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Abstract 

Background:  The greatly accelerated development of information technology has conveniently provided adoption 
for risk stratification, which means more beneficial for both patients and clinicians. Risk stratification offers accurate 
individualized prevention and therapeutic decision making etc. Hospital discharge records (HDRs) routinely include 
accurate conclusions of diagnoses of the patients. For this reason, in this paper, we propose an improved model for 
risk stratification in a supervised fashion by exploring HDRs about coronary heart disease (CHD).

Methods:  We introduced an improved four-layer supervised latent Dirichlet allocation (sLDA) approach called Hierar-
chical sLDA model, which categorized patient features in HDRs as patient feature-value pairs in one-hot way accord-
ing to clinical guidelines for lab test of CHD. To address the data missing and imbalance problem, RFs and SMOTE 
methods are used respectively. After TF-IDF processing of datasets, variational Bayes expectation-maximization 
method and generalized linear model were used to recognize the latent clinical state of a patient, i.e., risk stratifica-
tion, as well as to predict CHD. Accuracy, macro-F1, training and testing time performance were used to evaluate the 
performance of our model.

Results:  According to the characteristics of our datasets, i.e., patient feature-value pairs, we construct a supervised 
topic model by adding one more Dirichlet distribution hyperparameter to sLDA. Compared with established super-
vised algorithm Multi-class sLDA model, we demonstrate that our proposed approach enhances training time by 
59.74% and testing time by 25.58% but almost no loss of average prediction accuracy on our datasets.

Conclusions:  A model for risk stratification and prediction of CHD based on sLDA model was proposed. Experi-
mental results show that Hierarchical sLDA model we proposed is competitive in time performance and accuracy. 
Hierarchical processing of patient features can significantly improve the disadvantages of low efficiency and time-
consuming Gibbs sampling of sLDA model.
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Introduction
Cerebrovascular accident (CVA), coronary heart disease 
(CHD) and other cardiovascular diseases (CVD) are the 
leading causes of death and serious family burden in 

China nowadays. According to the World Health Organi-
zation (WHO), risk factors can increase the chances that 
a person suffers from that disease (WHO, 2014). Risk 
stratification incorporating these risk factors can be used 
by physicians to assess the risk of atherosclerotic of indi-
vidual patient, such as taking treatment with drugs to 
lower blood pressure and blood cholesterol based on an 
individual’s absolute cardiovascular risk [1]. According to 
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accurate risk stratification, so as to reduce the overall risk 
of CVD or CHD, physicians can formulate correspond-
ing comprehensive clinical treatments or life intervention 
management programs for patients with different risk 
levels. To carry out risk stratification also plays an impor-
tant role in individualized nursing, drug development 
and cost estimation of CVD [2].

In recent years, with the rapid development of medi-
cal information technology, the applications of elec-
tronic medical records (EMRs) are becoming more and 
more widely and in-depth. EMRs store and share clinical 
information of patients, such as general items, diagnos-
tic images (e.g., X-rays), history of present illness (HPI), 
family history, lab results etc. for different diseases [3–5] 
and various medical applications [6–9], especially HDRs, 
which include abundant information on patient risk fac-
tors. In 2014, in order to identify and extract medical risk 
factors related to CHD, i2b2/UTHealth Natural Lan-
guage Processing shared task with respect to the longitu-
dinal medical records of patients with diabetes. The risk 
factors included hypertension, hyperlipidemia, obesity, 
smoking status, family history, diabetes [10].

Multivariable traditional assessment models have been 
provided to estimate CVD risk [11, 12]. At the cohort 
level, these risk stratification models take statistical 
analysis techniques (e.g., logistic regression, Cox regres-
sion, etc.) to estimate the absolute risk of patients, which 
offer little insight beyond a flat score-based segmentation 
that has high cost, carefully selected and highly stratified 
patient characteristics [13].

In this study, we proposed a four-layer probabilistic topic 
model, i.e., Hierarchical sLDA model, for risk stratifica-
tions and prediction of CHD by using the diagnosis cases 
from HDRs, where Hierarchical sLDA model is a variant of 
sLDA. Firstly, we collected data from real clinical settings 
and annotated risk factors with an annotation tool devel-
oped by ourselves, under the guidance of clinicians. Then, 
we extracted the patient feature-value pairs of risk factors 
and encoding them in One Hot way according to clinical 
guidelines for lab test of CHD. Meanwhile, to address the 
data missing and imbalance problem, RFs and SMOTE 
are used respectively. After TF-IDF processing of datasets, 
variational Bayes Expectation-maximization (VBEM) and 
generalized linear model (GLM) was used to recognize 
the latent clinical state of a patient, i.e., risk stratification, 
as well as to predict CHD. Experimental results show that 
our model can significantly improve the disadvantages of 
low efficiency and time-consuming of sLDA model.

