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Abstract 

Background: Accurate prediction of healthcare costs is important for optimally managing health costs. However, 
methods leveraging the medical richness from data such as health insurance claims or electronic health records are 
missing.

Methods: Here, we developed a deep neural network to predict future cost from health insurance claims records. We 
applied the deep network and a ridge regression model to a sample of 1.4 million German insurants to predict total 
one‑year health care costs. Both methods were compared to existing models with various performance measures and 
were also used to predict patients with a change in costs and to identify relevant codes for this prediction.

Results: We showed that the neural network outperformed the ridge regression as well as all considered models for 
cost prediction. Further, the neural network was superior to ridge regression in predicting patients with cost change 
and identified more specific codes.

Conclusion: In summary, we showed that our deep neural network can leverage the full complexity of the patient 
records and outperforms standard approaches. We suggest that the better performance is due to the ability to 
incorporate complex interactions in the model and that the model might also be used for predicting other health 
phenotypes.
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Background
Health care expenditures are one of the biggest 
expenses in Germany and optimally managing these 
cost has great economical importance. Therefore, 
methods for accurate patient-level prediction of future 
health care cost are needed to provide the basis for 
decision making. As medical costs reflect the develop-
ment of health over time, and health in turn is influ-
enced by many factors such as social demographics, 
previous medical history, environmental influences, 
genetics but also by random events such as accidents, 

predicting the future health is inherently challeng-
ing. Consequently, accurately predicting health cost 
is a challenging problem. Existing work on prediction 
of health cost can be divided into two categories [1]: 
(1) Rule based prediction methods, in which decision 
rules of an algorithm to predict future costs are manu-
ally defined. The disadvantage of this approach is that 
it requires deep domain knowledge and that the capa-
bility of resulting models to reflect complex relations 
in the data is limited. (2) Supervised learning based 
methods (e.g. linear regression models, random for-
ests or support vector methods) that learn to predict 
future cost from the data [1–6]. These methods have 
the advantage that they are not limited in their expres-
siveness as rule based methods are. However, they 
typically require large datasets for training. For train-
ing of these methods, health insurance claims records 
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are an appealing data source. They cover most of the 
health care expenditures of the patients and have the 
advantage of having sample sizes that allow fitting rich 
models. Additionally, they contain detailed informa-
tion on patients, such as the medical history and social 
demographic information. The challenges of this data 
is that it is high dimensional, that there are many hid-
den interactions between variables, and that the data is 
often not normally distributed [7]. The aforementioned 
supervised learning methods are believed to typically 
not leverage the potential of population scale data to 
detect complex patterns [8]. Recent developments in 
deep learning techniques, such as novel deep neural 
network architectures and numerical approaches to fit 
the networks, promise to address some of these chal-
lenges. Deep learning has been successfully applied 
in the medical domain to task such as dermatologist 
level detection of skin cancer [9], prediction of various 

clinical outcomes from electronics health records [10], 
or the detection of diabetic retinopathy from retinal 
fundus photographs [11], showing the potential of this 
technology.

We present a novel deep neural network architecture 
to predict future health care cost from health insurance 
claims records (See Fig.  1). This network architecture 
allows to fully capture the richness of the medical data 
in health insurance claims and can be fitted on a stand-
ard workstation with 64GB of RAM. We compare it on 
health insurance claim records of ∼ 1.4 million patients 
from German statutory health insurances against various 
standard methods and show that it outperforms exist-
ing approaches. It also is better identifying patients at 
risk than standard linear regression approaches and the 
Morbi-RSA approach used by the German Federal Office 
for Social Security. Finally, we show how the parameters 

Fig. 1 Schematic diagram of workflow. A neural network is trained to predict from health insurance claim data (input data) of a subset of the 
population (shown in red) the future costs. The neural network can then be used to predict the cost of a different subset (shown in blue) of the 
population based on their health insurance claim data
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of the network can be interpreted and that the network 
uses medically relevant features for its prediction.

