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Abstract 

Background: Much has been invested in big data and artificial intelligence‑based solutions for healthcare. How‑
ever, few applications have been implemented in clinical practice. Early economic evaluations can help to improve 
decision‑making by developers of analytics underlying these solutions aiming to increase the likelihood of successful 
implementation, but recommendations about their use are lacking. The aim of this study was to develop and apply 
a framework that positions best practice methods for economic evaluations alongside development of analytics, 
thereby enabling developers to identify barriers to success and to select analytics worth further investments.

Methods: The framework was developed using literature, recommendations for economic evaluations and by apply‑
ing the framework to use cases (chronic lymphocytic leukaemia (CLL), intensive care, diabetes). First, the feasibility of 
developing clinically relevant analytics was assessed and critical barriers to successful development and implementa‑
tion identified. Economic evaluations were then used to determine critical thresholds and guide investment decisions.

Results: When using the framework to assist decision‑making of developers of analytics, continuing development 
was not always feasible or worthwhile. Developing analytics for progressive CLL and diabetes was clinically relevant 
but not feasible with the data available. Alternatively, developing analytics for newly diagnosed CLL patients was feasi‑
ble but continuing development was not considered worthwhile because the high drug costs made it economically 
unattractive for potential users. Alternatively, in the intensive care unit, analytics reduced mortality and per‑patient 
costs when used to identify infections (− 0.5%, − €886) and to improve patient‑ventilator interaction (− 3%, − €264). 
Both analytics have the potential to save money but the potential benefits of analytics that identify infections strongly 
depend on infection rate; a higher rate implies greater cost‑savings.

Conclusions: We present a framework that stimulates efficiency of development of analytics for big data and arti‑
ficial intelligence‑based solutions by selecting those applications of analytics for which development is feasible and 
worthwhile. For these applications, results from early economic evaluations can be used to guide investment deci‑
sions and identify critical requirements.
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Background
With the increasing ability to collect healthcare data, bil-
lions of dollars have been invested in (big) data analyt-
ics and artificial intelligence (AI) by private (e.g. IBM, 
Google, hospitals) and public institutions worldwide (e.g. 
Agency for Healthcare Research and Quality, the Patient-
Centered Outcomes Research Institute, European Com-
mission) [1–9]. Analytics can be applied in many ways, 
and it has often been suggested that they can improve 
care for a wide variety of clinical fields [10–15]. Bates 
et al. define big data analytics as the discovery and com-
munication of patterns in datasets that are extremely 
complex due to their size (volume), rapid collection 
(velocity) and/or the need to combine multiple data 
sources (variety) [14]. The term Artificial Intelligence was 
first mentioned many years ago and is defined as the abil-
ity of computers to mimic or simulate the human mind 
[16]. However, despite many publications on the poten-
tial of big data analytics and AI, few analytics have been 
implemented [6, 17–20] and resulted in health benefits 
and/or cost savings [21–23].

Data availability can be an important barrier to the 
development of analytics that improve healthcare [4, 12, 
17, 24–26]. The datasets required to develop machine 
learning models should be large and, depending on the 
method used, should contain sufficient data on relevant 
features [11, 27]. Data-related problems mentioned in 
the literature include limited sample size [4, 24–26, 28], 
a short duration of follow-up [24], validity of results with 
heterogeneous patient populations and selection bias [4, 
13, 17, 24, 28, 29] and bias due to missing data [12, 24, 29, 
30]. Moreover, successful development does not mean 
easy implementation; important barriers to implemen-
tation include the need for prospective validation [4, 24, 
28] and the high costs of validation and implementation 
[4, 19, 24, 31–33].

For other healthcare technologies, such as drugs, medi-
cal devices and diagnostic tests, economic evaluations 
are used to assess the potential impact of anticipated bar-
riers early on during development [34–38]. In economic 
evaluations, the health benefits and costs of novel tech-
nologies are compared to the benefits and costs of an 
alternative such as current care. Use of these economic 
evaluations alongside development is recommended 
to assist decision-making by developers, to analyse the 
impact of uncertainty in performance of the technology 
on outcomes, and to identify critical requirements (e.g. 
price) for successful market access and dissemination 

[36, 37]. A key aim of this approach is to increase the 
likelihood of successful market uptake and avoid wasting 
investments due to failed implementation.

Very few economic evaluations of analytics exist [13, 
17, 20–23, 39, 40] and the ones that do have omitted rel-
evant costs [19, 22]. Moreover, recommendations on how 
and when to perform economic evaluations of analytics 
do not exist, even though their use could improve devel-
opment efficiency by identifying analytics with the great-
est potential health impact. In this paper, we present a 
framework that can assist developer decision-making by 
selecting applications of analytics that are not only worth 
developing but also feasible.

Methods
We present a framework that efficiently selects analyt-
ics that are relevant, feasible and capable of generating 
important health and economic benefits (Fig.  1). The 
framework was developed based on challenges of analyt-
ics development defined in the literature and best prac-
tice recommendations for economic evaluations. It was 
then further refined by applying it in three clinical use 
cases. The use cases were selected from a European Hori-
zon 2020 funded project (AEGLE) that aimed to develop 
a cloud-based big data analytics platform. The three use 
cases focused on chronic lymphocytic leukaemia (CLL), 
the intensive care unit (ICU) and diabetes.

