereas for DCI we 
used 14 as the cut-point. Moreover, the effect of CCI and 
DCI on death was decreasing with age and therefore we 
modelled the interaction between age and CCI/DCI as 
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using a QCS with cut-point 100 years. Details regarding 
the model are presented in Table 2.

Modelling of CCI
Changes in CCI were modelled as previously described 
[13]. This method used a two-step procedure: (1) assess-
ment of whether a change in CCI occurred; (2) determi-
nation of the size of change if this indeed occurred. The 
last step was implemented using two Poisson regression 
models. In these models we categorised both CCI and 
DCI. Details of the models and categorisation are shown 
in Tables 1 and 2.

Modelling of DCI
To model changes in DCI, we modified the method 
presented by Lindhagen et  al. [13]. We used a four-
step procedure: (1) assessment of whether a change in 
DCI occurred and if so whether this was an increase or 
decrease; (2) determination of the size of change if this 
indeed occurred (either decrease or increase). The size 
of DCI change was determined using a generalised linear 
Gamma model with a log link. Details of the models and 
categorisation are shown in Tables 1 and 2.

Microsimulation
The above steps yielded a set of parameter estimates 
which were used to simulate death, CCI and DCI in a 
microsimulation [9], i.e., a simulation of changes in vital 
status, CCI, and DCI for individual study subjects. In this 
simulation, outcomes according to the simulation algo-
rithm above were generated. From the simulation, the 
proportion of deaths in each time step was calculated 
and used to create a survival curve. For each combina-
tion of age (65, 66, …, 90), CCI (0, 1, 2, …, 10), and DCI 
(− 0.75, − 0.5, …, 13.5), we ran the microsimulation using 
10,000 identical men. The life expectancy was calculated 
as the area under the survival curve emanating from the 
simulation. No man was considered alive beyond the age 
of 105.

Validation
A validation where observed and simulated data is com-
pared was impossible in this setting as the expected 
remaining lifetime corresponds to the area under sur-
vival curve that drops to zero. For some combinations 
of age, CCC and DCI this would require a follow-up of 
more than 40 years. Our data allows for maximal possible 
follow-up of 11 years. Therefore, the validation relies on 
a set of comparisons which indirectly served as a valida-
tion. First, we compared simulated and observed survival 
for men based on age, CCI and DCI based on 11  years 
of follow up. Next, we compared the observed change in 
mean CCI and DCI over time following cohort entry and 

the corresponding change in simulated mean CCI To fur-
ther validate our simulation model we created calibration 
plots for the death model (Fig. 9) and for the models used 
to capture DCI changes (Fig.  10). Finally, we assessed 
the validity of our method in a cross-validation by split-
ting our comparison cohort of PCBaSe 4.0 based on the 
six health care regions in Sweden. For each health care 
region, data from men in the other five regions were used 
to estimate transition probabilities.

Results
In our dataset, CCI increased with age. Around 80% of 
men aged 65 at entry to the cohort had CCI = 0, whilst 
among men aged 90 the prevalence of CCI = 0 was 45% 
(Fig. 1). Similarly, DCI also increased with age. For men 
aged 65 at entry to the cohort, the prevalence of DCI > 0 
was 70% and the corresponding number in men aged 
90 was 85%. Similar increases in CCI and DCI were 
observed during increasingly long follow-up (Fig. 1).

For each age, there was a decrease in life expectancy 
for a fixed CCI, when increasing the DCI and for a fixed 
DCI, when increasing the CCI (Fig.  2). When splitting 
the estimated lifetime expectancy into 1-year categories 
and comparing simulated survival curves and observed 
curves, the predicted survival in the simulated curves 
was somewhat greater than in observed curves during 
the first 5 years, but at 10 years the observed and simu-
lated curves where almost similar (Fig. 3). The years lost, 
i.e., the area above the survival curve, during the first 
10 years of follow up was similar between observed and 
simulated survival curves and differed at most 3 months 
for the group with expected remaining lifetime 6–7 years 
(Table 3).

As part of our validation, we compared simulated and 
observed survival for men based on age, CCI and DCI 
(Fig.  4). No obvious systematic differences were found. 
Upon comparing the observed change in mean CCI and 
DCI over time following cohort entry and the corre-
sponding change in simulated mean CCI (Figs.  6 and 7 
in “Appendix”), results were found to be similar for most 
CCI strata, but for DCI = 3 and 4 we noted a difference 
between observed and simulated from year 2 onwards.