Related work
With the continuous digitization and storage of knowl-
edge in the forms of news, blogs, web pages, scientific 
articles, books, images, sound, video and social networks, 

it is more and more difficult for us to find what we are 
looking for from massive information [14].

In 1999, Thomas Hofmann proposed probabilistic 
latent semantic indexing (PLSI), which characterizes the 
polysemy of a word by describing the word frequency 
vector with multinomial distribution [15]. The proposal 
of PLSI enables the discovery and analysis of potential 
topics or categories in a large number of documents, and 
realizes the tasks of document clustering and dimension 
reduction.

In order to overcome the defects of inconsistent gener-
ative semantics of PLSI that cannot generate (i.e., predict) 
new documents and its model overfitting, Blei et al. [16] 
proposed LDA (latent Dirichlet allocation) topic model 
in 2003, and two commonly used approximate inference 
methods are Variational Bayes (VB) deterministic and 
collapsed Gibbs sampling (GS) stochastic approximation. 
Girolami and Kabán [17] showed that PLSI is maximum 
a posteriori (MAP) estimated LDA model under uniform 
Dirichlet prior. LDA is a three-layer hierarchical (includ-
ing documents, topics and words) Bayesian unsupervised 
topic model. Based on the Bag-of-words (BOW) repre-
sentation, LDA can cluster topics or classify texts from 
a large number of documents and has good scalability. 
With the development of probabilistic topic model, it has 
made continuous progress in image analysis, bioinfor-
matics and other fields [18]. Jelodar et  al. [19] reviewed 
the research progress, future development trend and 
wide application subjects of LDA topic model from 2003 
to 2016, such as Social Network, Crime Science, Medi-
cal/Biomedical and Linguistic science.

For text classification, Li and McCallum [20] showed 
that LDA model does not capture the correlation between 
topics, and the accuracy and efficiency of topic classifica-
tion are not outstanding and insufficient. Furthermore, 
although LDA model can achieve document clustering 
and dimension reduction and other tasks, it is not suit-
able for prediction. In 2010, Blei and McAuliffe [21] pro-
posed supervised latent Dirichlet allocation (sLDA). By 
combining GLM for latent topics, and selecting different 
exponential distribution family according to response 
variables, multiple response variables (e.g., real, category 
or multinomial response variable) can be predicted.

Wang et  al. [22] extended to image classification and 
proposed Multi-class sLDA prediction model by select-
ing GLM model for multinomial response. Their experi-
mental results showed that the average accuracy of the 
model for LabelMe datasets (1600 images, 8 categories) 
and UIUC-Sport datasets (1792 images, 8 categories) was 
76% and 66% respectively, which was better than that of 
Li and Perona [23] and Bosch et al. [24], and the average 
accuracy increased by more than 10%.
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By using factor graph to represent collapsed LDA to 
encode the joint probability, Zeng et  al. [25] enabled 
the belief propagation (BP) for approximate inference 
and parameter estimation and has enhanced both speed 
and accuracy by experimental results on four document 
datasets.

Besides these methods, there are various variants and 
applications about the state-of-the-art topic model LDA 
recently, e.g., opinion mining on big data [26], stock mar-
ket returns [27], topic change point detection [28], open-
ended versus closed-ended response [29], etc.

Motivated by these observations, our study proposes a 
probabilistic ensemble classification method, which dis-
tinguishes from other methods in that: (1) it takes a slight 
structural change to standard sLDA, which improves 
three-layer sLDA to a four-layer called Hierarchically 
sLDA model, and achieves encouraging experimen-
tal results in terms of time performance; (2) our model 
can provide prediction of CHD and risk stratification 
simultaneously.

The remaining sections of this paper are organized as 
follows. “Hierarchical sLDA” section describes our pro-
posed model, variational inference and parameter esti-
mation. “Experiments” section carefully describes the 
datasets and presents our model experimental results. 
Finally, we present our conclusions possible directions 
for future work in “Conclusions” section.

Hierarchical sLDA
Modeling HDRs and labels
Firstly, we summarize some important symbols and nota-
tions in this paper shown in Table 1.