Step 1: select clinically relevant problems
This first step involves selecting relevant clinical prob-
lems. Whether problems are considered clinically rel-
evant depends on the setting for which analytics are 
developed and the experts involved. When analytics are 
developed for a local hospital (i.e. for a learning health 
system), local experts should be consulted to identify 
relevant problems. When the aim is to develop analytics 
for a wider audience such as clinical experts in different 
countries or continents, then interviews with multiple 
potential users are recommended alongside a review of 
guidelines and the literature. Needless to say, a multidis-
ciplinary approach throughout this step is crucial [10, 
41].

Step 2: assess data for development
After relevant problems are selected, it is necessary to 
assess whether the data available, or to be collected, is 
of sufficient quantity and quality to address the problem. 
Such an assessment may include careful scrutiny of the 

Keywords: Analytics, Artificial intelligence, Big data, Cost–benefit analysis, Critical care, Chronic lymphocytic 
leukaemia
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Step 3: Iden�fy cri�cal barriers for successful 
development and implementa�on

• Narrow down the scope of the problem using the Paent, 
Intervenon, Comparator, Outcome (PICO) method

• Note any important barriers from this scope that could limit 
feasibility of realising successful implementaon

Step 1: Select clinically relevant problems 
• Idenfy clinically relevant problems for which analycs could be 

developed
• Select problem  for which to iniate development

Step 2: Assess data for development
• Assess the quanty and quality of the data available or to be 

collected

p1 p2 p3 p4 ... px

Con�nue?

Select new 
problem

NO

NO

YES

YES

YES

NO

Con�nue?

Con�nue?

Develop and revisit previous steps

Step 4: Economic evalua�on
• Develop conceptual model
• Determine input parameters
• Esmate potenal benefits and thresholds

Fig. 1 Flowchart for assessing health economic benefits of novel analytics alongside development. p = problem 
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sample size, duration of follow-up, expected frequency of 
missing data, potential sources of bias and heterogeneity 
in care practices between sites. Moreover, the timing of 
data collection and the types of outcomes collected dur-
ing follow-up may differ between clinical sites.

Step 3: identify critical barriers to realising successful 
development and implementation
The scope of the problem should be narrowed down and 
used to identify critical barriers prior to estimating costs 
and benefits. Narrowing down the scope is a critical step 
in any economic evaluation [37] and one way to achieve 
this is through the Population (or Patient), Intervention, 
Comparator, and Outcomes (PICO) method [37]. First, 
the target population (P) is defined, which can include 
a description of the setting and the population size. The 
intervention (I) should include a description of the care 
pathways involved, including the analytics to be devel-
oped, the additional software and hardware needed to 
use the analytics, and the actions that follow from use 
of the analytics. The description of the comparator (C) 
entails a discussion on treatments available and relevant 
software and hardware elements used in current care. 
The final component of outcomes(O), refers not just to 
clinical outcomes but all outcomes considered relevant 
by users and purchasers, including mortality, life years 
gained, quality-adjusted life years gained(QALYs) and 
economic benefits. Ideally, they should go beyond diag-
nostic performance metrics like Area Under the Curve 
(AUC) [4, 17, 42, 43] and include outcomes related to 
health benefits, satisfaction and costs.

The detailed description of the scope, formulated using 
the PICO method, can then be used to identify poten-
tial barriers to successful development and implementa-
tion of the analytics. An example of a critical barrier is 
whether the health information system currently used 
in a health centre is sufficient to support the analytics or 
whether major upgrades are needed. If the examination 
of possible barriers does not reveal any insurmountable 
barriers, the health and economic benefits can be esti-
mated. When continuing development seems risky, for 
instance because of the limited availability of required 
software and hardware elements in current practice, a 
developer can decide to select a new problem or cease 
development altogether.

Step 4: economic evaluation
The next step is to perform an economic evaluation of the 
analytics that are considered feasible to develop. An evalua-
tion starts by developing a conceptual model and collecting 
input data. A conceptual model can be developed in differ-
ent ways, including the estimation of the number needed to 
treat [44], decision curve analysis [42, 43], decision trees, and 

Markov models. Depending on the stage of development, 
the models may vary from very simple to very complex. The 
validity of the model should be assessed according to best 
practice guidelines [37, 45]. Information on relevant input 
parameters required to populate the model can be collected 
alongside model development from sources such as patient-
level data and the literature, but are sometimes limited to 
expert opinion or assumptions, particularly in the early 
stages of development. Uncertainty surrounding parameter 
estimates generally decreases as development progresses and 
more information becomes available [36, 38].