The probability of death within the next year, cor-
responding to the applied life tables was found to be 
increasing with age, CCI and DCI (Figs.  5, 11). The 
effect of increasing DCI for a fixed CCI was increasing 
with age. For higher levels of CCI the relation between 
DCI and age was attenuated. The predicted mortality 
risk based on age, CCI, and DCI corresponded well to 
the observed risk (Fig.  8). The calibration plots for our 
DCI change modelling approach showed good agree-
ment between predicted and observed probability of 
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DCI-change (Fig.  9, panel a). Similar agreement was 
found for the probability of an increase (Fig. 9, panel b). 
The size of DCI-change was somewhat underestimated 
(Fig. 9, panels c and d).

Finally, our cross-validation based on the six health 
care regions in Sweden showed that simulated and 
observed survival was similar for all regions in each 
cross-validation (Fig. 8, Table 4).
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Discussion
Life expectancy at a population level was quantified 
based on age and changes in comorbidity based on the 
Charlson Comorbidity Index and a new Drug Comorbid-
ity Index. The observed and simulated survival curves 
were similar up to 9  years of follow-up for men with 
higher age, CCI and DCI. The models accurately pre-
dicted changes in CCI and DCI.

There are several methods that measure comorbid-
ity [16]. CCI is the most commonly used measurement 
for comorbidity status [17] and was originally based on 
17 medical conditions and their severity with the aim to 
predicted 1-year mortality. CCI has been modified for 
use with administrative data such as ICD 9 and ICD 10 
coding in health care registries and is usually applied to 
discharge diagnoses. Similarly, we have created a pre-
scription-based comorbidity index based on fillings in 
a Prescribed Drug Registry to complement CCI [3, 12]. 
The advantages of our DCI is that it adds predictive abil-
ity beyond what the CCI already provides [3]. Measure-
ments of comorbidity are of limited use for long-term 
predictions since they were created to predict the risk 
of death typically from 1 to 3 years. A preferred alterna-
tive is therefore based on estimated life expectancy, with 
values representing the life expectancy of persons at the 
median in a specific population [18]. However, most life 
tables models do not take comorbidity into account. We 
argue that our alternative statistical model where we used 

age, CCI, and DCI collected at a population-based level 
is useful for estimates of remaining lifetime. By adding 
comorbidities based on prescriptions dispensed, which 
captures the outpatient populations comorbidity [3, 12], 
this increased the accuracy of predicting life expectancy. 
This makes our method particularly useful in older men 
with CCI = 0, since age and CCI alone do not appear to 
be sufficiently predictive of life expectancy. The valida-
tion performed in our study is designed for applications 
on a population-based level. To use the life expectancy 
presented in Fig.  2 as a clinical decision tool for indi-
vidual patients, further validations of our methodology is 
required.

The need for information on life expectancy is perti-
nent for clinical guideline recommendations. For exam-
ple, the European Association of Urology Guidelines 
Office recommends that men diagnosed with intermedi-
ate-risk prostate cancer should be treated with curative 
intent if the life expectancy is > 10 years [19, 20]. This is 
difficult to quantify as age and comorbidity in the context 
of life expectancy form a dynamic process. In addition, 
the quantification of life expectancy is potentially ham-
pering recruitment to randomised clinical trials, as age 
and comorbidities are often a important components of 
eligibility criteria [21].

A limitation of our model is that it was developed for 
men. Whilst the estimates for females will be differ-
ent, it is expected that the same basic methodology will 
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be applicable. Another limitation of the current dataset 
is that prostate cancer was not a comorbidity at base-
line. All men were free of prostate cancer at time of 
cohort entry. Men diagnosed with prostate cancer dur-
ing follow-up were, however, considered in the dynamic 
CCI. Given that this was the case for the entire cohort 
and recongnising the consistent results of our external 
validity (Fig. 8), this does not affect the statistical prop-
erties of the model proposed in terms of estimating life 
expectancy. Furthermore, we only used information on 
current CCI/DCI levels—i.e. information about duration 