The graphical model representation of hierarchical 
sLDA is depicted in Fig. 1. Nodes are random variables; 
edges indicate possible dependence; a shaded node is an 
observed variable; an unshaded node is a hidden variable.

Each HDRs is represented as a bag of patient feature 
f1:F or patient feature-value pair v1:N . The category c is 
a discrete class label. Each topic is a distribution over a 
vocabulary of patient feature, and also be regarded as dis-
tribution over vocabulary of patient feature-value pair. K 
is the number of latent topics; N is the number of feature-
value of a single HDRs; D is the number of patient HDRs.

Our model assumes the following generative process of 
an HDRs, and its class label. 

1.	 Draw topic proportions θ , θ | α ∼ Dir(α);
2.	 For each patient HDRs feature-value pair v1:N : 

(a)	 Draw topic assignment rn from category distri-
bution with parameter θ , rn | θ ∼ Mult(θ);

(b)	 Draw feature fn from category distribution with 
parameter π , fn | rn,π1:K ∼ Mult

(

πrn

)

;
(c)	 Draw feature-value pair vn from cat-

egory distribution with parameter β , 
vn | rn, fn,β1:K ∼ Mult

(

βfn,rn

)

;

Table 1  Symbols and notations

 Symbols Notations

1 ≤ d ≤ D HDRs index

f1:F Patient features

v1:N Patient feature-value pairs

1 ≤ k ≤ K Topic index

πk Topic-feature multinomials of feature f, 
πk is F-dimensional vector

βk Topic-value multinomials of feature-
value v, βk is N-dimensional vector

α K-dimensional Dirichlet parameter vector

θ K-dimensional topic proportions

r1:N Topic assignments

y Response variables

η1:C Class coefficients

Fig. 1  Probabilistic graphical model. The probabilistic graphical model representation of Hierarchical sLDA (left); the graphical model 
representation of variational distribution (right)
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3.	 Draw class label y from GLM distribution 
y | r1:N , η ∼ GLM(r̄, η) , where r̄ = 1

N

∑N
n=1 rn , that 

is: 

 it also can be written as exponential distribution 
family: 

The posterior inference of the model can be divided 
into three steps or tasks. 

(a)	 Variational approximate inference A posterior 
inference is to compute the conditional distribution 
of the latent variables at the patient HDRs level. 
That is,  approximate inference  is used to estimate 
the parameters of the variational distribution.

(b)	 Parameter estimation The model parameters 
α,β1:K ,π1:K , η are fitted with variational expecta-
tion maximization (EM) by maximum likelihood 
estimation.

(c)	 Prediction and risk stratification To per-
form prediction and risk stratification over the 
model  parametersα,β1:K ,π1:K , η and  variational 
distribution  parameters γ ,φ  means approxima-
tion of posterior expectation of response variable 
y = E[Y | r1:N ,α,β1:K ,π1:K , η].

Variational approximate inference
Both Parameter estimation and prediction depend on 
the posterior inference. Following Jordan et  al. [16], 
given patient HDRs and response variable y, we start 
the joint distribution in the following equation. The real 
posterior of latent variables (including topic propor-
tions θ , topic rn ) is:

p
(

y | r1:N , η
)

= exp
(

ηTy r̄
)

/

C
∑

l=1

exp
(

ηTl r̄
)

p
(

y | r1:N, η
)

= exp

{

ηTy r̄ − log

(

C
∑

l=1

exp
(

ηTl r̄
)

)}

p
(

θ , r1:N | f1:N , v1:N , y,α,π1:K,β1:K , η
)

=
p(θ | α)

(

∏N
n=1 p(rn | θ)p

(

fn | rn,π1:K

)

p
(

vn | rn, fn,β1:K
)

)

p
(

y | r1:N , η
)

∫

p(θ | α)dθ
∑

r1:N

(

∏N
n=1 p(rn | θ)p

(

fn | rn,π1:K

)

p
(

vn | rn, fn,β1:K
)

)

p
(

y | r1:N , η
)

As the denominator of posterior distribution is difficult 
to calculate, we use mean-field variational approximation 
inference:

Let ζ = {α,π1:K ,β1:K , η} , the KL divergence between the 
real posterior of latent variables p

(

θ , r1:N | f1:N , v1:N , y, ζ
)

 
and variational distribution q(θ , r1:N) is:

So the evidence lower bound (ELBO) is:

we denote ELBO by L (•) , and the entropy of variational 
distribution by H(q) = −Eq[log q(θ , r1:N )] , and then 
ELBO is written as:

q(θ , r1:N | γ ,φ1:N) = q(θ | γ )

N
∏

n=1

q(rn | φn)

D
(

q(θ , r1:N )�p
(

θ , r1:N | f1:N , v1:N , y, ζ
))

= Eq[log q(θ , r1:N )]− Eq
[

log p
(

θ , r1:N | f1:N , v1:N , y, ζ
)]

= Eq[log q(θ , r1:N )]− Eq
[

log p
(

θ , r1:N , f1:N , v1:N , y | ζ
)]

+ log p
(

f1:N , v1:N , y | ζ
)

≥ 0

log p
(

f1:N , v1:N , y | ζ
)

≥ Eq
[

log p
(

θ , r1:N , f1:N , v1:N , y | ζ
)]

− Eq[log q(θ , r1:N )]

(1)

L
(

f1:N , v1:N , y | ζ
)

= L (γ ,φ1:N | ζ ) = Eq[log p(θ | α)]

+

N
∑

n=1

Eq[log p(rn | θ)]

+

N
∑

n=1

Eq
[

log p
(

fn | rn,π1:K

)]

+

N
∑

n=1

Eq
[

log p
(

vn | rn, fn,β1:F
)]

+ Eq
[

log p
(

y | r1:N , η
)]

+H(q)
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We fit these parameters by maximizing ELBO with 
respect to γ ,φ and obtain an estimate of the posterior 
under the sense of KL divergence between q(θ , r1:N ) and 
the true posterior p

(

θ , r1:N | f1:N , v1:N , y, ζ
)

.
The terms of equation 1 are as follows:

where �(•) denotes the digamma function.
Variational E-step
The coordinate ascent method updates for variational 

parameter γ , which is the same as sLDA, does not directly 
involve the response variable y.

Under the conditions E[r] = φ̄ = 1
N

∑N
n=1 φn , the terms 

in ELBO containing φn are:

(2)

Eq[log p(θ | α)] = log Ŵ

(

K
∑

i=1

αi

)

−

K
∑

i=1

log Ŵ(αi)

+

K
∑

i=1

(αi − 1)Eq[log θi]

(3)
N
∑

n=1

Eq[log p(rn | θ)] =

N
∑

n=1

K
∑

i=1

ϕn,iEq(θi|γ )[log θi]

(4)
N
∑

n=1

Eq
[

log p
(

fn | rn,π1:K

)]

=

N
∑

n=1

K
∑

i=1

φn,i log πi,fn

(5)

N
∑

n=1

Eq
[

log p
(

vn | rn, fn,β1:k
)]

=

N
∑

n=1

K
∑

i=1

φn,i log βi,vn

(6)Eq[log p
(

y | r1:N , η
)]

= ηTy
1

N

N
∑

n=1

φn − Eq

[

log

C
∑

l=1

exp
(

ηTl r
)

]

(7)

H(q) =− log Ŵ

(

K
∑

i=1

γi

)

+

K
∑

i=1

log Ŵ(γi)

−

K
∑

i=1

(γi − 1)

(

�(γi)−�

(

K
∑

l=1

γl

))

−

N
∑

n=1

K
∑

i=1

φn,i log φn,i

(8)γ new ← α +

N
∑

n=1

φn

Following Wang et  al. [22], under the constraint 
∑K

i=1 φn,i = 1 and setting partial derivatives to zero of the 
ELBO with respect to φn,i , we write log

(

∑C
l=1

∏N
n=1 

(

∑K
i=1 φn,i exp

(

ηl,i
1
N

)))

 as hTφn , and then obtain:

The variational EM algorithm alternatively updates Eqs. 8 
and 9 until the bound on the expected log likelihood 
converges.

Parameter estimation
Variational M-step is an optimization of ELBO on the 
whole HDRs datasets level w.r.t model parameters 
ζ = {α,π1:K ,β1:K , η} . Repeating the Variational E-step D 
times, we can obtain approximate posterior over latent 
variables θ , r1:N  for each patient HDRs. It is noted that 
different patient HDRs has different variational distri-
butions qd(θ , r1:N ) . Then we obtain:

Variational M-step
Similarly, the coordinate ascent method is used to 

maximize the whole HDRs datasets ELBO to estimate 
the model parameters ζ = {α,π1:K ,β1:K , η} . 

