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Abstract 

Background:  Microsimulation models are mathematical models that simulate event histories for individual mem-
bers of a population. They are useful for policy decisions because they simulate a large number of individuals from 
an idealized population, with features that change over time, and the resulting event histories can be summarized to 
describe key population-level outcomes. Model calibration is the process of incorporating evidence into the model. 
Calibrated models can be used to make predictions about population trends in disease outcomes and effectiveness 
of interventions, but calibration can be challenging and computationally expensive.

Methods:  This paper develops a technique for sequentially updating models to take full advantage of earlier cali-
bration results, to ultimately speed up the calibration process. A Bayesian approach to calibration is used because 
it combines different sources of evidence and enables uncertainty quantification which is appealing for decision-
making. We develop this method in order to re-calibrate a microsimulation model for the natural history of colorectal 
cancer to include new targets that better inform the time from initiation of preclinical cancer to presentation with 
clinical cancer (sojourn time), because model exploration and validation revealed that more information was needed 
on sojourn time, and that the predicted percentage of patients with cancers detected via colonoscopy screening was 
too low.

Results:  The sequential approach to calibration was more efficient than recalibrating the model from scratch. Incor-
porating new information on the percentage of patients with cancers detected upon screening changed the esti-
mated sojourn time parameters significantly, increasing the estimated mean sojourn time for cancers in the colon and 
rectum, providing results with more validity.

Conclusions:  A sequential approach to recalibration can be used to efficiently recalibrate a microsimulation model 
when new information becomes available that requires the original targets to be supplemented with additional 
targets.
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Background
Microsimulation models (MSMs) are mathematical mod-
els that simulate event histories for individual members 
of a population. They can be used to simulate a large 
number of individuals from an idealized population, 

with features that change over time. MSMs are useful 
for policy decisions because life histories can be simu-
lated under alternative scenarios or assumptions, and 
aggregated to predict population-level outcomes. MSMs 
can be used to estimate effects of interventions that may 
influence multiple components of the model in complex 
ways [9].

Health policy MSMs represent social or biologi-
cal mechanisms that determine health or economic 
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outcomes and rely on assumptions about how policy 
choices will affect those outcomes [25]. Measures or out-
comes that are relevant to the health policy question at 
hand can then be summarized by aggregating individual-
level predictions to understand the effects of different 
policies. MSMs have been applied to health policy ques-
tions since 1985 [44]. Cancer is one area of application 
where MSMs have been heavily used to inform policy, 
with the U.S. Preventive Services Task Force consider-
ing the effectiveness of different screening regimens pre-
dicted by MSMs when developing guidelines for breast 
[22], cervical [14], colorectal [17], and lung cancer [4].

Information may be directly available on some param-
eters that govern the model predictions, such as the sen-
sitivity and specificity of a screening exam or survival 
time following diagnosis. Such parameters are referred 
to as inputs, which are fixed rather than estimated. 
However, most parameters will be related to observable 
outcomes or available evidence in a complex way. For 
example, population-level outcomes such as colorec-
tal cancer (CRC) incidence rates can be observed from 
national cancer registries, but these are functions of the 
unobservable process of developing CRC, which depends 
on the rate of adenoma (precursor lesion) initiation, and 
the growth and transition to preclinical (asymptomatic) 
and clinical (detected) cancer. The functional relation-
ships between the observed data and the MSM param-
eters is not known. Evidence provided by screening trials 
and epidemiological studies informs MSM parameters, 
but the  function of this relationship is not known and 
parameters may interact in complex ways to generate the 
observed outcomes.

At its simplest, model calibration is the process of 
incorporating evidence into the model [25], and is 
accomplished by selecting parameter values that result 
in model predictions that are consistent with observed or 
expected results based on observed data or expert knowl-
edge. Calibrated MSMs can be used to make predictions 
about population trends in disease outcomes and effec-
tiveness of interventions. However, calibration can be 
a challenging and time consuming process because it 
involves searching a high dimensional parameter space 
to predict many targets simultaneously, and it is some-
times difficult to find suitable parameter values. There 
are many methods for calibration, ranging from simple 
one-at-a-time parameter perturbation [37], to grid search 
algorithms from engineering [15, 19], which may break 
down when calibrating a large number of parameters. 
Directed searches use the derivative of the likelihood 
function, or an approximation to the derivative, to move 
toward areas of improved fit (e.g., [30, 35]), however for 
MSMs, the likelihood function is generally not available 
in closed form.

Bayesian approaches to calibration are particularly use-
ful in the context of MSMs for policy-making because 
they combine different sources of evidence and enable 
estimation and uncertainty quantification of parameters, 
functions of parameters, and model predictions. Such 
uncertainty arises from variability in calibration data 
(sampling variability), simulation (Monte Carlo) vari-
ability, and parameter estimation. Markov Chain Monte 
Carlo (MCMC) is a commonly used class of algorithms 
for estimating the parameters of a Bayesian model [41, 
50]. Rutter et al. [41] developed an approximate Metrop-
olis-Hastings algorithm that includes an embedded 
simulation to estimate the likelihood function used to 
calculate the acceptance ratio. The MCMC algorithm was 
used to simulate draws from the posterior distribution of 
the parameters of a MSM for CRC given calibration tar-
gets. However, MCMC can be costly to apply to MSM 
calibration because the likelihood is often intractable and 
computationally expensive to estimate [25], and because 
it is based on a process of sequentially updating draws. 
The calibration process can also require a large number 
of samples from a model’s parameter space to be used for 
propagating uncertainties of the resulting parameter esti-
mates, which can make certain non-parametric, Gaussian 
process-based Bayesian approaches less feasible [8].