of past CCI/DCI levels was not considered. This makes 
the model easier to interpret, but also has some draw-
backs. For example, a DCI of 2.0 that has not changed 
for 2 years prior to date of analysis is not likely to have 
the same impact on survival probability as a DCI of 2.0 
that changed from an earlier level of 10. The latter man 
likely has a much higher risk of dying in the next year 
as frailty may affect drug prescriptions [22]. Moreover, 
it is unlikely for the DCI to decrease in two consecutive 
years—even though our model allows for this. This can 
be observed in Fig. 7 where the simulated curve allowed 
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for consecutive drops in DCI and the observed curve 
rarely showed this. Our choice of modelling the size of 
DCI-changes using the Gamma distribution to underesti-
mated the changes mildly. In men with long survival, the 
effects of repeated underestimations might accumulate 
and cause less accurate survival predictions. This might 
explain why the model was found to work less well for 
young men with very long life expectancy. Risk of death 
for these men was less likely to be associated with exist-
ing comorbidities or drug prescriptions but more likely 
with accidents or violence, hence errors in predicted DCI 
and CCI might accumulate over a long follow-up time.

Whilst our methods were accurate, they can only be 
applied to geographical regions where similar registries 
are available as it is key to capture the dynamic process of 
changes in comorbidities.

Future work to improve our proposed methods will 
involve calibrations based on proportion of deaths from 

injuries not related to CCI or DCI as well as inclusion 
of information about CCI and DCI changes prior to the 
current stage (i.e. allow for non-Markovian properties).

Conclusion
Our proposed method provides a way of estimating life 
expectancy at the population level, whilst considering 
current comorbidity assessed by discharge diagnoses and 
data on filled prescriptions from nationwide population-
based registries. In clinical practise, these estimates of life 
expectancy can be used to inform development of treat-
ment guidelines and to improve inclusion criteria for 
RCTs.

Appendix
See Tables 1, 2, 3, 4 and Figs. 6, 7, 8, 9, 10 and 11.

Table 1  Variables used in the long dataset

Variable Description Values

Dead Vital status True/false (T/F)

Age Age at start of time step 65, 66, …. 105

CCI CCI level at start of time step 0, 1, 2 …

DCI DCI level at start of time step Continuous

QCS(x, y) QCS = x^2 if x < y and y^2 for x ≥ y Continuous

Any.CCI.change CCI change during the time step True/false (T/F)

Any.CCI.change6 CCI change of size 6 during the time step True/false (T/F)

CCI.change CCI change during time step 0, 1, 2 …

CCI.fct CCI factorised 0/1/2/3/4+
CCI.fct.6p CCI factorised 0/1/2+
Any.DCI.change DCI change during the time step True/false (T/F)

DCI.increase DCI increased during the time step True/false (T/F)

DCI.fct DCI factorised < 0/0/0–0.25/0.25–1/1–
2/2–3/3–4/4–5/5–7/7+

DCI.change DCI at end of time step minus DCI at start of time step Continuous

Table 2  Models used for each time step of the proposed algorithm

Step in 
algorithm

Type of generalised linear model Outcome Model as specified in R-code

1 Logistic regression Dead Age + QCS(Age,100)*QCS(CCI,8) + QCS(Age,100)*QCS(DCI,14) + QCS(
Age,100)*QCS(CCI,8)*QCS(DCI,14)

3 Logistic regression Any.CCI.change Age + DCI.fct + CCI.fct

3 Poisson regression CCI.change Age + DCI.fct + CCI.fct

3 Logistic regression Any.CCI.change6 Age + DCI.fct + CCI.fct.6p + CCI

5 Logistic regression Any.DCI.change Age + dci.fct + cci.fct + Age*cci.fct + Age*dci.fct

5 Logistic regression (restricted to men with DCI-change) DCI.increase Age + dci.fct + cci.fct + Age*cci.fct + Age*dci.fct

6 Gamma regression (restricted to men with DCI-increase) DCI.change Age + dci.fct + cci.fct + Age*cci.fct + Age*dci.fct

7 Gamma regression (restricted to men with DCI-decrease) -DCI.change Age + dci.fct + cci.fct + Age*cci.fct + Age*dci.fct
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Table 3  Years lost during ten first years of follow up according to observed and simulated survival, by groups of expected remaining 
lifetime

Expected remaining lifetime Observed Simulated Difference

< 3 years 7.81 7.67 0.13

3–4 years 6.94 6.76 0.18

4–5 years 6.07 5.91 0.16

5–6 years 5.22 5.09 0.14

6–7 years 4.53 4.30 0.24

7–8 years 3.75 3.63 0.12

8–9 years 3.14 3.04 0.10

9–10 years 2.60 2.55 0.05

10–11 years 2.17 2.11 0.06

11–12 years 1.81 1.76 0.05

12–13 years 1.45 1.44 0.00

13–14 years 1.21 1.22 − 0.01

14–15 years 1.02 0.99 0.03

15–16 years 0.85 0.81 0.04

16–17 years 0.70 0.68 0.02

17–18 years 0.61 0.54 0.08

18+ years 0.50 0.44 0.06

Table 4  Years lost during ten first years of follow up by regions in Cross validation. Retrieved from observed and simulated survival, by 
groups of expected remaining lifetime