L[φn] =

K
∑

i=1

φn,iEq[log θi]+

K
∑

i=1

φn,i log πi,fn

+

K
∑

i=1

φn,i log βi,vn −

K
∑

i=1

φn,i log φn,i

+
1

N

K
∑

i=1

ηy,iφn,i

− log

(

C
∑

l=1

N
∏

n=1

(

K
∑

i=1

φn,i exp

(

ηl,i
1

N

)

))

(9)

φn,i ∝ πi,fnβi,vn exp

(

� ′(γi)+
ηy,i

N
−

(

hTφold
n

)−1
hi

)

L(α,π1:K,β1:K , η;D)

=

D
∑

d=1

{

Eqd
[

log p
(

θd , rd,1:N , fd,1:N , vd,1:N , yd
)]

+H(qd)}



Page 6 of 12Yu et al. BMC Medical Informatics and Decision Making           (2022) 22:14 

(a)	 Setting 

 it leads to: 

(b)	 The whole HDRs datasets ELBO containing ηc are: 

 Setting 
∂L[η1:C ]

(D)

∂ηc,i
= 0 does not lead to a closed-

form solution. Following Wang et al. [22], we opti-
mize with conjugate gradient. Let 
κd =

∑C
l=1

{

∏N
n=1 φn,rn 

∑K
i=1

(

exp
(

ηl,i
1
N

))}

 , the 
derivatives are: 

(c)	 In this paper, We will address this setting in details 
about the Dirichlet parameter α and β in “Discus-
sion” section.

Prediction and risk stratification
Under the fitted model{α, γ ,φ1:N ,π1:K ,β1:K , η} , the 
expected response value is:

where µ(•) = EGLM [Y | ·] =

[

exp
(

ηT1 r
)

∑

C

l=1 exp
(

ηT
l
r
) , . . . ,

exp
(

ηT
C
r
)

∑

C

l=1 exp
(

ηT
l
r
)

]T

.

In classification, to estimate the probability of the 
label c with the variational distribution, we obtain:

∂L(α,π1:K,β1:K, η;D)/∂πk ,f = 0

∂L(α,π1:K,β1:K, η;D)/∂βk ,v = 0

(10)π̂new
k ,f ∝

D
∑

d=1

N
∑

n=1

I
(

f = f dn,k

)

φd
n,k

(11)β̂new
k ,v ∝

D
∑

d=1

N
∑

n=1

I
(

v = vdn,k

)

φd
n,k

L[η1:C ](D) =

D
∑

d=1

(

ηTcd φ̄d − log

(

C
∑

l=1

{

N
∏

n=1

(

K
∑

i=1

φd
n,i exp

(

ηl,i
1

N

)

)}))

∂L[η1:c](D)

∂ηc,i
=

D
�

d=1

�

1[cd = c]φ̄d,i
�

−

D
�

d=1



κ−1
d

N
�

n=1





K
�

j=1

φd
n,j exp

�

ηcj
1

N

�





×

N
�

n=1





1
N φd

n,i exp
�

ηci
1
N

�

�K
j=1 φ

d
n,j exp

�

ηcj
1
N

�









E[Y | f1:N , v1:N ,α,π1:K ,β1:K , η]

= E

[

µ

(

η⊤r̄

)

| f1:N , v1:N ,α,π1:K ,β1:K

]

Thus, the prediction formulation is:

where E[r] = φ̄ = 1
N

∑N
n=1 φn.

Experiments
Methods
Data source
We propose our model on real-world datasets in the 
clinical domains collected from the Cardiology Depart-
ment of the First Affiliated Hospital of Xinjiang Medi-
cal University containing 420 HDRs of CHD patients. 
These HDRs describe basic information about patients 
with a first diagnosis of coronary atherosclerotic heart 
disease, such as admission, treatment history, impor-
tant test results, discharge status, discharge orders, 
and follow-up recommendations. An original HDR of 
a patient was described in Fig.  2-left, corresponding 
English version was shown in Fig. 2-right. In this paper, 
the patient’s diagnostic results is used as the class label 
for the data, including the following 4 classes: Stable 
Angina Pectoris(SAP), Unstable Angina Pectoris(UAP), 
Ischemic Cardiomyopathy(ICM) and Acute Miocardial 
Infarction(AMI).

Annotation of features
HDRs are a kind of unstructured text. In order to guar-
antee the accuracy of datasets and ensure the credibility 
as far as possible, each patient case in the experimental 
datasets was identified and evaluated by clinicians. This is 
a labor-intensive and laborious task.