Base case estimates of potential benefits can then 
be determined using the most likely parameter values. 
Results can be presented using the incremental cost-
effectiveness ratio (ICER) but more importantly; results 
should be presented such that they are understandable 
to the target audience (investors, future users and pur-
chasers). The uncertainty in these point estimates should 
always be analysed using uncertainty analyses. Uncer-
tainty analyses can include scenario analyses and sen-
sitivity analyses, but also analyses to determine critical 
thresholds of relevant parameters, such as accuracy and 
pricing thresholds needed to realise health and economic 
benefits. The headroom can also be estimated according 
to the following formula:

Here N refers to the potential savings where the costs 
of the technology are set to zero, λ is the willingness to 
pay threshold and Q are the health effects gained [46]. 
Moreover, probabilistic sensitivity analyses can be used 
to estimate the impact of uncertainty in all parameters 
simultaneously. For each parameter, random estimates 
are drawn many times (e.g., n = 1000) from their underly-
ing distribution. For these estimates, the costs and effects 
are calculated and presented using a cost-effectiveness 
plane and a cost-effectiveness acceptability curve. In a 
cost-effectiveness acceptability curve, the probability that 
an intervention is cost-effective is plotted against a range 
of willingness to pay thresholds.

Iterative approach
When a developer decides to continue development, the 
different steps (assess data for development, critical bar-
riers to realising success, and the economic evaluation) 
should be revisited as needed throughout development, 
represented by the dotted line in Fig. 1.

Clinical use cases
Chronic lymphocytic leukaemia
The first clinical use case, focused on developing cloud-
based analytics using next generation sequencing (NGS) 

Headroom = N+ � ∗Q
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data of CLL patients from three clinical sites across 
Europe (Sweden, Italy & Greece). CLL is characterised 
by considerable heterogeneity in disease progression [47, 
48] and after diagnosis, the majority of CLL patients are 
followed according to a ‘watch and wait’ (W&W) strat-
egy. Roughly 60% of these patients progress to having 
active disease requiring treatment [47]. The treatment 
they receive depends on their molecular profile and gen-
eral fitness as well as on treatment approval and availabil-
ity [47].
Intensive care
In the second use case, the aim was to develop analytics 
for ICU care using routinely collected data. Data from 
electronic health records (EHRs) and mechanical ventila-
tors of patients from a Greek ICU was available for devel-
opment. There are many ways in which analytics can 
improve ICU care and a variety of applications have been 
suggested in the literature [10, 11]; these include analyt-
ics to determine readmission risk, predict length of stay, 
diagnose sepsis, and improve the interaction between 
patients and mechanical ventilators [11].

Diabetes mellitus (diabetes type 2)
Many diabetes treatments are available, and these can 
often be combined to improve effectiveness. However, 
evaluating efficacy for all combinations, types of patients 
and treatment lines in randomised controlled trials would 
not be feasible, and using EHRs to evaluate effectiveness 
of treatment combinations has previously been suggested 
[30]. In this third use case, the aim was to develop ana-
lytics using EHRs in the United Kingdom to personalise 
diabetes treatment for patients.

Results
The framework was applied to three clinical use cases 
(e.g. CLL, intensive care and diabetes) (Table  1). The 
results for each case are described one by one.

Case 1: CLL
Because of the heterogeneous nature of CLL progression 
and treatment response, stratifying patients according 
to their expected prognosis could improve care [47]. In 
discussions with clinical experts, problems were selected 
based on the three decision points suggested by Baliakas 
et al. The first is upon diagnosis, when clinicians want to 
determine which patients are likely to progress to active 
disease. The second decision point is the moment when 
patients have active disease, and a first-line treatment 
needs to be selected. The third is the decision point when 
first-line treatment has failed, and a decision needs to 
be made about which second-line treatment is best for a 
patient [47]. CLL experts stated that decision points two 
and three were the most clinically relevant.

Regarding decision point one, developing analytics to 
improve stratification for these patients was considered 
feasible with the data available (Table  1). In contrast, 
the feasibility regarding decision point two was limited 
because of large variations between countries in the 
treatments prescribed. For decision point three, develop-
ment of analytics to improve decision-making would not 
be feasible because it was expected that few patients in 
the data set received second-line treatment, which there-
fore meant a small sample size. Consequently, the first 
decision point was considered the best choice for analyt-
ics development.

When defining critical barriers, the scope included 
newly diagnosed Swedish CLL patients. In current care, 
these patients are not treated, but are regularly seen by 
the haematologist and undergo a blood test. When devel-
oping the analytics in 2015–2016, no treatment was 
available for patients with a high risk of progression. The 
only possible changes in care available at the time was 
the ability to personalise the intensity of follow-up and 
the ability to inform patients about their risk. These very 
limited options of ‘treatment’ can be considered a criti-
cal barrier for success since it is likely that costs of NGS 
and analytics are high while health benefits could only 
be expected through the reduction in a patient’s uncer-
tainty (and anxiety) regarding prognosis. Therefore, at 
the time, analytics development did not continue beyond 
research purposes. However, a recent publication has 
suggested that early treatment of intermediate- and high-
risk patients with ibrutinib could delay time to next treat-
ment. Given these new findings, we updated results for 
this application, including the possibility of treatment 
with ibrutinib as part of the intervention.