In order to take advantage of modern computing 
resources, Rutter et  al. [43] developed a likelihood-free 
approximate Bayesian computation (ABC) algorithm [23, 
46], referred to as Incremental Mixture ABC (IMABC), 
that was successfully applied to calibrate a MSM for CRC, 
referred to as CRC-SPIN 2.0 (ColoRectal Cancer Simulated 
Population model for Incidence and Natural history). Once 
CRC-SPIN 2.0 had been calibrated, posterior distributions 
were examined, and predictions from the model were com-
pared to external validation targets that were not used in 
model calibration [40]. This examination revealed that very 
little information on sojourn time, the time from initiation 
of preclinical cancer to presentation with clinical CRC, 
was provided by the calibration targets. The calibrated 
model also resulted in screen detected cancer rates (the 
percentage of patients with cancer detected via colonos-
copy screening) that were too low and indicated that addi-
tional calibration targets should be incorporated to better 
inform this aspect of the disease process. One approach is 
to perform another full calibration, including one or more 
new targets in addition to the previous set. However, this 
is time consuming and does not build on information 
about parameters obtained from the original calibration. 
This paper develops a technique for sequentially updating 
MSMs to take full advantage of earlier calibration results 
that are based on a similar set of targets, with the objective 
being to ultimately speed up the calibration process.
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The remainder of this paper is organized as follows. 
In “Calibrating the microsimulation model” section, we 
present the CRC-SPIN 2.0 model, the calibration targets 
included, and the resulting estimates of parameters and 
predictions arising from this calibrated model. In “Recali-
brating the microsimulation model to incorporate new 
study targets” section, we explore methods for incorpo-
rating additional (new) calibration targets and updat-
ing the parameter draws so that the model calibrates to 
the new set of calibration targets. “Discussion” section 
concludes with a discussion of other applications of this 
method, implications for modelers and remaining ques-
tions to be addressed in future work.

Calibrating the microsimulation model
The microsimulation model for colorectal cancer
The ColoRectal Cancer Simulated Population Incidence 
and Natural history model [41, 42] describes the natu-
ral history of CRC based on the adenoma-carcinoma 
sequence [20, 26]. Four model components describe 
the natural history of CRC: (1) adenoma risk; (2) ade-
noma growth; (3) transition from adenoma to preclini-
cal cancer; and (4) transition from preclinical to clinical 
cancer (sojourn time). CRC-SPIN has been used to pro-
vide guidance to the Centers for Medicare and Medic-
aid Services (CMS) [51] and to inform U.S. Preventive 
Services Task Force CRC screening guidelines [17]. 
We provide an overview of CRC-SPIN  2.0 [43], which 
contains 22 calibrated parameters, θ , and prior dis-
tributions which are truncated normal or uniform, as 
informed by prior knowledge from published literature 
and previous calibration exercises. We refer the reader 
to [43] and online at cisnet.cancer.gov [28] for 
more detail.

Adenoma risk
Adenomas are assumed to arise according to a non-
homogeneous Poisson process with a piecewise lin-
ear age-effect. The ith agent’s baseline instantaneous 
risk of an adenoma at age a = 20 years is given by 
ψi(20) = exp(α0i + α1 femalei ) where α0i ∼ N (A, σα) and 
α1 captures the difference in risk for women (femalei = 1 
indicates agent i is female). Adenoma risk changes over 
time, generally increasing with age, a process we model 
using a piecewise linear function for log-risk with knots 
at ages 50, 60, and 70 and assuming zero risk before age 
20 [18]:

(1)

ln(ψi(a)) =α0i + α1 femalei + δ(a ≥ 20)min(a− 20, 30)α20

+ δ(a ≥ 50)min((a− 50), 10)α50

+ δ(a ≥ 60)min((a− 60), 10)α60

+ δ(a ≥ 70)(a− 70)α70.

Adenoma growth
For each adenoma, we simulate a hypothetical time to 
reach 10mm, assuming that t10mm has a Frèchet distri-
bution with shape parameter β1 , scale parameter β2 , and 
cumulative distribution function given by

for t ≥ 0 . We allow different scale and shape parameters 
for adenomas in the colon and rectum, using the notation 
β1c and β2c for the colon, and β1r and β2r for the rectum.

Adenoma size at any point in time is simulated using 
the Richard’s growth model, with a calibrated parameter 
that allows for a wide range of sigmoidal growth patterns 
[48]. The diameter of the jth adenoma in the ith agent at 
time t after initiation is given by

where d0 = 1 mm is the minimum adenoma diameter 
in millimeters (mm) and d∞ = 50 is the maximum ade-
noma diameter. The calibrated parameter p determines 
the shape of the growth curve. The growth rate for the jth 
adenoma within the ith agent, �ij , is calculated by setting 
t = t10mm and dij = 10 in Eq. (3).

Transition from adenoma to preclinical invasive cancer
For the jth adenoma in the ith agent, the size at transi-
tion to preclinical cancer (in mm) is simulated using a 
log-normal distribution; the underlying (exponentiated) 
normal distribution is assumed to have standard devia-
tion σγ and mean

where rectumij is an indicator of rectal versus colon loca-
tion and ageij is the age at adenoma initiation in decades, 
centered at 50 years. Based on this model, the prob-
ability that an adenoma transitions to preclinical cancer 
increases with size. Most adenomas do not reach transi-
tion size and small adenomas are unlikely to transition to 
cancer.