Expected 
remaining 
lifetime

Stockholm Uppsala–Örebro South east South West North

Obs Sim Diff Obs Sim Diff Obs Sim Diff Obs Sim Diff Obs Sim Diff Obs Sim Diff

< 3 years 7.52 7.78 − 0.26 7.96 7.68 0.28 7.90 7.71 0.18 7.66 7.66 0.00 7.92 7.71 0.20 8.03 7.63 0.40

3–4 years 6.62 6.90 − 0.28 7.16 6.76 0.40 6.95 6.83 0.13 6.89 6.80 0.09 6.86 6.79 0.08 7.35 6.77 0.58

4–5 years 5.76 6.06 − 0.30 6.19 5.86 0.33 6.13 5.94 0.20 5.90 5.97 − 0.07 6.04 5.92 0.12 6.54 5.89 0.64

5–6 years 5.04 5.20 − 0.16 5.45 5.01 0.44 5.08 5.12 − 0.04 5.19 5.17 0.02 5.11 5.10 0.01 5.67 5.09 0.58

6–7 years 4.44 4.43 0.01 4.60 4.26 0.35 4.37 4.34 0.03 4.42 4.39 0.03 4.57 4.35 0.22 4.96 4.33 0.63

7–8 years 3.49 3.74 − 0.25 3.92 3.61 0.31 3.75 3.69 0.07 3.60 3.73 − 0.13 3.79 3.67 0.12 4.07 3.66 0.41

8–9 years 2.95 3.13 − 0.17 3.27 2.98 0.29 3.14 3.06 0.08 2.97 3.12 − 0.15 3.15 3.09 0.06 3.36 3.03 0.34

9–10 years 2.44 2.66 − 0.22 2.68 2.49 0.19 2.57 2.58 − 0.02 2.53 2.61 − 0.07 2.58 2.58 0.00 2.83 2.51 0.31

10–11 years 2.12 2.20 − 0.08 2.35 2.08 0.27 2.06 2.16 − 0.10 2.10 2.19 − 0.09 2.13 2.11 0.01 2.35 2.07 0.29

11–12 years 1.76 1.82 − 0.06 1.89 1.73 0.16 1.67 1.76 − 0.09 1.69 1.80 − 0.11 1.74 1.78 − 0.04 1.98 1.71 0.27

12–13 years 1.46 1.50 − 0.04 1.57 1.46 0.11 1.43 1.48 − 0.05 1.43 1.50 − 0.07 1.43 1.47 − 0.05 1.67 1.41 0.26

13–14 years 1.17 1.26 − 0.09 1.25 1.24 0.01 1.25 1.25 0.00 1.14 1.26 − 0.12 1.23 1.25 − 0.02 1.21 1.20 0.02

14–15 years 1.01 1.02 − 0.01 1.05 1.00 0.05 1.02 1.01 0.01 1.03 1.02 0.01 0.97 1.02 − 0.05 1.08 0.97 0.10

15–16 years 0.85 0.85 0.01 0.90 0.85 0.05 0.85 0.85 0.00 0.79 0.85 − 0.06 0.79 0.85 − 0.06 0.93 0.83 0.10

16–17 years 0.75 0.69 0.06 0.70 0.67 0.03 0.66 0.69 − 0.03 0.71 0.70 0.01 0.70 0.69 0.01 0.80 0.67 0.13

17–18 years 0.64 0.54 0.10 0.58 0.54 0.04 0.61 0.55 0.06 0.59 0.57 0.02 0.52 0.55 − 0.03 0.67 0.54 0.13

18+ years 7.52 7.78 0.10 0.49 0.43 0.06 0.51 0.43 0.08 0.46 0.43 0.03 0.47 0.44 0.02 0.59 0.43 0.16
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Fig. 6  Estimated and observed mean change in CCI based on DCI and age
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Fig. 7  Estimated and observed mean change in DCI based on CCI and age
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Fig. 8  Cross validation of method to estimate life expectancy based on data from different regions in Sweden
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Fig. 11  Modelled probability of death within 1 year based on age and levels of CCI, DCI
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Simulation program written in R-code 