Methods
Data
This study is based on data of the Institute for Applied 
Health Research Berlin (InGef) database, which contains 
anonymised longitudinal claims data of more than 60 
German statutory health insurances. Claims data of the 
years 2010 to 2017 for a sample of about 1′403′346 insur-
ants was used, which is representative for the German 
population with respect to age, sex and state of residence. 
Besides sociodemographic information, the database 
contains information on hospital stays, outpatient phy-
sician visits, drug prescriptions and remedies and aids 
including costs in each of the sectors. Further details of 
the database can be found elsewhere [12]. An approval of 
an ethics committee or informed consent of the patients 
was not required for the conduct of this study since all 
patient- and provider-level information are anonymised 
to comply with German data protection regulations and 
German federal law. In the remainder of this manuscript, 
we will refer to the period ranging from Q1 2010 to Q4 
2015 as the observation period and to the period from 
Q3 2016 to Q2 2017 as the evaluation period.

Data representations
The input for the machine learning algorithms was for-
matted in the following manner for each patient in a 
given quarter: Each numerical value was kept as a feature. 
Dates were coded per quarters since Q1 of 2010. Categor-
ical values, such as International Statistical Classification 
Of Diseases And Related Health Problems, 10th revision, 
German Modification (ICD-10-GM) codes, Anatomical 
Therapeutic Chemical (ATC) codes, Diagnosis Related 
Group (DRG) codes, German procedure classification 
(OPS), physician subject group key (FG) and schedule 
of fees for physician outpatient services (GOP) codes or 
sex, were coded using a one-hot encoding (i.e. if n pos-
sible categories k1, . . . , kn were possible, the observation 
of category kj was coded by a n-dimensional vector that 
was 1 at the index j and 0 everywhere else). If multiple 
codes for a one-hot-encoded category (e.g. ICD-10-GM 
or ATC) were observed in a quarter, the representing 
vectors were added. We then concatenated all vectors 
and features to obtain one 91’470 dimensional vector 
per quarter and per patient. Finally, the resulting vectors 
for all quarter (n = 24) were concatenated into a single 
vector of dimension 24*91’470 =2’491’470 representing 
a patient in the observation period. In order to acceler-
ate model fitting, we only considered variables that had 
more than 1′000 entries over all patients in the observa-
tion period. This lead to a vector of dimension 24*13’876 

= 333’024 for representing each patient in the observa-
tion period.

Model definition
We used a multilayer perceptron deep learning model 
with four hidden layers (See Fig.  2). Our analysis (See 
Table  1) suggests that this is the optimal depth accord-
ing to the mean absolute prediction error (MAPE). The 
first four layers had each 50 neurons. In the last hidden 
layer the original input was concatenated to the hidden 
vector and fed to the last layer, which had seven neurons 
to predict seven cost categories (Medications, practice, 
hospital, medical sundries, therapeutic appliances, com-
pensation for incapacity to work and dentistry). Intui-
tively, concatenating the original input to the last hidden 
layer allows the network to model simple relationships 
between the input and output using a multivariate 
regression and the residuals using a complex deep learn-
ing model. All layers used the ReLU-activation function 
[13] and a dropout [14] rate of 0.25 during training (See 
Supplemental Material for the code for training).

We compared the deep learning model to three base-
line models. (1) The average cost per year in the previ-
ous 6 years as prediction for the cost in the evaluation 
period. (2) The costs in the last year of the observation 
time as prediction for the cost in the evaluation period. 
(3) A two-stage approach where first, a multivariate 
ridge regression with regularisation parameter � = 0.1 
was trained to predict the seven different cost types in 
the evaluation period. Second, the seven predicted cost 
types are summed to compute the total sum in the evalu-
ation period for each patient. For model assessment, 
we predicted separately the seven (see above) differ-
ent cost domains using a the proposed neural network. 
We then summed all predicted costs except the cost to 
compensate for incapacity to work for model assessment, 
in order to make the cost comparable to costs reported 
for the Morbi-RSA [4, 15]. Furthermore, we performed 
model ensembling for the ridge regression and the neural 
network (i.e. the identical model was trained five times 
on the same data with different random seed parameters 
and the average of the predictions of all five models was 
computed to obtain the final prediction).