Sojourn time
Sojourn time is the time between the transition from 
preclinical (asymptomatic) CRC to clinical (symptomatic 
and detected) cancer. We simulate sojourn time using a 
Weibull distribution with survival function

(2)F(t) = exp

[

−

(

t

β2

)−β1
]

(3)

dij(t) = d∞

[

1+

(

(

d0

d∞

)1/p

− 1

)

exp(−�ijt)

]p

(4)

µij =γ0 + γ1 femalei + γ2 rectumij + γ3 femalei rectumij

+ γ4 ageij + γ5 age
2
ij
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for preclinical cancer in the colon, and assume a propor-
tional hazards model, with hazard ratio exp(�3 rectumij) , 
to allow sojourn time to systematically differ for preclini-
cal cancers in the colon and rectum.

Simulation of lifespan and colorectal cancer survival
Once a cancer becomes clinically detectable, we simulate 
stage and tumor size at clinical detection based on Sur-
veillance, epidemiology, and end results (SEER) data from 
1975 to 1979, the most recent period prior to widespread 
dissemination of CRC screening tests [27]. Survival time 
after CRC diagnosis is based on the first diagnosed CRC 
and depends on age, sex, cancer location, and stage, and 
is simulated using relative survival estimates from analy-
sis of SEER data from individuals diagnosed with CRC 
from 1975 through 2003 [39]. We assume proportional 
hazards of CRC and other-cause mortality within sex and 
birth-year cohorts. Other-cause mortality is modeled 
using survival probabilities based on product-limit esti-
mates for age and birth-year cohorts from the National 
Center for Health Statistics Databases [29].

Calibration data
Calibration data consist of individual-level data that are 
reported in aggregate in published studies. Calibration 
targets therefore take the form of summary statistics. 
Because targets come from small and larger studies, as 
well as registry data that results in very precisely esti-
mated targets, the level of uncertainty varies across tar-
gets. Generating calibration targets requires simulating a 
set of agents with risk that is similar to the study popula-
tion based on age, gender, prior screening patterns, and 
the time period of the study, which may affect both over-
all and cancer-specific mortality. This simulation can be 
computationally demanding, depending on the number 
of agents and the process used to simulate the particular 
target. We calibrated to 40 targets from six sources: SEER 
registry data ([27], 20 targets) and five published studies 
(20 targets). Let y = (y1, . . . , yJ ) denote these J = 40 cali-
bration targets.

SEER colon and rectal cancer incidence rates in 1975–
1979 are reported per 100,000 individuals and are a key 
calibration target. We assumed that the number of inci-
dent CRC cases in any year follows a binomial distribu-
tion with number of trials equal to the SEER population 
size. To simulate SEER incidence rates, we generated a 
population of individuals from aged 20 to 100 who are 
free from clinically detected CRC, with an age- and sex-
distribution that matches the SEER 1978 population. 

(5)S(t) = exp

(

−

(

t

�1

)�2
) Model-predicted CRC incidence is based on the number 

of people who develop CRC in the next year.
To simulate additional targets from published studies, 

we generated separate populations for each study that 
match the age and gender distribution of the sample dur-
ing the time-period of the study. We assume that study 
participants are free from symptomatic (clinically detect-
able) CRC and have not been screened for CRC prior 
to the study. This is a reasonable assumption because 
studies used for model calibration were conducted prior 
to widespread screening, or were based on minimally 
screened samples.

Simulation of targets also requires simulating the 
detection and removal of adenomas and preclinical can-
cers. The probability of detection, or test sensitivity, is a 
function of lesion size, and is informed by back-to-back 
colonoscopy studies [10, 38]. We specify the probability 
of not detecting (or missing) an adenoma of size s that 
produces miss rates that are consistent with observed 
findings [10, 38] and were successfully used in [43].

The miss rate functions result in sensitivities of 0.81 
for adenomas of 5mm, 0.92 for adenomas of 10mm, and 
0.98 for adenomas of 15mm. For preclinical cancers, we 
assume sensitivity that is the maximum of 0.95 and sen-
sitivity based on adenoma size, so that colonoscopy sen-
sitivity is 0.95 for preclinical cancers 12mm or smaller, 
and sensitivity is greater than 0.95 for larger preclinical 
cancers.

Calibration results and motivation for recalibration
A Bayesian approach to model calibration is preferred in 
this context to enable uncertainty quantification in model 
parameters and because of the ability to incorporate dif-
ferent sources of information through calibration targets 
and prior distributions. We use the Incremental Mixture 
Approximate Bayesian Computation (IMABC) algorithm 
developed by [43] and used successfully to calibrate the 
CRC-SPIN model with 22 parameters and 40 targets. We 
refer the reader to the Additional file 1 for more descrip-
tion of the algorithm. This algorithm generates a sample 
of MSM parameter draws that are from an approximate 
posterior distribution. This approach is an approximate 
Bayesian version of adaptive importance sampling [36, 
47] and similar to the Population Monte Carlo ABC algo-
rithm of Beaumont et al. [1]. While While McKinley et al. 
[24] showed that popular ABC methods can be inefficient 
or fail to converge when applied to complex, high-dimen-
sional models (in their example there are 22 parameters 
and 18 outputs, which we refer to here as targets), the 
Incremental Mixture Approximate Bayesian Computa-
tion (IMABC) algorithm successfully calibrated the CRC-
SPIN model with 22 parameters and 40 targets.
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The application of IMABC in the experiments 
described here was implemented using the EMEWS 
framework [31] and run on the Midway2 cluster at the 
University of Chicago Research Computing Center and 
the Bebop cluster at Argonne National Laboratory. To 
take advantage of parallel processing, we used 80 node 
job allocations to execute up to 318 concurrent CRC-
SPIN instances.

