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Abstract 

Background:  Accurately predicting which patients with chronic heart failure (CHF) are particularly vulnerable for 
adverse outcomes is of crucial importance to support clinical decision making. The goal of the current study was to 
examine the predictive value on long term heart failure (HF) hospitalisation and all-cause mortality in CHF patients, 
by exploring and exploiting machine learning (ML) and traditional statistical techniques on a Dutch health insurance 
claims database.

Methods:  Our study population consisted of 25,776 patients with a CHF diagnosis code between 2012 and 2014 and 
one year and three years follow-up HF hospitalisation (1446 and 3220 patients respectively) and all-cause mortality 
(2434 and 7882 patients respectively) were measured from 2015 to 2018. The area under the receiver operating char-
acteristic (ROC) curve (AUC) was calculated after modelling the data using Logistic Regression, Random Forest, Elastic 
Net regression and Neural Networks.

Results:  AUC rates ranged from 0.710 to 0.732 for 1-year HF hospitalisation, 0.705–0.733 for 3-years HF hospitalisa-
tion, 0.765–0.787 for 1-year mortality and 0.764–0.791 for 3-years mortality. Elastic Net performed best for all end-
points. Differences between techniques were small and only statistically significant between Elastic Net and Logistic 
Regression compared with Random Forest for 3-years HF hospitalisation.

Conclusion:  In this study based on a health insurance claims database we found clear predictive value for predicting 
long-term HF hospitalisation and mortality of CHF patients by using ML techniques compared to traditional statistics.
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Background
Chronic heart failure (CHF) is a severe condition that 
is characterized by high mortality and morbidity. Evi-
dence exists that a substantial portion of CHF patients, 

in particular those with (multiple) comorbidities, do 
not currently receive optimal medical therapy, leading 
to potentially avoidable specialist-visits and frequent 
HF hospitalisations, impaired quality of life or even life-
threatening complications [1–5]. Patients admitted for 
CHF are at a considerably higher risk of (long-term) 
adverse outcomes after a hospital discharge than the gen-
eral elderly population, even higher than after other com-
mon serious events such as pneumonia and myocardial 
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infarction [6]. Accurately predicting which CHF patients 
are particularly vulnerable for adverse outcomes, such 
as renewed HF hospitalisation or even death, is of cru-
cial importance to support clinical decision-making. 
Advances in statistical approaches and computational 
power, including fully utilizing machine learning tech-
niques on Big Data, potentially provide better knowledge 
extraction and evidence-based clinical decision support 
[7–11]. In addition to traditional statistical analysis, novel 
machine learning (ML) algorithms can identify patterns 
in large datasets and build both linear and non-linear 
models in order to make effective data-driven predic-
tions [12]. All residents of the Netherlands are entitled 
to a comprehensive basic health insurance package and 
this includes the bulk of essential medical care, medica-
tions and medical aids. Health insurance claims (HIC) 
databases are attractive for research because of their 
large size, their longitudinal perspective, and their prac-
tice-based information. As they are based on financial 
reimbursement, the information is generally reliable, 
moreover databases are audited every year to ensure that 
they meet the required quality level for the Dutch risk 
equalization model [13, 14]. ML techniques could poten-
tially better utilize the richness of these databases [7, 8, 
15, 16]. The goal of the current study was to examine the 
predictive value of Dutch HIC data on long term HF hos-
pitalisation and all-cause mortality in CHF patients, by 
exploring and exploiting ML and traditional statistical 
techniques.

Methods
Patients
A HIC database containing anonymous data that can be 
considered a representative sample of ~ 30% of the Dutch 
population from Zilveren Kruis, the largest insurance 
company in the Netherlands, was analysed retrospec-
tively. Patients aged 18–85 years with a diagnosis code for 
CHF between 2012–2014 were included and follow-up 
HF hospitalisation and all-cause mortality in 2015–2018 
was measured [17]. Patients had to have a CHF-related 
claim according to the national diagnosis-treatment clas-
sification system called ‘Diagnose Behandeling Com-
binatie’ (DBC), which is based on a combination of the 
International Classification of Diseases, 10th revision 
(ICD-10) and applied treatment [18]. Additionally, they 
had to have used at least one medication within the car-
diovascular system (“C”) based on the World Health 
Organization Anatomical Therapeutic Chemical Classifi-
cation index and Defined Daily Dose (WHO ATC/DDD) 
in the same period [19]. According to the European Soci-
ety of Cardiology (ESC) heart failure guidelines [20], CHF 
patients should visit their treating physician at least once 