Model fitting
For model fitting we used the first 903′346 patients 
(training set). During model fitting, we minimized the 
l2-loss between the future and the predicted costs using 
ADAM [16], which is an extension of stochastic gradi-
ent descent. For ADAM we have used a learning rate of 
0.001 and gradient normalization with parameter 1.0. 
Both the ridge regression and the deep learning model 
were trained for 25 epochs. For training of the ridge 
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regression a batch size of 128 was used and for training 
of the neural network a batch size of 32 was used.

Implementation
All models have been implemented in python and keras 
[17].

Evaluation criteria
We evaluated the ability of the models to predict from 
the observation period of a set of patients that were not 
used for training the model (evaluation set) the summed 
cost per patient in the evaluation period. To assess the 
model quality, we used the following quality criteria: 
Pearson’s correlation coefficient, Spearman’s correlation 
coefficient, the mean absolute error and Cumming’s Pre-
diction Measure (CPM). The performance was evaluated 
on the subset of 357′239 of the 500′000 held out patients 
(test set) that where alive in the observation period and 
either died or were still insured on at least one day in the 
evaluation periods.

We further assessed how well the methods could be 
used to identify patients with changing costs. As this is 
indicating a change of health status or treatment, these 
patients could benefit from preventive interventions. 
To this end, we divided our test set patients into three 
groups. Those for which the cost decreased more than 
100-fold between the last year of the observation period 
and the first year of the prediction period; those for which 
the cost increased more than 100-fold; and the remain-
ing patients. In order to not include patients with overall 

Fig. 2 Network architecture: Shown is the architecture of the proposed deep neural network. Shown in (light grey) are the input features. Shown in 
(dark grey) are the target variables of the network. The (white) nodes are the internal nodes of the network

Table 1 Performance assessment depending on the network 
depth

Evaluation of methods using: Pearson’s correlation (r), Spearman’s correlation 
( ρ ), mean absolute error (MAE), R squared ( r2 ) and Cumming’ s Prediction 
Measure (CPM)

r ρ MAE r
2 CPM

Neural network (depth 2) 0.518 0.566 2170.83 0.265 0.27‑

Neural network (depth 3) 0.525 0.622 2065.49 0.271 0.304981

Neural network (depth 4) 0.524 0.631 2013.35 0.264 0.323

Neural network (depth 5) 0.530 0.622 2066.74 0.270 0.304561

Neural network (depth 6) 0.526 0.617 2165.04 0.275031 0.271482

Neural network (depth 7) 0.525 0.616 2165.54 0.272261 0.271315

Neural network (depth 8) 0.497 0.601 2414.74 0.244568 0.187461
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low cost in the two group (e.g to not include patients 
that change from 0.01 to 10.0 Euro) that have strong cost 
changes, we added 10 Euros to the overall cost before 
computing the fold change. We then computed the area 
under the precision-recall curve (auPRC) for identifica-
tion of patients with increasing, resp. decreasing costs 
from all patients. To understand for which cost range the 
respective methods performed best, we computed the 
error of the prediction in dependence of the cost.

Sensitivity analyses
We investigated how the performance of the neural net-
work depends on the amount of available training data. 
To this end, we trained the model on only 100′000 , 
200′000 , 300′000 , 400′000 , 500′000 , 600′000 , 700′000 , 
800′000 and 900′000 patients. Furthermore, we investi-
gated how the length of the observation time affects the 
predictive performance. Therefore, we trained the model 
also for each of the patient sets using the data from one 
to six years up to the end of the observation period.