Internal model validation indicated that, as expected, 
the model simulated (predicted) targets were within the 
tolerance intervals of the observed calibration targets. 
However, the posterior distributions for two parameters 
of the sojourn time (time spent in the preclinical can-
cer phase) distribution largely reflected the prior distri-
butions [43], and suggested too little time spent in the 
preclinical cancer phase. This finding was also noted by 
Rutter et al. [40] for an earlier version of the CRC-SPIN 
model, based on the results of a model validation, and 
comparison to other CRC models [16, 49].

We hypothesize that sojourn time is not well estimated 
because sojourn time is informed by screening studies, 
and our targets include only a single calibration target 
from a screening study that is imprecise and therefore 
has extremely wide tolerance intervals [11]. Sojourn time 
and preclinical cancer detection rates are closely related, 
as a longer sojourn time implies more time to detect 
preclinical cancers. In light of this finding, we sought to 
include an additional calibration target that would pro-
vide more information about sojourn time.

Recalibrating the microsimulation model 
to incorporate new study targets
The United Kingdom Flexible Sigmoidoscopy Screening 
(UKFSS) Trial [12] was a large, randomized controlled 
trial that examined the effectiveness of a one-time flex-
ible sigmoidoscopy. All adults aged between 55 and 64 
years who were registered with participating practices 
were eligible to take part unless they met standard exclu-
sion criteria. Eligible, interested respondents were ran-
domly allocated to the screening or control groups of 
the trial. No screening program was in place in the UK 
during the period under study, so it is reasonable for the 
model to make the assumption of no prior screening for 
trial participants. One key baseline outcome reported 
from this study is percentage of patients with cancers 
detected upon screening. The rate of CRC detection was 
0.0046 for men (derived from a sample size of 20,519 
men) and 0.0017 for women (derived from a sample size 
of 20,155 women). This corresponds to an overall screen 
detection rate of 0.0032 based on 40,674 people. The pre-
viously included screen detection rate (the Imperiale tar-
get) was based on a small study that included only 1994 
people, hence the UKFSS study is based on a sample size 

of more than 20 times the size, and therefore provides 
a much more precisely estimated target that will yield 
more information for estimating the model parameters.

Methods
To revise the set of calibration targets and include a more 
precisely estimated set of targets (this is equivalent to 
replacing the imprecise target with the new targets since 
in this case the tolerance or confidence intervals around 
the precisely estimated target are fully contained in the 
other set), one option is to “start from scratch”, applying 
the IMABC algorithm or a different algorithm to cali-
brate the model to this revised set of targets. However, 
this may be inefficient and does not take advantage of 
what has already been learned about model parameters 
from the first calibration. An alternative is to build from 
the original calibration results, and update them in light 
of new information.

Let z = (z1, . . . , zK ) denote the new K calibration tar-
gets, to be added to the original targets y. We want to 
simulate from the posterior distribution of θ , given origi-
nal targets y and new targets z. Note that p(θ | y, z) is pro-
portional to p(θ)p(y | θ)p(z | θ , y) , or p(θ | y)p(z | θ , y) , 
where p(θ | y) is the posterior distribution from the last 
calibration, by standard Bayesian updating rules.

We explore two different approaches to calibration, 
the first being a “start from scratch” method that incor-
porates all of the original targets as well as the new gen-
der-specific screen detection rate targets, and the second 
being a sequential calibration that begins with the cur-
rent set of posterior samples and updates them to fit the 
new targets (as well as the original ones). The structure 
of the IMABC algorithm makes it amenable to a “warm 
start”. Because we have already successfully applied the 
IMABC algorithm to obtain samples from an approxi-
mate posterior fit to y, our sequential approach continues 
to iterate through the IMABC algorithm until the target 
ESS of 5000 is reached. For comparative purposes, the 
start from scratch method begins the IMABC algorithm 
in the standard way by drawing from the prior. The idea 
behind this sequential algorithm is that, although none of 
the posterior samples from the original calibrated model 
fit the gender-specific screen-detection targets well (e.g., 
none of the current samples are from the full posterior 
p(θ | y, z) ), they are still informative about where the 
posterior lies, since they are samples from p(θ | y).

Let the posterior distribution approximated by the 
original calibration be denoted by porig (θ | y) . The start 
from scratch method and sequential calibration method 
are both used to calibrate the model to targets y and z, 
where z represents the more precise screen-detection 
rates. Let these posteriors be denoted by pscratch(θ | y, z) 
and pseq(θ | y, z) . We focus on two main comparisons. 
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The first is to compare porig (θ | y) to pscratch(θ | y, z) and 
then determine whether, and to what degree, adding in 
new study targets z changes the model parameter esti-
mates. The second is to compare pscratch(θ | y, z) and 
pseq(θ | y, z) to assess whether the method applied for 
recalibration, e.g., the start from scratch and sequen-
tial approaches, yield the same estimated posterior 
distributions.

To facilitate these comparisons, we compute a 95% 
credible interval overlap measure (e.g., [5, 13]) for each 
parameter and each pair of posterior distributions 
(Table  2). The overlap measure based on two (overlap-
ping) credible intervals (L1,U1) and (L2,U2) is computed 
as 0.5(UI − LI )/(U1 − L1)+ 0.5(UI − LI )/(U2 − L2) , 
where (LI ,UI ) is the intersection of the two overlapping 
intervals. When the intervals are identical, this is equal to 
1. When the intervals do not overlap at all, the measure 
is defined as equal to 0. This overlap measure averages 
the proportion of the first interval that is contained in the 
second, and the proportion of the second interval that is 
contained in the first. We also estimate the overlapping 
area between the two empirical posterior distributions 
(e.g., [6, 32, 41]). Values closer to 1 indicate more similar 
empirical distributions and values closer to 0 indicate the 
distributions overlap very little. We compute the stand-
ardized difference in means (SMD), which we define as 

the difference in posterior means, standardized by the 
estimated posterior standard deviation from the original 
calibration. Finally, we calculate an estimate of the Hell-
inger distance between the two distributions, using the 
“statip” package in R [34].