With an annotation tool developed by ourselves, we 
finished the features annotation of patients and obtain 
structured data including patient demographics, gen-
eral items, history of present illness (HPI), laboratory 
results, conclusions of diagnoses etc., which provide a 
comprehensive source for risk stratification. Based on 
the CHD risk factors formulated in I2B2 and combined 
with the clinical experience of clinicians in the diagno-
sis and treatment, we drew up annotation criterion and 
guidelines for this study under the help of clinicians. 

E[Y | v1:N ,α,π1:K , β1:K , η]

≈

∫

exp

(

log
exp

(

ηTc r
)

∑C
l=1 exp

(

ηTl r
)
q(r)

)

dr

≥ exp

(

Eq

[

ηTc r
]

− Eq

[

log

(

C
∑

l=1

exp
(

ηTl r
)

)])

(12)c∗ = arg max
c∈{1,...,C}

Eq

[

ηTc r
]

= arg max
c∈{1,...,C}

ηTc φ̄
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This work consists of three pre-annotation and a for-
mal annotation, with 50 HDRs randomly selected each 
time. The result was verified by Inter Annotator Agree-
ment (IAA) after each annotation to guarantee the 
qualification. At the same time, the criterion and guide-
lines of annotation were constantly updated to ensure 
the standardization throughout the process. Figure  3 
shows the features annotation process of HDRs.

Data preprocessing
While random forests (RFs) [30], which allow for avoid-
ing over-fitting makes it suitable for processing data 
with outliers, missing values, have been widely applied 
to other fields such as biological prediction [31], we use 
RFs for filling the missing data.

And then, we obtain 34 patient features and 79 
patient feature-value pairs, according to specific medi-
cal guidelines and specifications of CHD, by dividing 

patient features into a series of categories. Using the 
TF-IDF text mining technique to assign a weight to 
each feature and feature-value pair term, features 
matrix of 420 × 34 dimensions and feature-value pairs 
matrix of 420  ×  79 dimensions are obtained respec-
tively as the source datasets for modeling.

At the same time, 265 out of the 420 patient HDRs 
cases in the datasets are Stable Angina Pectoris 
(63.10%), and the class imbalance problem is encoun-
tered. In this paper, we use the SMOTE algorithm to 
generate additional samples from randomly oversam-
pling minority class, and finally totaling 1060 samples 
are obtained. Therefore, features and diagnosis results 
can be extracted from HDRs, which provide data prep-
aration for supervised training and testing and can be 
used as the labels of CHD. Summary statistics of the 
datasets are shown in Table 2.

Results
For risk stratification and classification prediction of 
CHD, we use fivefold cross-validation method to create 
the train and test sets. Results are reported as an average 
across folds.

Classification performance
In order to perform assessment of the classification per-
formance of our model, we compared it with previous 
salient approach Multi-class sLDA [22]. Multi-class sLDA 
embeds single softmax into LDA model, and reports bet-
ter classification performance. The distinguishing factor 
between Hierarchical sLDA and Multi-class sLDA is the 
additional structure imposed on the feature-value pair, 
which would result in an outstanding performance in 
predictive performance.

Fig. 2  Original HDR. The original HDR in Chinese (left); The corresponding English version (right)

Fig. 3  Features annotation of HDRs. The process of features 
annotation of HDRs
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The experiments were performed from topic K = 10 
to K = 70 with intervals of 10. The results of accuracy, 
training and testing time are illustrated in Fig. 4 and the 
confusion matrices are shown in Fig.  5. Hierarchical 
sLDA model we proposed is competitive in both time 
performance and accuracy, as validated by experimen-
tal results. From Fig. 4-left and middle, comparison of 
over all classes based on fivefold cross validation it can 
be seen that Hierarchical sLDA ( K = 70 ) reaches the 
average training time (669.69s) and testing time (0.32s) 
performance, which is 59.74% and 25.58% higher than 
the average training time (1663.42s) and testing time 
(0.43s) of Multi-class sLDA ( K = 70 ) but almost no 
loss of accuracy on our datasets (See Fig. 4-right). The 
average accuracy of the Hierarchical sLDA ( K = 70 ) 
is 74.53%,  while that of Multi-class sLDA ( K = 70 ) is 
74.06%.

From Fig.  4-right, the average classification accu-
racy of the Hierarchical sLDA, as the number of topics 
increases, is smoothly converging, as well as not suf-
fering from the overfitting problem. That means it pro-
vides more robust than other classifiers.