After the PICO question was formulated, input param-
eters (probabilities, utilities, unit costs and resource use) 
were derived from the literature, Swedish guidelines, 
and expert opinion (Additional file  1: Table  S1). A four 
state Markov model (Additional file 1: Fig. S1) was used 
to estimate costs, life years and quality-adjusted life years 
adopting a lifetime time horizon and a healthcare payer 
perspective. Long-term survival was estimated by com-
bining results on time to next treatment from Condoluci 
et  al. [49] with the hazard ratio reported in preliminary 
results from a randomised controlled trial comparing 
early ibrutinib treatment with current care [50]. More 
details on the model structure and input parameters 
used to estimate the health and economic benefits can 
be found in the Additional file. Even if an effective treat-
ment is available, it is unlikely that analytics to improve 
stratification of newly diagnosed watch and wait CLL 
patients would be considered cost-effective: use of ana-
lytics would lead to a substantial cost increase (€89,985) 
but only a modest gain in health (0.13 QALYs) (Table 2). 



Page 6 of 12Bakker et al. BMC Medical Informatics and Decision Making          (2021) 21:336 

Ta
bl

e 
1 

Th
e 

m
et

ho
do

lo
gy

 a
pp

lie
d 

to
 a

dd
re

ss
 p

ro
bl

em
s 

in
 c

ar
e 

fo
r c

hr
on

ic
 ly

m
ph

oc
yt

ic
 le

uk
ae

m
ia

, t
he

 in
te

ns
iv

e 
ca

re
 a

nd
 d

ia
be

te
s

CL
L 

ch
ro

ni
c 

ly
m

ph
oc

yt
ic

 le
uk

ae
m

ia
, I

CU
 in

te
ns

iv
e 

ca
re

 u
ni

t, 
N

G
S 

ne
xt

 g
en

er
at

io
n 

se
qu

en
ci

ng
, S

G
LT

s s
od

iu
m

 g
lu

co
se

 tr
an

sp
or

te
r-

2 
in

hi
bi

to
rs

, G
LP

s g
lu

ca
go

n-
lik

e 
pe

pt
id

e-
1 

ag
on

is
ts

, C
RB

SI
 c

at
he

te
r r

el
at

ed
 b

lo
od

st
re

am
 

in
fe

ct
io

n,
 E

H
R 

el
ec

tr
on

ic
 h

ea
lth

 re
co

rd
, L

O
S 

le
ng

th
 o

f s
ta

y,
 LY

G
 li

fe
 y

ea
rs

 g
ai

ne
d,

 Q
AL

Y 
qu

al
ity

-a
dj

us
te

d 
lif

e 
ye

ar
s 

ga
in

ed

CL
L 

Pr
ob

le
m

 1
CL

L 
Pr

ob
le

m
 2

IC
U

 P
ro

bl
em

 1
IC

U
 P

ro
bl

em
 2

D
ia

be
te

s

C
lin

ic
al

ly
 re

le
va

nt
 p

ro
bl

em
Va

ria
tio

ns
 in

 tr
ea

tm
en

t 
re

sp
on

se
 to

 1
st

 a
nd

 2
nd

 li
ne

Im
pe

rf
ec

t a
lg

or
ith

m
s 

fo
r 

id
en

tif
yi

ng
 n

ew
ly

 d
ia

gn
os

ed
, 

hi
gh

‑r
is

k 
C

LL
 p

at
ie

nt
s

Id
en

tif
yi

ng
 p

at
ie

nt
s 

w
ith

 in
ef

‑
fe

ct
iv

e 
eff

or
ts

 a
t r

is
k 

of
 p

oo
r 

ou
tc

om
es

D
ia

gn
os

in
g 

ca
th

et
er

 re
la

te
d 

bl
oo

ds
tr

ea
m

 in
fe

ct
io

ns
 (C

RB
SI

)
U

nk
no

w
n 

va
ria

tio
n 

in
 re

sp
on

se
 

to
 tr

ea
tm

en
t w

ith
 S

G
LT

s +
 G

LP
s

A
ss

es
s 

da
ta

 fo
r d

ev
el

op
m

en
t

– 
N

G
S 

da
ta

 a
va

ila
bl

e
– 

Fo
llo

w
‑u

p 
pr

ob
ab

ly
 s

uffi
ci

en
t

– 
La

rg
e 

va
ria

tio
n 

in
 tr

ea
tm

en
ts

– 
N

G
S 

da
ta

 a
va

ila
bl

e
– 

Fo
llo

w
‑u

p 
su

ffi
ci

en
t

– 
M

on
ito

rin
g 

& 
EH

R 
da

ta
 

av
ai

la
bl

e
– 

Su
ffi

ci
en

t s
am

pl
e 

si
ze

, 
su

ffi
ci

en
t f

ol
lo

w
‑u

p,
 li

m
ite

d 
m

is
si

ng
 d

at
a

– 
EH

R 
& 

bi
os

ig
na

l d
at

a 
av

ai
l‑

ab
le

 &
 c

on
tin

ue
d 

pr
os

pe
ct

iv
el

y
– 

Li
m

ite
d 

m
is

si
ng

 d
at

a 
an

tic
i‑

pa
te

d

– 
EH

R 
da

ta
 a

va
ila

bl
e 

fro
m

 s
ec

‑
on

da
ry

 c
ar

e
– 

La
rg

e 
am

ou
nt

s 
of

 m
is

si
ng

 
fo

llo
w

‑u
p 

da
ta

Id
en

tif
y 

cr
iti

ca
l b

ar
rie

rs
 fo

r 
su

cc
es

sf
ul

 d
ev

el
op

m
en

t a
nd

 
im

pl
em

en
ta

tio
n

–
P:

 N
ew

ly
 d

ia
gn

os
ed

 C
LL

 
pa

tie
nt

s 
w

ith
ou

t t
re

at
m

en
t 

in
di

ca
tio

n
I: 

A
na

ly
tic

s 
th

at
 id

en
tif

y 
hi

gh
 

ris
k 

pa
tie

nt
s 

fo
llo

w
ed

 b
y 

tr
ea

t‑
m

en
t w

ith
 ib

ru
tin

ib
C

: S
tr

at
ifi

ca
tio

n 
us

in
g 

cl
in

ic
al

 
sy

m
pt

om
s 

w
ith

ou
t r

ec
ei

vi
ng

 
tr

ea
tm

en
t

O
: C

os
ts

, L
YG

, Q
A

LY
s

Ba
rr

ie
rs

:
– 

Si
te

‑s
pe

ci
fic

 v
al

id
at

io
n 

re
qu

ire
d

– 
Re

im
bu

rs
em

en
t o

f n
ov

el
 

tr
ea

tm
en

t

P:
 P

at
ie

nt
s 

on
 a

ss
is

te
d 

m
ec

ha
n‑

ic
al

 v
en

til
at

io
n

I: 
Id

en
tif

y 
pa

tie
nt

s 
at

 ri
sk

 o
f 

po
or

 o
ut

co
m

es
 w

ith
 a

na
ly

tic
s 

an
d 

in
te

rv
en

e 
to

 a
vo

id
 in

eff
ec

‑
tiv

e 
eff

or
ts

C
: C

ar
e 

in
 w

hi
ch

 in
eff

ec
tiv

e 
eff

or
ts

 a
re

 n
ot

 id
en

tifi
ed

O
: M

or
ta

lit
y,

 L
O

S,
 c

os
ts

, L
YG

, 
Q

A
LY

s
Ba

rr
ie

rs
:

– 
A

va
ila

bi
lit

y 
of

 m
on

ito
r t

ha
t 

id
en

tifi
es

 in
eff

ec
tiv

e 
eff

or
ts

– 
Si

te
‑s

pe
ci

fic
 v

al
id

at
io

n

P:
 P

at
ie

nt
s 

w
ith

 c
en

tr
al

 v
en

ou
s 

ca
th

et
er

I: 
Ea

rly
 id

en
tifi

ca
tio

n 
of

 C
RB

SI
, 

ca
th

et
er

 re
m

ov
al

 &
 a

nt
ib

io
tic

s
C

: L
at

e 
id

en
tifi

ca
tio

n 
of

 C
RB

SI
, 

ca
th

et
er

 re
m

ov
al

 &
 a

nt
ib

io
tic

s
O

: M
or

ta
lit

y,
 L

O
S,

 c
os

ts
, L

YG
, 

Q
A

LY
s

Ba
rr

ie
rs

:
– 

Va
ry

in
g 

pr
ev

al
en

ce
 o

f C
RB

SI
– 

In
te

gr
at

io
n 

of
 a

na
ly

tic
s 

in
 

an
 E

H
R

– 
Si

te
‑s

pe
ci

fic
 v

al
id

at
io

n

–

Ec
on

om
ic

 E
va

lu
at

io
n

–
Be

ne
fit

s: 
0.

13
 Q

A
LY

s, 
+

 €8
9,

98
5

Be
ne

fit
s: 
−

 3
%

 m
or

ta
lit

y,
 0

.2
1 

Q
A

LY
s, 
−

 €2
64

 [5
8]

Be
ne

fit
s: 
−

 0
.5

%
 m

or
ta

l‑
ity

, +
 0

.0
6 

Q
A

LY
s, 
−

 €8
86

–

Co
nt

in
ue

 d
ev

el
op

m
en

t
N

ot
 fe

as
ib

le
. S

am
pl

e 
si

ze
 to

o 
sm

al
l a

nd
 la

rg
e 

va
ria

tio
ns

 in
 

pr
es

cr
ib

in
g 

pr
ac

tic
es

N
ot

 fe
as

ib
le

. H
ig

h 
co

st
s 

of
 

tr
ea

tm
en

t o
ffs

et
 b

en
efi

ts
 

ga
in

ed

Fe
as

ib
le

. I
nv

es
t i

n 
re

se
ar

ch
 in

to
 

th
e 

eff
ec

tiv
en

es
s 

of
 in

te
rv

en
‑

tio
n 

an
d 

th
e 

pr
ic

e 
of

 th
e 

an
al

yt
ic

s 
[5

8]

Fe
as

ib
le

. I
f t

he
 ta

rg
et

 m
ar

ke
t 

ex
te

nd
s 

be
yo

nd
 G

re
ec

e 
th

e 
im

pa
ct

 o
f t

he
 p

re
va

le
nc

e 
of

 
C

RB
SI

 o
n 

be
ne

fit
s 

sh
ou

ld
 b

e 
co

ns
id

er
ed

N
ot

 fe
as

ib
le

. S
m

al
l s

am
pl

e 
si

ze
 

an
d 

la
rg

e 
am

ou
nt

 o
f m

is
si

ng
 

fo
llo

w
‑u

p 
da

ta



Page 7 of 12Bakker et al. BMC Medical Informatics and Decision Making          (2021) 21:336  