per year. Therefore, patients were excluded who lacked 
any HF insurance claim after January 2015, because 
they are most likely wrongly diagnosed or labelled HF 
patients. Patients who switched insurance company 
between 2012–2017 were also excluded. A total of 25,776 
patients were included in the final analysis (Fig. 1).

Endpoints
The study endpoints were HF hospitalisation and all-
cause mortality. The risk of HF hospitalisation and all-
cause mortality were predicted on a one (2015)- and 
three-years (2015–2017) perspective. This resulted in 
the following study endpoints (i.e. dependent features): 
(1) 1-year HF hospitalisation (1446 patients), (2) 3-years 
HF hospitalisation (3220 patients), (3) 1-year all-cause 
mortality (2434 patients), (4) 3-years all-cause mortal-
ity (7882 patients). HF hospitalisation was defined as 
at least one night of stay in inpatient care for acute or 
chronic HF based on the DBC system. All-cause mor-
tality was defined as death due to any cause. No clinical 
adjudication committee reviewed the HF hospitalisation 
endpoint.

Data
The process of feature selection is graphically displayed 
in Fig. 2. Claim-based input features between 2012–2014 
were divided into three categories: hospital claims, phar-
maceutical claims and claims of other caregivers. Hospi-
tal claims are all DBC’s, a combination of diagnosis and 
treatment, for instance a DBC for hospital admission for 
CHF with more than five nursing days. Within the hospi-
tal claims we also included the diagnosis related groups 
(DRG) based on the ICD-10 code of each DBC. The phar-
maceutical claims were divided in seven categories:

1.	 Use of an individual prescription on a full anatomical 
therapeutic chemical (ATC) level

2.	 An ATC3 therapeutic subgroup level [21]
3.	 Medical adherence by defining the medication pos-

session ratio (MPR) [22, 23]
4.	 Use of automatic pill dispenser
5.	 Sum of prescribed daily doses (PDD) which takes 

into account dosage schemes as prescribed by the 
treating physician

6.	 Number of times medicines were collected
7.	 Number of different medication within the same 

ATC3 subgroup.

An example of claims of other caregivers are number 
of visits to a GP or physiotherapist or use of a medical 
device.
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Most features are categorical and are binary coded 
to represent whether the corresponding medical ser-
vice was provided to the patient or not. Due to the large 
number of claim-related features of the dataset (> 6000 
features), feature selection plays an important role in 
reducing noise and computational costs, while simulta-
neously improving accuracy [24]. Feature selection was 
done in two stages; first, prevalence prioritization and, 
second, a Lasso Regression [25]. Prevalence prioritization 
was performed in each of the three categories and their 
relevant subcategories for two-time episodes, by first 
selecting all features, with a threshold of > 250 patients 
in each category. In this way we included for two-time 
episodes 96 and 160 out of 2290 hospital claim features, 
73 and 85 out of 141 DRG features, 192 and 232 out of 
901 pharmaceutical claims features, 55 and 60 out of 299 
pharmaceutical claims on a ATC3 level and 377 and 508 
out of 3232 other claims features. Input features between 
2012–2014 were divided in two-time episodes; (1) year 
2014 and (2) combined years 2012–2013. Patient char-
acteristics on postal code level, such as income (high, 

medium, low) and distance to nearest facilities such as 
GP and hospital, were also included as input features. 
Two time-related features were included in the model; 
days between last hospital visit in 2012–2014 and Janu-
ary 1, 2015, and duration since first hospital visit, by 
determining the period between the first occurrence 
of DBC for CHF in this baseline period up to January 
1, 2015. The total number of input features in this first 
stage was > 2000. In the second stage of feature selection 
we ran a Lasso regression to obtain the (maximum) 150 
most significant features on the partition of the dataset 
that was subsequently used for model training (49%) 
and validation (21%), on all the input features of stage 
1, related to each of the four endpoints separately. The 
LASSO method puts a constraint on the sum of the abso-
lute values of the model parameters, the sum has to be 
less than a fixed value (upper bound). In order to do so 
the method applies L1 regularization, where some of 
the coefficients become exactly zero. The variables cor-
responding to the non-zero coefficients remain in the 
dataset. The goal of this process is to reduce computation 