Results
The start from scratch approach required 73 iterations 
and 737,715 simulated parameters to reach the target 
ESS of 5000. Starting from the previous iterations, the 
sequential approach required 50 iterations and 500,500 
simulated parameters to reach the target ESS, which 
translates to a significant time savings given that micro-
simulation model evaluations can be very expensive and 
each parameter draw requires multiple model evalua-
tions as a large number of agents need to be simulated 
via the natural history model in order to produce a single 
simulated target without too much stochastic variabil-
ity. The exact time of each iteration is problem-specific, 
as it depends on the number of targets and how expen-
sive they are to simulate. However, in this application, the 
start from scratch approach required 70.6 h, whereas the 
sequential approach required 48.1 h. Thus the sequen-
tial approach is significantly more efficient requiring 
only 68% of the time required by the start from scratch 
approach.

Table 1  Posterior means and 95% credible intervals of model parameters from original calibration to targets y, and from the model 
that is recalibrated to {y , z} using a start from scratch approach as well as a sequential calibration approach

Refer to  “The microsimulation model for colorectal cancer” section for details on model component distributions and parameters

Parameter Original posterior New targets (start from scratch) New targets (sequential)

Sojourn time

 �2 3.72 (2.20, 4.92) 2.38 (2.02, 3.07) 2.42 (2.02, 3.23)

 �1 2.57 (2.27, 3.06) 3.77 (3.35, 4.16) 3.80 (3.36, 4.18)

 �3 − 0.35 (− 0.96, 0.67) 0.87 (0.65, 0.99) 0.86 (0.61, 0.99)

Table 2  Credible interval overlap measures, area overlap measures, standardized differences in means (SMD), and Hellinger distances 
based on posterior samples from the original calibrated model ( porig(θ | y) ), the start from scratch method for recalibration that 
incorporates new screen-detection rate targets ( pscratch(θ | y , z) ) and the sequential recalibration method that starts from the original 
calibrated posterior samples when adding in the new target ( pseq(θ | y , z))

porig(θ | y) and
pscratch(θ | y, z)

pseq(θ | y, z) and
pscratch(θ | y, z)

Parameter CI
overlap

Area
overlap

SMD Hellinger CI
overlap

Area
overlap

SMD Hellinger

Sojourn time

 �2 0.57 0.14 1.75 0.70 0.93 0.88 0.06 0.07

 �1 0.00 0.01 5.76 0.98 0.98 0.90 0.11 0.05

 �3 0.04 0.04 2.76 0.90 0.96 0.92 0.02 0.05
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In Table  1, posterior means and 95% credible inter-
vals are displayed for the model parameters for sojourn 
time from each of the three calibration results. (Results 
for all parameters are included in the “Appendix”.) Com-
paring the posterior estimates shown in Table 1 and the 
overlap or similarity measures based on porig (θ | y) and 
pscratch(θ | y, z) in Table 2 indicates that the estimates of 
the parameters of the sojourn time function are signifi-
cantly changed by the addition of new targets z. The scale 
parameter and rectal location effect for the distribution 
of sojourn time essentially do not overlap at all, and the 
posterior means are very different. In Fig. 1, we compare 
the marginal posterior distributions for the three sojourn 

time parameters from porig (θ | y) and pscratch(θ | y, z) . 
The posterior distribution for the shape parameter and 
rectal location effect for sojourn time become more 
peaked as a consequence of the more precise information 
provided by the new screen-detection rate targets. The 
sojourn time parameters are all meaningfully shifted in 
terms of location.

We also compare the two methodological approaches 
to recalibrating the model to match the new, more pre-
cise, study targets. The start from scratch approach and 
the sequential approach yield posterior distributions 
pseq(θ | y, z) and pscratch(θ | y, z) that are very similar. 
In Fig. 2, we compare the posterior distributions for the 

2 3 4 5

Sojourn Time: Shape Parameter
2.5 3.0 3.5 4.0

Sojourn Time: Scale Parameter
−1.0 −0.5 0.0 0.5 1.0

Sojourn Time: Rectum Effect
Fig. 1  Posterior distributions of sojourn time parameters from the original calibration (light blue) and the recalibrated model that is calibrated to 
two additional targets using the start from scratch method (purple). Prior distributions are shown in gray

2 3 4 5

Sojourn Time: Shape Parameter

2.5 3.0 3.5 4.0

Sojourn Time: Scale Parameter

−1.0 −0.5 0.0 0.5 1.0

Sojourn Time: Rectum Effect

Fig. 2  Posterior distributions for sojourn time parameters using the start from scratch method for recalibrating the model to fit new targets (purple) 
and the sequential calibration approach (light blue). Prior distributions are shown in gray
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three sojourn time parameters previously shown, not-
ing the similarity in the estimated distributions, which 
is expected given that both methods should be approxi-
mating the same posterior distribution, albeit using 
different approaches to get to that place. Given these 
findings, the sequential approach to recalibrating the 
model is preferred, as it takes far fewer iterations to reach 
convergence.