# Load transition models used in the simulation

load("s.mod.death.Rdata") # Model for vital status
load("s.mod.cci.any.Rdata")        # Model for any CCI-changes
load("s.mod.cci.6p.Rdata")         # Model for CCI -changes of 
size 6
load("s.mod.cci.pois.Rdata") # Model for size of CCI-
increase
load("s.mod.dci.any.Rdata") # Model for any DCI-changes
load("s.mod.dci.increase.Rdata") # Model for DCI-increase
load("s.mod.dci.size.increase.Rdata") # Model for size of DCI-
increase
load("s.mod.dci.size.decrease.Rdata") # Model for size of DCI-
decrease

# Build a simulation data frame denoted ‘dd.sim’. A copy of ‘n.pat’ 
patients with age ‘StartAge’, 
# dci= ‘StartDci’, and cci=‘StartCci’. All in ‘vital.status’ alive 
(denoted “L”)

n.pat <- 1000 #Number of simulated men

StartAge <- 70 #Run a simulation of men with age=70,
StartDci <- 2 #DCI=2, and 
StartCci <- 1 #CCI=1.

time.step <- 1 #Run the simulation in one year time steps

dd.sim <- data.frame(Age=rep(StartAge,n.pat),
dci= StartDci,
cci= StartCci,
vital.status="L")

# Define time vector (years) of length ‘n.steps.sim’. 
n.steps.sim <- 105-StartAge
tv <- seq(from=0, by=1, length.out=n.steps.sim)

# Define State at each time point (alive vs. dead)
state.mat <- matrix(NA, nrow=nrow(dd.sim), ncol=n.steps.sim)
colnames(state.mat) <- sprintf("t%d", 0:(n.steps.sim-1))

# CCI just after the transition.
cci.mat <- state.mat

# DCI just after the transition.
dci.mat <- state.mat
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# Start values of simulation.
state.mat[, "t0"] <- as.character(dd.sim$vital.status)
cci.mat[, "t0"] <- dd.sim$cci
dci.mat[, "t0"] <- dd.sim$dci

# Start simulating steps.
for (sim.ix in 2:n.steps.sim) {

# Simulate alive vs dead

old.state <- dd.sim$vital.status
new.state <- ifelse(old.state=="L", simulate.death(

Age=dd.sim$Age ,
cci=dd.sim$cci,
dci=dd.sim$dci), "D")

dd.sim$Age <-dd.sim$Age+time.step
dd.sim$vital.status <- new.state
state.mat[, sim.ix] <- new.state

## Simulate CCI.
old.cci <- dd.sim$cci
new.cci <- simulate.cci.one.step(

data = dd.sim,
models = list(mod.any=s.mod.any, mod.pois=s.mod.pois, 

mod.6p=s.mod.6p))
# This function is intende to take care of CCI changes in 

absorbing state that does not need to be updated. 
new.cci <- ifelse(new.state=="L", new.cci, old.cci)
dd.sim$cci <- new.cci
cci.mat[, sim.ix] <- new.cci

## Simulate DCI
old.dci <- dd.sim$dci
dci.change <- simulate.dci.change.one.step(

data = dd.sim,
models = 

list(mod.dci.any=s.mod.dci.any,mod.dci.increase=s.mod.dci.increase,
mod.dci.size.increase=s.mod.dci.size.increase,
mod.dci.size.decrease=s.mod.dci.size.decrease))

# This function is intende to take care of CCI changes in 
absorbing state that does not need to be updated. 
new.dci <- ifelse(new.state=="L", pmin(pmax(-

0.9,old.dci+dci.change),13), old.dci)
dd.sim$dci <- new.dci
dci.mat[, sim.ix] <- new.dci

}
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# Functions to update DCI 

# Simulate DCI
simulate.dci.change.one.step = function(data, models){

n <- nrow(data) # Number of individuals.
data <- add.model.vars.to.data.dci(data)
# Any change
prob.any.dci.change <- predict.glm(models$mod.dci.any, 

newdata=data, type="response")
dci.change.any <- (runif(n) < prob.any.dci.change)
## prop.table(table(dci.change.any))  
# DCI increase
prob.dci.increase <- predict.glm(models$mod.dci.increase, 

newdata=data, type="response")
dci.increase <- (runif(n) < prob.dci.increase)
## prop.table(table(dci.increase)) 
# DCI increase size
mu.size.increase <- predict.glm(models$mod.dci.size.increase, 

newdata=data, type="response")
size.increase <- rgamma(n=n,scale 

=mu.size.increase/get.dispersion(models$mod.dci.size.increase), 

shape=get.dispersion(models$mod.dci.size.increase))