Fig. 1  Flowchart of study population. See also: Gürgöze MT, van der Galiën OP, Limpens MAM, Roest S, Hoekstra RC, IJpma AS, Brugts JJ, Manintveld 
OC, Boersma E. Impact of sex differences in co-morbidities and medication adherence on outcome in 25 776 heart failure patients. ESC Heart Fail. 
2020
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cost and was to minimize the prediction error [25]. We 
used SAS Enterprise Guide 7.1 for Lasso regression (proc 
GLMSELECT for binary outcome with Schwarz Bayes 
selection Criterion) [26]. Baseline characteristics age, sex 
and marital status were added to the final set. The fea-
tures and the total number of features in the final set is 
described in Additional file  1: Table I. The definition of 
demographics, socio-economic status, selection of medi-
cation and all other input features are described in Addi-
tional file 1: Table II.

Statistical analysis
We compared four computational techniques to deter-
mine which method yields the best prediction for the 
study endpoints: backward logistic regression (LR), regu-
larized logistic regression (Elastic Net, EN), random for-
ests (RF) and neural networks (NN). We used the area 
under the receiver operating characteristic (ROC) curve 
(AUC) as primary and sensitivity and specificity as the 
secondary performance metric for comparing the mod-
els. Sensitivity and specificity have the advantage that 
they express equal importance to the correct predic-
tion of hospitalisation/mortality and the prediction of 
no hospitalisation or mortality [27] Additional perfor-
mance metrics, such as true negatives and precision are 
calculated and shown in a confusion matrix in Additional 
file 1: Table III.

The dataset has been split randomly into two parti-
tions, to learn (training and validation) and evalu-
ate (test) the models. The first partition of 70% of the 

complete dataset (patients) to learn is used for model 
training (49%) and validation (21%). Various combina-
tions of hyperparameter values (Table 1) were explored 
to optimize the AUC between training set and vali-
dation set to obtain the best trained model. For the 
hyperparameters not mentioned, the respective default 
values of the software packages R Statistical Software 
and SAS Enterprise Guide were used. The second par-
tition of 30% of the complete dataset is then used to 
evaluate the final prediction performance. The same 
learning and evaluation partitions were used for all 
techniques.

Fig. 2  Flow diagram of the process of feature selection

Table 1  Hyperparameters used in the several models

* The lambda sequence is created using the following formula 10 ^ seq 
(from =  − 2, to = 5, by = 0.1). This generates 71 values from 0 to 100.000

Backward logistic regression
 Select criterion: significance level
 Stay significance level: 0.05

Elastic Net
 Alpha: 0–1 stepped 
by 0.1
 Lambda*: 0.001 
to 100.000 in 80 
exponential increas-
ing steps
 Folds for cross 
validation: 10

Random forest
 Max trees
 Max depth
 Split criterion: Gini

Neural network
 Type: fully con-
nected feed forward
 Architecture: 1–3 
hidden layer with 
10–100 nodes
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Because the dichotomous endpoints (hospitalisation 
and mortality) of the models are imbalanced (> 90% 
has class value ‘no mortality’, or ‘no hospitalisation), 
by default the predictions could be biased towards 
the class that has the highest prevalence [28]. There-
fore, the loss is separated per class and the class loss is 
weighted proportionally to the inverse of the propor-
tion of the corresponding class (formula described in 
Additional file 1: Table II).

The backward logistic regression (LR) starts with all 
coefficients in the model and deletes them consecu-
tively. In each step the coefficient that does not (sig-
nificantly) improve the prediction on the dependent 
variable is removed until all features have a significance 
greater than 0.10.