We evaluated on topic K = 70 about different types of 
CHD using macro-F1 score, macro-Precision score, and 
macro-Recall score on test data respectively. A compari-
son between Hierarchical sLDA model and Multi-class 
sLDA model indicated that the two models are not sig-
nificantly different(See Table 3).

Risk stratification
Table  4 shows the top 5 risk factors of K = 70 topics 
inferred by Hierarchical sLDA under high-, and low-risk 
tier separately of different types of CHD. The Hierarchi-
cal sLDA model of HDRs for CHD shows us: 

Table 2  Summary statistics of datasets

Number of patient records Number of patient 
features

Number of patient feature-value pairs

420 34 79

Top 15 risk factors Frequency Ratio (%) Descriptions

Heart rhythm-Sinus 404 96.19%

Antiplatelet medication-Yes 393 93.57

Heart rate-norm. 371 88.33

Lipid-lowering medication-Yes 369 87.86

Chest pain-1⋆ 338 80.48 1. Oppressive, stuffy or constrictive⋆

2. Dyspnea

Range of Chest pain-2⋆ 306 72.86 1. Located behind the sternal body
2. Affected precordial area, palm size range⋆

3. Radiation to the left shoulder,
   left arm medial ring finger and little finger

Sex-Male 288 68.57

Cardiac B-Ultrasound-Abn. 279 66.43

Hypertension-Yes 271 64.52

Ethnic-Han 253 60.24

Incentive-Yes 224 53.33

LDL-C-Abn. 253 60.24

PCI or CABG-Yes 223 53.10 PCI: percutaneous coronary intervention
CABG: coronary artery bypass grafting

β blocker medications-Yes 170 40.48

Carotid atherosclerosis with plaque-2⋆ 164 39.05 1. No atherosclerotic plaque
2. Single plaque group⋆

3. Multiple plaque group

Types of CHD SAP 265 63.10

UAP 98 23.33

ICM 12 2.86

AMI 45 10.71
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(a)	 Different types of CHD generally have different risk 
factors, while Diabetes-Yes and Antiplatelet Medi-
cation-Yes are risk factors of Stable angina pectoris 
and Unstable angina pectoris separately. We can 
take a conclusion that Antiplatelet Medication pro-

vides an effective treatment, simultaneously should 
be highly aware of Diabetes.

(b)	 Uric acid-Abn. and SBP-Abn. are the risk factors 
of 4 types of CHD, which indicate the cause-and-
effect correlation between these two risk factors 
and CHD.

(c)	 Both antiplatelet medication, ACEI/ARB and Lipid 
drug therapy are often used to reduce high-risk fac-
tors.

(d)	 Gender seems to have higher probability of differ-
ent types of CHD.

Fig. 4  Comparison of performance. Comparison of over all classes based on fivefold cross validation: training time (left); testing time (middle); 
average accuracy (right)

Fig. 5  Comparison of confusion matrices. Comparison of confusion matrices of topic K = 70 ; multi-class sLDA (left); Hierarchical sLDA (right)

Table 3  Comparison of macro-F1, Precision, Recall

Macro-F1 (%) Macro-
Precision 
(%)

Macro-Recall (%)

Hierarchical sLDA 70.91 70.96 71.70

Multi-class sLDA 70.54 70.84 71.70
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Dirichlet hyperparameter
According to experience, Wei and Croft [32] pointed 
out that the choice of Dirichlet hyperparameter is not 
sensitive to the experimental results. They used sym-
metric Dirichlet priors in the estimation α = 50/K  and 
β = 0.01 . In this paper, according to our analysis (See 
“Parameter estimation” section) and the experimen-
tal results in Fig. 6, under the same topic (e.g., K = 70 ), 
selecting different hyperparameter α has no significant 
effect on the average prediction accuracy (Fig.  6-right). 
However, after using α from 0.1 to 1.5 with interval of 
0.1, K from 10 to 70 with interval of 5, the 3-D represen-
tion from Fig.  6-left and -right show that,  rather than 

α = 50/K  , we should optimize hyperparameter α with 
the fitted curve

where c1 and c2 are constants and |V| is the number of 
patient feature-value pairs  (e.g., c1 = 0.3 , c2 = 0.25 and 
|V | = 79 in our experiments).