# DCI decrease size
mu.size.decrease <- predict.glm(models$mod.dci.size.decrease, 

newdata=data, type="response")
size.decrease <-

rgamma(n=n,scale=mu.size.decrease/get.dispersion(models$mod.dci.size
.decrease),                     

shape=get.dispersion(models$mod.dci.size.decrease))

ret <- ifelse(dci.change.any,ifelse(dci.increase,size.increase,-
size.decrease) ,0)

return(ret)
}

# Functions to update CCI 

simulate.cci.one.step <- function(data, models) {
n <- nrow(data) # Number of individuals.
# Derived variables, needed by CCI models.
data <- add.model.vars.to.data.cci(data)
# Any jump.
prob.any <- predict.glm(models$mod.any, newdata=data, 

type="response")
do.any <- (runif(n) < prob.any)
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# Poisson (jump size).
lam.pois <- predict.glm(models$mod.pois, newdata=data, 

type="response")
jump.pois <- suppressWarnings(rpois(n=n, lambda=lam.pois))
# 6+ jumps.
prob.6p <- predict.glm(models$mod.6p, newdata=data, 

type="response")
do.6p <- (runif(n) < prob.6p)
# Actual jump size.
cci.jump <- ifelse(do.any, jump.pois + ifelse(do.6p, 6, 1), 0)
# Updated CCI.
new.cci <- data$cci + cci.jump
return (new.cci)

}

# Function to update vital status

# Simulate death from any cause
simulate.death=function(Age, cci, dci){

data.sim = data.frame(Age, cci, dci)
n=nrow(data.sim)
prob.any.death <- predict.glm(s.mod.death, newdata=data.sim, 

type="response")
#  n <- nrow(data.sim)
any.death <- (runif(n) < prob.any.death)
ret <- ifelse(any.death, "D", "L")
return(ret)  

}

# Functions to define variables used in the prediction models

# Compute categorical CCI variable. Three cases:
#   * Any jump (0, 1, 2, 3, 4+).
#   * Poisson parameter (0, 1, 2+).
#   * 6+ jumps (0, 1, 2+).
get.cci.fct.cci <- function(cci, study.y) {
if (study.y == "any") {

cci.fct <- factor(ifelse(cci <= 3, as.character(cci), "4+"))
levels(cci.fct) <- c("0", "1", "2", "3", "4+")

} else if (study.y == "pois") {
cci.fct <- factor(ifelse(cci <= 3, as.character(cci), "4+"))
levels(cci.fct) <- c("0", "1", "2", "3", "4+")

} else if (study.y == "6p") {
cci.fct <- factor(ifelse(cci <= 1, as.character(cci), "2+"))
levels(cci.fct) <- c("0", "1", "2+")

} else {
stop("Illegal study.y")

}
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return (cci.fct)
}

# Computes and adds the following variables to the data frame:
#   * cci.fct.XXX, where XXX is any, pois, and 6p
add.model.vars.to.data.cci <- function(data) {
data$cci.fct.any <- get.cci.fct.cci(cci=data$cci, study.y="any")
data$cci.fct.pois <- get.cci.fct.cci(cci=data$cci, study.y="pois")
data$cci.fct.6p <- get.cci.fct.cci(cci=data$cci, study.y="6p")

# Computes and adds the following variables to the data frame:
#   * cci.fct.XXX, where XXX is any, pois, and 6p
#   * dci.fct, 

add.model.vars.to.data.dci <- function(data) {
data$cci.fct <- get.cci.fct.cci(cci=data$cci, study.y="any")
data$cci.fct.pois <- get.cci.fct.cci(cci=data$cci, study.y="pois")
data$cci.fct.6p <- get.cci.fct.cci(cci=data$cci, study.y="6p")
data$dci.fct <- get.dci.fct.dci(dci=data$dci)
return (data)

}

# Computes the categorised DCI-variable:
get.dci.fct.dci <- function(dci) {
dci.fct <- cut(dci,breaks=c(-Inf,-0.01,0,0.25,1,2,3,4,5,7,Inf),

labels=c('<0','0','0+ - 0.25','0.25+ - 1','1+ - 2',
'2+ - 3','3+ - 4','4+ - 5','5+ - 7','7+'))

return (dci.fct)
}
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