We demonstrated the relevance of univariate uncertainty 
analyses to assess the impact of parameter uncertainty 
(Additional file 1: Fig. S2). In univariate uncertainty anal-
yses, the impact of an individual parameter is assessed 
by varying its estimate while keeping all other param-
eters constant. Here, the high costs of the treatment in 
the intervention arm are decisive in the incremental 
costs. The relevance of scenario analyses is demonstrated 
in Table  2 where even in the best-case scenario, analyt-
ics are unlikely to be cost-effective, since the incremental 
cost-effectiveness ratio exceeds thresholds used in Swe-
den. When varying all parameters simultaneously in the 
probabilistic sensitivity analyses, most of the estimates 
are in the upper right and left quadrant (Fig.  2). This 
means that most estimates reflect higher costs and either 
higher or lower QALYs. When these results are shown on 
a cost-effectiveness acceptability curve, we can see that 
better stratification of watch and wait patients and sub-
sequent treatment with ibrutinib has an extremely low 
chance of being cost-effective (Additional file 1: Fig. S3).

Case 2: the intensive care unit
For the intensive care, relevant problems were identified 
through discussions with an intensivist at the Greek hos-
pital that was involved in development.

Catheter related bloodstream infection
The first ICU-related problem selected, was that infec-
tions caused by central venous catheters were often 
diagnosed only after they are severe. Catheter related 
bloodstream infections (CRBSIs) are considered an 

important issue in the ICU since infected patients have 
an increased mortality and prolonged length of stay com-
pared to other ICU patients [51]. The aim was to use 
analytics to diagnose CRBSI in an early stage to reduce 
disease severity, risk of death and costs.

EHR and biosignal data were available to develop the 
analytics (N = 2000) and additional records were to be 
collected prospectively. The required follow-up was 
short, and the relevant parameters needed to develop the 
analytics and evaluate outcomes (e.g. mortality, length of 
stay) were routinely collected. Missing data was expected 
to be present but manageable.

No insurmountable barriers were identified when nar-
rowing down the scope in the early stages of develop-
ment. An example of a potential barrier for the CRBSI 
analytics is the uncertainty in the probability of CRBSI. 
The frequency of CRBSI varies tremendously across 
countries and sites. In Western European countries, the 
reported incidence of CRBSI is low [52]. However, for the 
Greek hospital for which analytics were developed 7.5% 
of patients developed CRBSI during their ICU stay [53] 
and in other Greek hospitals reported even higher per-
centages (22.4%) [54]. If the target market for the ana-
lytics would have been limited to the US and western 

Table 2 Results from the base case and best case scenario for 
analytics to improve stratification of watch and wait patients in 
chronic lymphocytic leukaemia compared to current care

ICER incremental cost-effectiveness ratio
a Best case scenario = low HR of time to next treatment with early ibrutinib 
treatment (0.11), 50% reduction in costs of ibrutinib per cycle (€2542), 50% 
reduction of costs of venetoclax with 50% (€2731), low costs of analytics and 
genomic and genetic testing (€100), High quality of life for those receiving early 
treatment with ibrutinib (0.78)

Costs Life years QALYs

Base case

Current care €103,947 11.18 8.57

Care with analytics €193,932 11.51 8.69

Incremental €89,985 0.34 0.13

ICER – €268,373 €708,192

Best case scenarioa

Current care €98,458 11.18 8.57

Care with analytics €155,667 11.58 8.91

Incremental €57,209 0.41 0.34

ICER – €141,972 €166,879
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Fig. 2 Cost‑effectiveness plane reporting the quality‑adjusted life 
years and costs (€) from the probabilistic sensitivity analysis
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European countries, obtaining better estimates of the fre-
quency of CRBSI would have been recommended prior 
to continuing with an economic evaluation. Another 
barrier might have been the need for EHRs to enable 
the analytics. However, since most Greek and European 
hospitals have adopted EHRs this was not expected to be 
an issue. Additional validation when adopting results in 
other hospitals would probably be required and feasible 
but would need to be taken into account in the economic 
evaluation. Based on these barriers, continuing with the 
economic evaluation was recommended.