While it is clear that the new screen-detection rate tar-
gets change the location and shape of the posterior dis-
tributions for the sojourn time distribution parameters, 
in order to more fully understand the implications of 
these changes on our estimates of sojourn time and can-
cer screening detection rates, we compute mean sojourn 
time (MST) for cancers in the colon and the rectum. MST 
is defined as �1Ŵ(1+ 1/�2) for cancers in the colon and 
�1 exp(�3)Ŵ(1+ 1/�2) for cancers in the rectum, where Ŵ 
represents the gamma function. The posterior mean and 
95% credible intervals for MST for cancers in the colon 
based on the original calibrated model that includes the 
imprecise screen-detection rate target of Imperiale et al. 
[11] are 2.32 (2.05, 2.74), whereas when calibrated to the 
more precise and gender-specific UKFSS targets (using 
the start from scratch method) they are 3.35 (2.97, 3.70). 
The posterior mean and 95% credible intervals for MST 
for cancers in the rectum based on the original calibra-
tion are 1.83 (0.85, 4.65), and calibrating to the UKFSS 
targets yields 8.01 (6.52, 9.33). Therefore, the more pre-
cisely estimated UKFSS targets significantly increase the 
estimated sojourn time for both types of cancers. This is a 

desirable outcome given that prior model validation work 
[40, 43] had suggested that CRC-SPIN underestimated 
the length of the preclinical cancer phase, providing 
sojourn time estimates that were too short per validation 
results and comparison to other competing models [16, 
49]. Additionally, as expected, the sequential recalibra-
tion method yielded estimates for MST that were virtu-
ally identical to the start from scratch method: 3.37 (2.98, 
3.71) for the colon and 8.00 (6.38, 9.37) for the rectum. 
Figure  3 compares posterior distributions for MST for 
cancers in the colon and rectum across all three sets of 
results. As expected, the posterior distributions from 
the recalibrated models that include the additional gen-
der-specific screen-detection rate targets look virtually 
identical regardless of whether the start from scratch or 
sequential method is applied.

While each of the three calibrations provides a 
set of posterior samples of model parameters, tar-
gets are also simulated from the models during the 
process of model fitting. Since the models were cali-
brated to these targets, the simulated targets all “fit” 
the observed targets, however they may not be iden-
tical since the observed targets are estimated with 
error and therefore simulated targets are accepted as 
long as they fall within a specified tolerance interval 
of the observed targets (refer to the IMABC algo-
rithm of Rutter et  al. [43] for details). We therefore 
compare simulated targets (rather than model param-
eters) across the three sets of results. Tables  3 and 4 
provide the overlap and standardized difference in 

2.0 2.5 3.0 3.5

Mean Sojourn Time (Colon)

2.5 5.0 7.5 10.0

Mean Sojourn Time (Rectum)
Fig. 3  Posterior distributions for mean sojourn time under original calibration (green), and with new targets calibrated via the start from scratch 
method (blue) and the sequential calibration approach (pink). The overlap between the two methods for recalibration with new targets is shown in 
purple
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means measures used to compare the original cali-
brated model to the updated model that incorporates 
the new screen-detected cancer rates, and to compare 
the two methods for recalibration. There are some 
simulated targets that change when the more precisely 
estimated screen detection rates are added as calibra-
tion targets. The most notable differences are in the 
number of preclinical cancers per large lesion [2, 21]. 
The number of preclinical CRCs per 1,000 adenomas 
greater than 10mm was estimated as 16 (95% CI of (13, 
22)), but with the addition of new targets, these esti-
mates increased to 33 (95% CI of (28, 37)) (identical 
under the start from scratch and sequential approach 
to calibration).

Discussion
We have proposed a method for recalibrating a micro-
simulation model to incorporate new calibration targets. 
This method can be used when new information becomes 
available that requires the original targets to be supple-
mented with additional targets. We applied the algorithm 
to recalibrate a natural history model for CRC to include 
additional targets based on larger studies, and found that 
it was more efficient than starting over from scratch.

There are other settings in which this method is use-
ful for recalibration, not just when adding new cali-
bration targets. Sensitivity of colonoscopy is a fixed 
model input (non-calibrated parameter) that is speci-
fied based on direct evidence. A recent meta-analysis 

Table 3  Credible interval overlap measures, area overlap measures, and standardized differences in means based on simulated 
calibration targets from published studies

We compare the original calibrated model ( porig(θ | y) ), the start from scratch method for recalibration that incorporates new screen-detection rate targets 
( pscratch(θ | y , z) ) and the sequential recalibration method that starts from the original calibrated posterior samples when adding in the new target ( pseq(θ | y , z) ). ∗

Size was reported categorically as ≤ 5mm, 6 to 9mm, and ≥ 10mm. We operationalized these categories as: [1, 5.5) mm, [5.5, 9.5) mm and ≥ 9.5 mm

porig(θ | y) and pscratch(θ | y, z) pseq(θ | y, z) and pscratch(θ | y, z)

Calibration target CI
overlap

Area
overlap

SMD CI
overlap

Area
overlap

SMD

Pickhardt et al. [33]*

% of detected adenomas

 ≤ 5mm 0.80 0.59 0.11 0.95 0.92 0.03

 6− 9mm 0.81 0.57 0.57 0.93 0.93 0.06

 ≥ 10mm 0.70 0.33 1.12 0.96 0.89 0.06

Corley et al. [3]