Feature identification
An important application of predictive models is to iden-
tify relevant features in the data and to understand their 
effect on the prediction. This allows for example to iden-
tify and quantify risk factors. A common approach in 
linear models is to identify the weights that have a large 
absolute value as they correspond to the features that 
have as strong impact on the prediction. For deep neural 
networks it has been shown that this strategy is subopti-
mal [18] as it does not capture the interactions between 
features that the neural network uses. Here, we therefore 
used a strategy called integrated gradients [18] that is 
more robust. We determined the average integrated gra-
dients of all patients in the evaluation set. Furthermore, 
we divided the mean integrated gradient by the number 
that the actual feature was nonzero, to account for the 
fact that not all features are equally abundant. We did 
not show codes in the results that allow identification 
of health insurance companies which contributed to the 
study database.

Results
To establish a baseline, we first compared the perfor-
mance of all methods to predict costs. We found that the 
neural network was able to better predict future costs 
than ridge regression or the other two standard models 
in all considered measures as shown in Table 2. Further-
more, we found that ensembling several training runs 
provides an additional small improvement.

To better understand in which cost regimes the neural 
network and the ridge regression performed better, we 
studied the average absolute error in Euros depending 

on the true costs. The neural network performed bet-
ter for patients with total costs lower than ∼ 10′000 
Euro, whereas the ridge regression performed better for 
patients who were more expensive (See Fig. 3a, b).

As sensitivity analyses, we studied how the number of 
samples in the training set and the length of the obser-
vation period affect the performance of the prediction 
for the neural network. Our analyses showed that as 
the number of patients increased the predictive per-
formance, as measured by R2 , increased. The same was 
true when the observation time increased (See Fig.  4a). 
A similar picture can also be seen for the Spearman and 
Pearson correlation (See Additional file  1: Fig.  S1). We 
compared this to the performance of the ridge regression 
(See Fig. 4b). We found that at 100′000 patients the r2 of 
the neural network was lower than for the ridge regres-
sion but that for larger sample sizes the neural network 
had in general a higher r2.

Next, we analysed the ability of identifying patients 
with changing costs (Fig. 5a, b). In this analysis, we did 
not consider the model that used the last years costs as 
prediction for the future costs as costs are predicted to 
stay constant for this model. The results of the analysis 
in predicting patients with increasing/decreasing costs 
are shown in Fig.  5c, d, respectively. We found that 
overall, prediction of decreasing costs was easier than 
increasing costs. Furthermore, we found that for both 
direction of the cost change the neural network outper-
formed the ridge regression. For increasing costs the 
neural network had an auPRC of 0.08 while the ridge 
regression only had an auPRC of 0.04. For decreasing 
costs the neural network at an auPRC of 0.24 while the 
ridge regression had an auPRC of 0.21. A similar pic-
ture also emerged for the area under the ROC curve 
where the neural network had an auROC of 0.93 and 

Table 2 Performance assessment

The best performance for each evaluation criterion is shown in bold

Evaluation of methods using: Pearson’s correlation (r), Spearman’s correlation 
( ρ ), mean absolute prediction error (MAPE), R squared ( r2 ) and Cumming’s 
Prediction Measure (CPM). Performance for the Morbi‑RSA models on a different 
data set ( ∗ ) where obtained from [4, 15]. Correlation values where not available 
(na) for these models

r ρ MAPE r
2 CPM

Spendings in last year 0.418 0.551 2403.30 −0.005 0.191

Mean of previous spendings 0.464 0.547 2078.76 0.200 0.301

Ridge regression 0.514 0.610 2126.03 0.260 0.285

Neural network 0.524 0.631 2013.35 0.264 0.323

Ridge regression (ensemble) 0.517 0.611 2116.67 0.265 0.288

Neural network (ensemble) 0.527 0.632 2004.33 0.266 0.326

Morbi‑RSA model (2018)∗ na na 2267.60 0.258 0.242

Morbi‑RSA full model∗ na na 2233.53 0.263 0.253
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0.90 for decreasing and increasing costs, respectively. 
Here, the ridge regression had an auROC of 0.93 and 
0.86 for decreasing and increasing costs, respectively. 
For both measures the Ridge regression and the neu-
ral network were substantially better than the baseline 
methods that did not model the costs.