The regularized Logistic Regression was estimated 
with the elastic net regularization (EN). This is a com-
bination of the LASSO regularization (L1 penalty) and 
ridge regularization (L2 penalty). Therefore, there are 
two hyperparameters that need to be tuned: alpha (L1 
penalty) and lambda (L2 penalty). The optimal combi-
nation of alpha and lambda is searched for with tenfold 
cross validation on the validation set. For alpha all val-
ues between 0 and 1 with an interval of 0.1 are used. 
For lambda a range between 0.001 and 10.000 is used in 
80 exponentially increasing steps. This resulted in 880 
combinations of different alpha and lambda values.

The Random Forest model (RF) is an ensemble of 
multiple decision trees. Each step in the decision tree 
construction uses a selection of the input features 
( 
√

total number of variables ) and per tree a subset 
of the training data. The splitting criteria is the Gini-
index. We let the algorithm infer the optimal number 
of trees itself such that the misclassification rate on the 
out-of-bag samples is minimized.

For the neural network (NN) a fully connected feed for-
ward network was used. We explored multiple architec-
tures with a varying number of hidden layers and nodes 
per layer. Networks with 1–3 hidden layers are optimized 
with each layer having 10 up to 100 hidden nodes. Only 
the results of the best architecture optimized on the vali-
dation set are presented in the results section.

Cut-off values for all four computational techniques, 
for the additional performance metrics such as sensitiv-
ity and misclassification were derived from the Youden 
index, which is the sum of sensitivity and specificity 
minus one [29]. The total number of input features was 
used for all statistical techniques.

For NN variable importance (VI) is hard to establish 
because of its “black box” nature [30, 31]. We therefore 
computed VI only for RF, EN and LR. VI in the RF was 
calculated based on Random Branch Assignments Vari-
able Importance (RBA). The RBA is evidently much less 
influenced by correlations [32]. For EN we used the 

Table 2  Model information

*Multiple architectures are tested for neural networks. The variants used additional layers (up to three) and more hidden nodes per layer (up to 100). Only the best 
architecture is presented here

Stepwise logistic 
regression

Random forest Neural network* Elastic Net

Software SAS Enterprise 
Guide 7.1 Proc 
HPlogistic

SAS Enterprise 
Guide 7.1 Proc 
HPforest

SAS Enterprise 
Guide 7.1 proc 
HPNeural

R (caret package)

Select criterion Significance level Max trees 100 Type Fully connected 
feed forward

Alpha 0–1 in steps of 0.1

Stop criterion Significance level Mas depth 30 Number of hidden 
layers

1 Lambda 0.001 to 100.000 in 
logarithmic steps

Effect hierarchy 
enforced

None Prune threshold 0.1 Number of hidden 
neurons

10–15 Folds for crossvali-
dation

10

Entry significance 
level (SLE)

0.05 Leaf fraction 0.00001 Number of 
weights

7721 Link function Binomial

Stay significance 
level (SLS)

0.05 Category bins 30 Optimization 
technique

Limited memory 
BFGS

Stop horizon 1 Interval bins 100 Maxiter 1000

Minimum cat-
egory size

5 Activation func-
tion

Identity

Rows of sequence 
to skip

5

Split criterion Gini

Preselection 
method

Loh
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absolute values of the coefficients rank the features in 
the order of variable importance and for LR we used 
Multivariate Coefficients Score. For this score we sim-
ply calculated the magnitude of the marginal effect of 
each (non-standardized) predictor, by fitting multivari-
ate LR models and filtering out insignificant coefficients 
according to the P-value “stay threshold”. We report the 
top 10 features, and their number of patients and uni-
variate odds ratio and discussed the outcome of VI with 
clinicians.

Output data were analysed using R Statistical Software 
version 3.4.2 (Vienna, Austria), Caret and GLMNET 
were used to conduct the EN analysis and SAS Enterprise 
Guide 7.1 for LR, RF and NN, see Table  2 for software 
and model information.

Results
Baseline characteristics
Our study population consists of 25,776 CHF patients 
(median age 74  years (Interquartile Range [IQR] 
66–80 years) and 43.7% women) including 1446 patients 
with HF hospitalisation in 2015 and 3220 in 2015–2017 
and all-cause mortality 2434 and 7882, respectively. 

Baseline characteristics of the overall study sample are 
described in Table 3.