A detailed description of the model and input param-
eters used to estimate health and economic benefits 
can be found in Additional file 1: Fig. S4 and Additional 
file 1: Table S2. A decision tree was combined with a four 
state Markov model (Additional file 1: Fig. S4), adopting 
a lifetime time horizon and including only direct medi-
cal costs. Input parameters were derived from the litera-
ture, hospital reports, and expert opinion. The effect of 
earlier intervention on ICU mortality and ICU length 
of stay were derived from a study reporting the effect of 
earlier prescription of antibiotics [55]. Initial estimates 
demonstrated that continuing development was worth-
while since analytics could reduce mortality (0.5%), 
improve QALYs (0.06) and lead to cost-savings (€886) 

per patient. All input parameters were varied extensively 
in uncertainty analyses but the probability of CRBSI had 
substantial influence on the results. When the price of 
the technology was below €19,216 per bed, the analyt-
ics could reduce costs compared to current care. This 
meant that the headroom to achieve cost-neutrality with 
the intervention was €19,216 per bed, which meant there 
was sufficient room for costs of analytics, validation, and 
implementation. Given the large potential for the ana-
lytics to generate savings it was considered relevant to 
continue with development. However, the key factor that 
influenced benefits was the prevalence of CRBSI (Fig. 3). 
In this case, it was worthwhile to closely monitor site-
specific prevalence throughout development and care-
fully consider the appropriate target market given the 
large variation in prevalence across sites.

Ineffective effort events
The second ICU-related problem to be addressed with 
analytics, was suboptimal interaction between patients 
and their mechanical ventilator. One form of suboptimal 
interaction relates to ineffective efforts where a patient 
tries, but fails, to trigger the mechanical ventilator into 
providing a breath. Several studies have found that inef-
fective efforts could be associated with worse outcomes 
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[56, 57]. Here the aim was to enable clinicians to inter-
vene in those patients with ineffective efforts, who are 
therefore at risk of having worse outcomes.

EHR records were available for all patients and once 
again relevant parameters were routinely collected and 
missing data was expected to be manageable. Further-
more, recordings of > 24  h for more than 100 patients 
were available from a prototype monitor detecting 
patient-ventilator interaction.

When assessing feasibility, no barriers were considered 
insurmountable (Table 1). An important barrier was the 
need to have a monitor capable of measuring ineffective 
efforts in addition to analytics that could identify patients 
with ineffective efforts at risk of having worse outcomes. 
The prototype monitor available in the Greek ICU would 
need to be purchased in order to use the analytics. Fur-
thermore, costs of site-specific validation would need to 
be included in the economic evaluation.

The model and input parameters used to estimate 
the health and economic benefits have been previously 
reported [58]. The potential impact of analytics that iden-
tify patients with ineffective efforts at risk of having worse 
outcomes also suggests that continuing further develop-
ment is worthwhile [58] since it can reduce mortality by 
3%, increase QALYs by 0.21 and reduce costs (€264) [58]. 
Furthermore, it was demonstrated that even if the effec-
tiveness of intervening was varied extensively, benefits 
could still be achieved [58]. The headroom for the analyt-
ics to generate savings (€7307) was considered sufficient 
to cover relevant hardware costs and additional costs of 
site-specific validation. Thus, further development was 
considered both relevant and feasible and the potential 
impact of the analytics was considered substantial.

Case 3: diabetes mellitus
For diabetes, clinicians indicated that a highly relevant 
problem was to determine predictors of response to 
treatment with sodium glucose transporter-2 inhibitors 
combined with glucagon-like peptide-1 agonists. EHR 
data was available from diabetes patients treated in sec-
ondary care in the United Kingdom. However, a small 
sample size and substantial missing follow-up data raised 
questions about the feasibility of development, which 
resulted in the decision not to assess critical barriers and 
conduct an economic evaluation.

Discussion
In this paper, we present a framework that aims to pro-
mote the efficient development of high potential analytics 
by rapidly assessing whether it is feasible and worthwhile 
to continue development. The use cases demonstrate 
the value of first assessing the feasibility of develop-
ment and identifying relevant barriers before estimating 

the potential health and economic benefits of analytics. 
Examples were presented for CLL and diabetes where 
development was not feasible given the data available. 
Furthermore, the essence of critically narrowing down 
the scope is demonstrated for CLL and the ICU where 
the absence of actionable output is an important barrier 
to realising success and disease prevalence strongly influ-
ences benefits.

Early economic evaluations of analytics can assist 
decision-making of developers and stimulates them to 
develop those analytics with the greatest potential ben-
efits. These evaluations allow developers to assess the 
influence of certain requirements of analytics (e.g. the 
costs of the technology, validation and implementa-
tion) on their potential health and economic impact. In 
our use cases, we see risks that could strongly influence 
widespread adoption, such as the prevalence of CRBSI 
and the high drug costs for CLL. Early economic evalu-
ations can also be used to strengthen the business case 
of developers seeking funding for prospective validation 
and evaluation. This is especially relevant since the high 
costs of validation and implementation are important 
barriers to successful use of analytics in clinical practice 
[4, 19, 24, 31–33]. During implementation, data and tools 
used to perform early economic evaluations alongside 
development can be reused to perform a ‘late’ economic 
evaluation to convince payers that the analytics are worth 
purchasing. Elements covered in this framework align 
with key economic information sought by payers such as 
the UK’s National Institute for Health and Clinical Excel-
lence [59].