Finally, we studied via integrated gradients, on which 
features of the data the neural network based its pre-
diction and how this differed from the features used by 
the ridge regression. We first determined the impor-
tance of features from different quarters in the observa-
tion period by summing the integrated gradients of all 
feature in a quarter. We found that both methods have 
a similar temporal distribution of the importance and 
that for prediction the most recent features were the 
most important (See Fig. 6).

To evaluate whether the features showed a qualita-
tive difference between the neural network and the 
regression, we identified the features with the highest 

(associated with higher cost) integrated gradient in set of 
patients that have an 100-fold increase in costs. To this 
end, we summed the integrated gradients of each code 
over all quarters in the observation period. The top-20 
codes are shown in Table 3 for the neural network and for 
the ridge regression in Table 4. We found that the neural 
network relied more on ICD-10-GM diagnosis and ATC 
medication code than the ridge regression (7 of 20 vs. 3 
of 20).

Discussion
Accurate prediction of future health care cost provides 
the basis to optimally manage healthcare costs. Further-
more, identification of patients whose cost will change 
allows optimization of interventions given a limited 
budget in order to improve population health. To achieve 
this it is important to have accurate predictions of the 
future health costs. In this work we presented a deep 
learning based approach to predict future costs. Our 

Fig. 3 Error analysis: Shown is the histogram of total cost (a), the log10 absolute error based on the true cost of the ridge regression and the neural 
network (b) as well as the difference between the neural network error and the ridge regression error (c)

Fig. 4 Dependence of performance on patient number and observation time: Shown is the performance ( r2 ) of the neural network depending on 
the patient number and the length of the observation period in years (a). Shown in (b) is the difference between the r2 of the neural network and 
of the ridge regression
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approach can leverage the full complexity of the patient 
records and does not require prior feature selection.

We showed that our approach can outperform stand-
ard approaches, including the Morbi-RSA for all meas-
ured performance metrics (See Table  2). We suggest 
that the performance gain is due to two reasons. First, 
our approach learns important features from the data 
and does not require manual feature selection. It has 
been shown that learnt features allow better predic-
tions in computer vision and speech processing given 
enough training data [19]). The value of learning pre-
dictive features from the data is suggested by the better 
(state-of-the-art) performance of our implementation 
of ridge regression compared to the existing implemen-
tation of Morbi-RSA that is only based on 80 diseases. 
Second, our deep learning approach allows modelling 
of complex interactions between all variables which is 
not possible for ridge regression. This enables better 

Fig. 5 Cost change prediction: Shown are the raw cost (a) in the last year of the observation period (current costs) and the evaluation period 
(Future costs) as well as the log10 fold‑change between them (b). Shown in (c, d) are the precision recall curves for predicting increasing and 
decreasing costs

Fig. 6 Importance of features per quarter: Shown is the summed 
normalized integrated gradient (Importance) per year for the ridge 
regression and the neural network
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Table 3 Shown are the top‑20 codes with the highest feature importance as determined by the integrated gradients (IG) for the 
neural network, a high‑level description of the codes as well as the corresponding IG

Code Short description IG

Sex Male Male patient 0.017

GOP key 01321 Treatment by non health insurance‑accredited physicians 0.014

GOP key 03004 Practitioner care of patients with age between 55 and 75 years 0.014

GOP key 03220 Treatment of a patient with at least one life‑changing chronic disease 0.012

ICD‑10‑GM key F102 Alcohol dependence 0.011

Sex Female Female patient 0.011

GOP key 03221 Treatment of a patient with at least one life‑changing chronic disease 0.010

GOP key 03005 Practitioner care of patients older than 75 years 0.010

ICD‑10‑GM key F171 Mental and behavioural disorders due to use of tobacco 0.009

ICD‑10‑GM key M171 Unilateral primary osteoarthritis of knee 0.009

ATC code B01AC04 Clopidogrel (antithrombotic agent) 0.009

GOP key 03004R Practitioner care of patients with age between 55 and 75 years (regional billing amendment to GOP 03004) 0.009