 Prevalence, Men 50–54 0.62 0.25 1.39 0.91 0.76 0.21

 Prevalence, Men 55–59 0.63 0.28 1.29 0.92 0.75 0.21

 Prevalence, Men 60–54 0.69 0.33 1.11 0.92 0.77 0.21

 Prevalence, Men 65–69 0.75 0.41 0.89 0.92 0.79 0.19

 Prevalence, Men 70–74 0.84 0.53 0.62 0.93 0.81 0.17

 Prevalence, Men 75+ 0.85 0.65 0.41 0.93 0.84 0.15

 Prevalence, Women 50–54 0.65 0.25 1.33 0.96 0.92 0.04

 Prevalence, Women 55–59 0.62 0.27 1.30 0.97 0.89 0.06

 Prevalence, Women60–54 0.64 0.32 1.18 0.98 0.90 0.07

 Prevalence, Women 65–69 0.69 0.40 0.96 0.97 0.92 0.05

 Prevalence, Women 70–74 0.79 0.54 0.69 0.98 0.93 0.04

 Prevalence, Women 75+ 0.86 0.68 0.45 1.00 0.95 0.02

Church [2]

Pre-CRCs per 1000 lesions

 [6, 10)mm 0.65 0.30 1.39 0.98 0.92 0.08

 ≥ 10mm 0.00 0.00 6.70 0.97 0.91 0.09

Lieberman et al. [21]*

Pre-CRCs per 1000 lesions

 6− 9mm 0.90 0.73 0.36 0.96 0.93 0.07

 ≥ 10mm 0.00 0.00 7.68 0.98 0.92 0.03
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[52] examining the sensitivity of colonoscopy indicated 
that the sensitivity we assumed for a colonoscopy exam, 
which was based on earlier studies [10, 38], may have 
been too high. Test sensitivity is a critical input for any 
simulations of screening effects, since it determines 
whether an adenoma of a given size is detected and 
removed upon screening. Information from this recent 
meta-analysis suggests we consider re-specifying the 
probability of not detecting an adenoma to incorporate 
lower test sensitivities for small adenomas. We used 
the sequential approach to recalibration to generate 
posterior samples under a lower test sensitivity value 
for small adenomas. That is, we began with the pos-
terior samples obtained from calibration to the origi-
nal, higher, assumed sensitivity, since evidence from 
“Recalibrating the microsimulation model to incorpo-
rate new study targets” section indicates this can speed 
up the calibration process relative to starting over from 
scratch. While the original calibration based on initially 
specified test sensitivity inputs required 73 iterations, 
this process ultimately requires only another 24 algo-
rithm iterations to achieve an ESS that exceeds 5000.

This work suggests that modelers may be able to sub-
stantially speed up the time needed to recalibrate their 
models. In many MSM or agent based modeling appli-
cations, calibration is a challenging and time consuming 
process due to the stochastic nature of the models and 
the need for embedded simulations to evaluate the com-
putationally expensive model a large number of times 
(e.g., [25]). This prevents modelers from fully exploring 
the sensitivity of the model to inputs, or assumptions, 
and the choice of calibration data. Thus, a model is typi-
cally only calibrated once, and that calibrated model is 
ultimately used for making predictions about population 
trends in disease outcomes and effectiveness of interven-
tions. The methods we propose here reduce the com-
puting and person time required to recalibrate a model, 
and therefore aid in the ability of modelers to more fully 
explore sensitivity to assumptions and make changes 
to data or inputs when the evidence changes. Further-
more, in modeling applications where new data are con-
tinuously made available through, for example daily or 
weekly case counts for infectious diseases, the sequential 
approach becomes even more relevant for tracking the 

Table 4  Credible interval overlap measures, area overlap measures, and standardized differences in means based on simulated annual 
incidence of clinically detected cancers in 1975–1979 (e.g., SEER calibration targets) [27]

We compare the original calibrated model ( porig(θ | y) ), the start from scratch method for recalibration that incorporates new screen-detection rate target 
( pscratch(θ | y , z) ) and the sequential recalibration method that starts from the original calibrated posterior samples when adding in the new target ( pseq(θ | y , z))

porig(θ | y) and pscratch(θ | y, z) pseq(θ | y, z) and pscratch(θ | y, z)

Clinically detected cancer 
incidence, 1975–1979

CI overlap Area overlap SMD CI overlap Area overlap SMD

Colon, female, 20–49 0.94 0.76 0.31 0.98 0.95 0.02

Colon, female, 50–59 0.95 0.82 0.25 0.98 0.94 0.05

Colon, female, 60–69 0.98 0.91 0.05 0.99 0.95 0.03

Colon, female, 70–84 0.92 0.66 0.48 1.00 0.95 0.02

Colon, female, 85+ 0.92 0.70 0.44 0.99 0.92 0.09

Colon, male, 20–49 0.93 0.76 0.33 1.00 0.94 0.03

Colon, male, 50–59 0.96 0.88 0.16 0.98 0.91 0.08

Colon, male, 60–69 0.99 0.92 0.08 0.97 0.90 0.12

Colon, male, 70–84 0.90 0.66 0.47 0.97 0.89 0.12

Colon, male, 85+ 0.87 0.64 0.55 0.97 0.94 0.04

Rectal, female, 20–49 0.89 0.65 0.55 1.00 0.94 0.03

Rectal, female, 50–59 0.97 0.88 0.11 0.98 0.91 0.10

Rectal, female, 60–69 0.95 0.78 0.30 0.98 0.89 0.14

Rectal, female, 70–84 0.93 0.65 0.52 0.98 0.89 0.14

Rectal, female, 85+ 0.91 0.73 0.38 0.96 0.93 0.09

Rectal, male, 20–49 0.98 0.91 0.10 0.98 0.93 0.06

Rectal, male, 50–59 0.84 0.49 0.86 0.99 0.94 0.05

Rectal, male, 60–69 0.86 0.53 0.79 0.98 0.94 0.07

Rectal, male, 70–84 0.93 0.77 0.34 0.99 0.92 0.10

Rectal, male, 85+ 0.97 0.92 0.03 0.98 0.92 0.07
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changing underlying contexts in a timely manner by effi-
ciently generating updated parameter estimates.