However, for efficient development, economic evalu-
ations should only be initiated for those applications 
deemed feasible and after ensuring that there are no 
critical barriers to success. Often multiple analytics can 
be developed for a single setting, disease or using a sin-
gle dataset [27, 60]. For instance, for the ICU [11] and 
diabetes care [61] many more types of EHR-based ana-
lytics have been suggested than the ones presented here. 
This is an important difference compared to when early 
economic evaluations are used to assist decision-mak-
ing during development of a technology with one or few 
applications (e.g. diagnostics). Since it is often unrealis-
tic to evaluate—all potential applications of a particular 
type of analytics, our framework stimulates developers 
to select which applications are worthy of additional 
resources. Where feasibility is clearly a problem for the 
diabetes use case, the lack of an actionable output is the 
shortcoming for CLL; an issue often reported in the lit-
erature [10, 15, 24, 25]. The initial analyses performed in 
the early economic evaluation can be very simple at first 
but can become more complex as development pro-
gresses; this corresponds with recommendations that 
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analytics development and validation should also be 
iterative [4, 62]. However, as with analytics for CLL and 
CRBSI, it is sometimes worthwhile to invest more time 
in adding additional details at an early stage, since it is 
better to fail fast when limited investments have been 
made. Using early economic evaluations in an iterative 
manner and providing a detailed definition of the scope 
aligns with best practices for early economic evaluations 
of other healthcare technologies such as diagnostic tests 
[34–38]. The recommendations provided by others such 
as Drummond et al. [63], or Buisman et al. [37] regard-
ing the selection of a model structure (e.g. decision tree, 
Markov model), estimation of input parameters, and 
calculating outcomes (such as the ICER) are likely to be 
applicable when estimating benefits. We demonstrate in 
the CLL and diabetes use cases how the framework may 
assist developers in selecting those applications that are 
likely to succeed, before investing additional resources 
in performing an economic evaluation. Similar to other 
papers [e.g. 4, 12, 17, 24–26], we found the data avail-
able for development to be a barrier to success in the 
CLL and diabetes case studies. Analytics for artificial 
intelligence are ‘data hungry’ and therefore require large 
datasets [11, 27]. Furthermore, the quality of the data is 
an important issue when developing and using AI. Rob-
erts et al. have emphasised in their review of AI for the 
diagnosis and prognostication of secondary pneumonia, 
that many AI analytics were hampered by poor quality 
data [64]. Our framework aligns with recommendations 
by Vollmer et al. who include critical questions regard-
ing the data used as part of their framework to inform 
design and evaluate AI analytics [65]. Reviewing the 
data quality ensures developers select those applications 
of analytics for which development is most likely to 
succeed. For instance, rapid checks of potential sample 
sizes have been previously suggested [66]. For analyt-
ics with adequate data quality, additional resources can 
then be invested to perform an economic evaluation.

In this study, the framework was applied to three 
clinical use cases. Therefore, validation in other use 
cases is recommended. Other use cases can include dif-
ferent clinical areas (e.g. psychiatric disorders) but also 
other data sources such as data from patient devices 
(e.g. Fitbits), imaging and social media. Additional 
research could also assess criteria to value the qual-
ity of unstructured data. Furthermore, the framework 
presented could be easily adopted alongside initiatives 
such as RE-AIM used to translate research into prac-
tice [67]. This framework pays particular attention to 
the timing of economic evaluations intended to assist 
development considering relevant elements in the 
‘Reach’, ‘Effectiveness’, ‘Adoption’, ‘Implementation’ and 
‘Maintenance’ steps.

Since many factors can influence the successful imple-
mentation and adoption of analytics, we may have 
adopted a somewhat narrow approach by solely focusing 
on the value of economic evaluations to support devel-
oper decision-making. A wider form of decision support 
can be achieved through a broader evaluation of analyt-
ics, for instance using health technology assessment, 
which includes social, and ethical elements besides the 
health and economic impact [68]. Moreover, elicitation 
of stakeholder preferences such as patients and clinicians 
could ensure that potential barriers to development, 
acceptability and implementation are addressed [69].

In recent years, there has been an increased interest in 
the ethical challenges that we face relating to the adop-
tion of artificial intelligence [70]. In this paper, we dis-
cuss that factors such as the risk of bias and small sample 
sizes, should be assessed at an early stage of development 
prior to performing an economic evaluation. Trocin et al. 
emphasise the severity of the consequences of failing to 
do so. Some of the challenges relating to the data qual-
ity mentioned in this paper have also been emphasised 
by Trocin et  al. Moreover, these authors also provide 
research questions that need to be answered to ensure 
the responsible adoption of AI related technologies [70]. 
Many answers to these questions could be very relevant 
for future improvements of the flowchart. Depending on 
the setting and type of analytics, for instance, the qual-
ity of the data can be assessed according to the risk of 
selection bias in the data [4, 13], or the absence of ethnic 
variation in the data which could limit generalisability of 
machine learning models [4, 17, 28].

Conclusions
This is the first study providing recommendations on 
the use of economic evaluations to support development 
decisions of analytics for big data and artificial intelli-
gence-based solutions. Many types of analytics can be 
developed within a specific clinical setting or disease or 
using a particular dataset. The framework presented in 
this study stimulates efficiency of development by select-
ing those applications worth further investment after 
assessing the feasibility of development and identifying 
critical barriers. For these applications, early economic 
evaluations can assist decision-making of analytics devel-
opers by estimating for instance requirements of effec-
tiveness and the headroom for pricing, validation, and 
implementation.
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