Panichella [33] also showed that search-based 
approaches are very effective in solving LDA hyperpa-
rameter tuning problem. In our proposed Hierarchi-
cal sLDA model, Dirichlet hyperparameter can affect 
the speed of convergence (See “Parameter estimation” 

α = c1 +
1

1+ exp
(

c2 ∗
(

K − |V |
2

))

Table 4  Risk factors of CHD extracted from Hierarchical sLDA

ICM AMI SAP UAP

High-risk

ST segment-Abn. Hb-Abn. SBP-Abn. Diabetes-Yes

CTA stenosis-Mild Duration-10 min HbA1c-Abn. Antiplatelet Medication-Yes

Carotid Atherosclerosis-Multiple plaque 
group

ST segment-Elevation Uric acid-Abn. HbA1c-Abn.

Fasting blood glucose-Abn. β blocker medications-Yes ST segment-Change Duration-3~5 min

Heart rate-Sinus velocity Gender-Female Lipid drug medication-Yes Gender-Male

Low-risk

CTA lesions-Single CTA lesions-Single Cardiac B-Ultrasound -Abn. Hypertension-Yes

HbA1c-Abn. ACEI/ARB medication-Yes Hb-Abn. DBP-Abn.

Age-45–65 years Age-45–65 years CTA stenosis-Mild WBC-Abn.

Uric acid-Abn. Uric acid-Abn. Diabetes-Yes SBP- Abn.

SBP- Abn. SBP-Abn. Antiplatelet medication-Yes Uric acid-Abn.

Fig. 6  Selection of optimal hyperparameter α . Using α from 0.1 to 1.5 with interval of 0.1, topic K from 10 to 70 with interval of 5, the 3-D 
representions show that we should optimize hyperparameter α with the fitted curve. The left view of 3-D represention (left); the front view of 3-D 
represention (right)
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section, Eqs. 10 and 11), therefore this structure has the 
potential to become a generic scheme for variants of 
sLDA-based model.

Discussion
Traditional statistical models for risk stratification of 
CVD risk are well-developed, but typically less flex-
ible than machine learning techniques and only hold 
under well controlled conditions for prediction and 
classification.

Hierarchical sLDA model is a variant of sLDA. The 
experimental results clearly demonstrate that the pro-
posed Hierarchical sLDA has significant advantages on 
supervised CHD classification and risk stratification rela-
tive to the compared Multi-class sLDA approach, includ-
ing accuracy and time performance.

Most classification techniques do not handle hier-
archical features, which offer little insight beyond a flat 
feature-based segmentation, as they assume that features 
in the training datasets are fully independent. By catego-
rizing patient features in HDRs as patient feature-value 
pairs, three-layer sLDA is improved to four-layer Hier-
archical sLDA, which can accelerate the convergence of 
time-consuming Gibbs sampling.

We have shown that the model, as the number of top-
ics increases, is converging smoothly. That means it is not 
suffering from overfitting problem and provides more 
robust than other classifiers.

Intriguingly, according to experience, Dirichlet hyper-
parameters are set to α = 50/ K and β = 0.01 . However, 
we recommend that Dirichlet hyperparameter α may be 
optimized in another setup policy (See “Dirichlet hyper-
parameter” section). Through experiment analysis, there 
exists two limitations and weaknesses for the current 
approach: 

(a)	 Insufficient training data. From the data source 
process, due to specific difficulties, features extrac-
tion is semi-automatic, which can be time and labor 
intensive. And therefore, Insufficient training data 
limits the performance of the model.

(b)	 More experiments. For future work, we will investi-
gate the performance of our model when applied to 
other topic models and datasets.

Conclusions
We hereby have proposed an approach in HDRs for 
risk stratification and classification of CHD simultane-
ously over our datasets, which is competitive in time 
performance and accuracy. Hierarchical processing of 

patient features can significantly improve the disad-
vantages of low efficiency and time-consuming Gibbs 
sampling of sLDA model. Meanwhile our model has 
the potential to be applied to other datasets by trans-
forming the features of datasets into feature-value 
pairs. On the other hand, while coronary angiography 
is the gold standard for the diagnosis of CHD, but its 
limitations, such as invasive, random errors by the 
selection of radiographic projection, limit its wide 
clinical applications. Risk factors, which is extracted 
from risk stratification, can be used as a reference to 
provide individualized prevention and therapeutic 
decisions with non-invasive methods. However, the 
difficulty in processing complicated clinical applica-
tions suggests that this is still an open question needed 
to be solved in future research.
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