While we focused on speeding up calibration within 
an approximate Bayesian framework, another promis-
ing approach to efficient calibration includes the use of 
an emulator (e.g., [7, 45]). An emulator is statistical rep-
resentation of the MSM model that is less expensive to 
compute. The MSM can be evaluated at a series of design 
points, and the emulator can then be “trained” to fit these 
simulated outputs. Developing an emulator for com-
putationally expensive MSMs is appealing, however the 
emulator would have to be complex and accurate enough 
to fit the model well across the entire parameter space, 
which is difficult in high-dimensional settings. This rep-
resents a promising area for future research.

While the methods developed here apply to situations 
when additional calibration data is included as a sup-
plement to the original calibration data, future work will 
focus on settings where the original calibration targets are 
not a subset of the updated set. That is, when one wants 

to remove some of the original targets completely, possi-
bly replacing them with other targets that are inconsistent 
with the original set. More generally, we aim to understand 
more fully when the sequential recalibration approach 
proposed here that builds on existing posterior samples 
does not converge to the correct posterior distribution, or 
is not more efficient than starting over from scratch.

Conclusion
We proposed a method for recalibrating a MSM that can 
be used when new information becomes available that 
requires the original calibration targets to be supplemented 
with new targets. We applied the algorithm to recalibrate 
a natural history model for CRC to include additional 
targets based on larger studies because model examina-
tion and validation indicated that more information was 
needed to inform sojourn time. We found that the sequen-
tial approach to calibration was more efficient than starting 
over from scratch. The new targets resulted in changes in 

Table 5  Posterior means and 95% credible intervals of model parameters from original calibration to targets y, and from the model 
that is recalibrated to {y , z} using a start from scratch approach as well as a sequential calibration approach

Refer to “The microsimulation model for colorectal cancer” section for details on model component distributions and parameters

Parameter Original posterior New targets (start from scratch) New targets (sequential)

Adenoma risk

 A − 6.56 (− 6.89, − 6.11) − 6.49 (− 6.76, − 6.10) − 6.47 (− 6.72, − 6.11)

 α1 − 0.62 (− 0.70, − 0.49) − 0.65 (− 0.70, − 0.56) − 0.66 (− 0.70, − 0.60)

 σα 1.62 (1.43, 1.74) 1.69 (1.59, 1.75) 1.69 (1.57, 1.75)

 α20 0.04 (0.03, 0.05) 0.04 (0.04, 0.05) 0.04 (0.04, 0.05)

 α50 0.04 (0.02, 0.05) 0.03 (0.02, 0.05) 0.03 (0.01, 0.05)

 α60 0.02 (− 0.01, 0.05) 0.01 (− 0.01, 0.04) 0.01 (− 0.01, 0.04)

 α70 0.00 (− 0.02, 0.02) 0.00 (− 0.02, 0.03) 0.00 (− 0.02, 0.03)

Adenoma growth

 β2c 37.67 (34.02, 39.86) 35.34 (31.96, 38.79) 35.42 (32.26, 38.75)

 β1c 1.43 (1.162, 1.701) 1.59 (1.31, 1.83) 1.58 (1.31, 1.81)

 β2r 15.28 (11.81, 19.53) 14.17 (11.29, 18.14) 14.14 (11.30, 17.82)

 β1r 3.39 (1.97, 4.76) 3.24 (1.80, 4.82) 3.39 (1.85, 4.83)

 p 0.69 (0.56, 0.83) 0.79 (0.65, 0.92) 0.79 (0.66, 0.92)

Transition to preclinical CRC​

 γ0 3.16 (3.03, 3.35) 3.17 (3.08, 3.26) 3.17 (3.10, 3.26)

 γ1 − 0.13 (− 0.19, − 0.07) − 0.13 (− 0.18, − 0.08) − 0.13 (− 0.18, − 0.09)

 γ2 − 0.05 (− 0.24, 0.13) − 0.04 (− 0.25, 0.14) − 0.04 (− 0.23, 0.13)

 γ3 0.07 (− 0.03, 0.17) 0.11 (0.01, 0.20) 0.10 (0.01, 0.19)

 γ4 − 1.11 (− 1.42, − 0.79) − 0.74 (− 1.08, − 0.37) − 0.75 (− 1.07, − 0.41)

 γ5 0.12 (0.01, 0.23) 0.10 (0, 0.23) 0.10 (− 0.001, 0.23)

 σγ 0.56 (0.50, 0.65) 0.52 (0.50, 0.55) 0.52 (0.50, 0.56)

Sojourn time

 �2 3.72 (2.20, 4.92) 2.38 (2.02, 3.07) 2.42 (2.02, 3.23)

 �1 2.57 (2.27, 3.06) 3.77 (3.35, 4.16) 3.80 (3.36, 4.18)

 �3 − 0.35 (− 0.96, 0.67) 0.87 (0.65, 0.99) 0.86 (0.61, 0.99)



Page 12 of 14DeYoreo et al. BMC Medical Informatics and Decision Making           (2022) 22:12 

the posterior distribution for mean sojourn time, suggest-
ing longer sojourn times than previously estimated.

Appendix
Table 5 displays posterior means and 95% credible inter-
vals for all model parameters from each of the three cali-
bration results. Table 6 displays the overlap or similarity 
measures based on porig (θ | y) and pscratch(θ | y, z).
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