GOP key 32001A Profitability bonus for arranging and providing laboratory services (regional billing amendment to GOP 32001) 0.008

GOP key 01731 Early detection of cancer in men 0.008

ICD‑10‑GM key M4809 Spinal stenosis 0.008

ICD‑10‑GM key G359 Multiple sclerosis 0.008

OPS key 80103 Application of drugs and electrolyte solutions via the vascular system in newborns 0.007

ATC code N06AX16 Venlafaxine (antidepressants) 0.007

GOP key 32001B Profitability bonus for arranging and providing laboratory services (regional billing amendment to GOP 32001) 0.007

GOP key 07220 Surgical primary care 0.007

Table 4 Shown are the top‑20 codes with the highest feature importance as determined by the integrated gradients (IG) for the ridge 
regression, a high‑level description of the codes as well as the corresponding IG

Code Short description IG

GOP key 03220 Treatment of a patient with at least one life‑changing chronic disease 0.020

GOP key 03221 Treatment of a patient with at least one life‑changing chronic disease (intensified consultation of physician) 0.017

Sex Female Female patient 0.015

GOP key 03004R Practitioner care of patients with age between 55 and 75 years 0.014

GOP key 03004 Practitioner care of patients with age between 55 and 75 years 0.013

GOP key 03040 Family medical care 0.013

GOP key 03230 Problem‑oriented medical consultation, which is necessary due to the nature and severity of the illness 0.010

ATC code V04CA02 Tests for diabetes (Glucose) 0.010

GOP key 03111R Practitioner care of patients with age between 5 and 59 years 0.007

ATC code M01AE01 Ibuprofen (antiinflammatory and antirheumatic) 0.007

ICD‑10‑GM key F171 Mental and behavioural disorders due to use of tobacco 0.007

Hospital type Hospitals of maximum care 0.006

GOP key 32001J Profitability bonus for arranging and providing laboratory services 0.006

GOP key 03040G General practitioner medical care 0.006

GOP key 32001A Profitability bonus for arranging and providing laboratory services (regional billing amendment to GOP 32001) 0.006

FG key 53 Physician group: Neurology 0.005

GOP key 32094 Quantitative determination of glycated hemoglobins 0.005

GOP key 03212 Chronic disease 0.005

FG key 11 Physician group: Trauma Surgery 0.005
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modelling of medical phenotypes such as interactions 
between age, sex and diagnosis. This is supported by 
the identified terms that are associated with increas-
ing costs between ridge regression and the deep neu-
ral network, where the ridge regression uses mainly the 
GOP codes and the deep network puts a higher empha-
sis on medical diagnoses and prescribed drugs. It also 
worth noting that in contrast to the Morbi-RSA, which 
is mainly based on ICD-10-GM codes, both the ridge 
regression and the neural network rely on GOP codes.

Since we placed no strong assumption on the pheno-
type that we modelled, we believe that the neural net-
work may also easily adapted to predict other medical 
phenotypes.

However, we also acknowledge that further research 
is necessary to better understand the merits and lim-
its of deep learning in identifying medical phenotypes 
from insurance claims. This includes the optimal archi-
tecture of the networks but also strategies to interpret 
deep networks, to provide uncertainty estimates for the 
models and model distribution shifts caused by changes 
in billing regulations and treatment guidelines.

Conclusion
Overall, we have shown that neural networks compare 
favorably to several baseline methods and that tools 
such as integrated gradients can be used to explain pre-
dictions. We therefore believe, that neural networks are 
a valuable addition to the toolkit that exist for work-
ing with population-size patient records. We acknowl-
edge, however, that further research is needed to better 
understand the challenges, advantages and disadvan-
tages of using neural networks for modeling other out-
comes and patient trajectories from high-dimensional 
electronic patient records.
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