Performance metrics and relevant features
AUC rates ranged from 0.710 to 0.732 for 1-year HF 
hospitalisation, 0.705–0.733 for 3-years HF hospitalisa-
tion, 0.765–0.787 for 1-year mortality and 0.764–0.791 
for 3-years mortality. Elastic Net performed best for all 
endpoints (Table  4). Differences between techniques 
were small and only statistically significant between EN 
and LR compared with RF for 3-years HF hospitalisation, 
based on the confidence intervals.

Sensitivity ranged from 61.4 to 71.9 for 1-year HF hos-
pitalisation, 67.3–71.5 for 3-years HF hospitalisation, 
76.5–78.7 for 1-year mortality and 64.4–79.2 for 3-years 
mortality. Specificity ranged from 66.3 to 73.6 for 1-year 
HF hospitalisation, 57.8–68.9 for 3-years HF hospitali-
sation, 62.6–80.1 for 1-year mortality and 63.1–78.1 for 
3-years mortality. For sensitivity rates NN outperformed 
for 1-year HF hospitalisation and 1-year mortality, 
while EN outperformed for 3-years HF hospitalisation 
and LR for 3-years mortality. For specificity LR outper-
formed for 1-year HF hospitalisation, NN for 3-years 

Table 3  Baseline characteristics

*Period between the last occurrence of DBC for CHF in this baseline period up to January 1, 2015

Characteristics All patients
N = 25,776

Age (years), median (IQR) 74 (66–80)

Sex, n (%)

 Men 14,517 (56)

 Women 11,259 (44)

Marital status, n (%)

 Married 8697 (34)

 Unknown 8428 (33)

 Widow/widower 3802 (15)

 Never married 3040 (12)

 Divorced 1809 (7)

SES score, median (IQR)  − 0.37 (− 1.17–0.47)

Income level, median (IQR) 5.0 (2.0–7.0)

Duration since last visit*, n (%)

 0–6 months 2993 (12)

 6–12 months 3327 (13)

 1–2 years 6975 (27)

 > 2 years 12,481 (48)

Hospitalisation, n (%)

 Year 1 (2015) 1446 (6)

 Year 1–3 (2015–2017) 3220 (12)

All-cause mortality, n (%)

 Year 1 (2015) 2434 (9)

 Year 1–3 (2015–2017) 7882 (31)
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Table 4  Confusion matrix

*Area under the Curve, †95% confidence interval

(n = 7733) AUC* CI† Sensitivity (%) Specificity (%)

Logistic Regression 1-Year HF hospitalisation 0.7099 0.6822 0.7375 61.4 73.6

Random forest 1-Year HF hospitalisation 0.7075 0.6815 0.7335 62.3 68.1

Neural network 1-Year HF hospitalisation 0.7319 0.7061 0.7577 71.9 63.9

Elastic net 1-Year HF hospitalisation 0.7320 0.7066 0.7575 71.0 66.3

Logistic regression 3-Years HF hospitalisation 0.7255 0.7088 0.7422 71.5 62.0

Random forest 3-Years HF hospitalisation 0.7045 0.6874 0.7217 73.1 57.8

Neural network 3-Years HF hospitalisation 0.7313 0.7147 0.7479 67.3 68.9

Elastic net 3-Years HF hospitalisation 0.7330 0.7165 0.7495 67.8 67.7

Logistic regression 1-Year all-cause mortality 0.7746 0.7568 0.7923 78.0 63.4

Random forest 1-Year all-cause mortality 0.7649 0.7471 0.7827 59.8 80.1

Neural network 1-Year all-cause mortality 0.7664 0.7483 0.7845 76.7 62.6

Elastic net 1-Year all-cause mortality 0.7866 0.7691 0.8040 74.2 69.7

Logistic regression 3-Years all-cause mortality 0.7897 0.7790 0.8003 79.2 63.1

Random forest 3-Years all-cause mortality 0.7639 0.7527 0.7751 71.8 67.8

Neural network 3-Years all-cause mortality 0.7817 0.7709 0.7925 75.0 67.1

Elastic net 3-Years all-cause mortality 0.7911 0.7805 0.8017 64.4 78.1

Table 5  Variable importance 1 year HF hospitalisation

* Odds ratio, †mean square error

Feature Description feature N Univariate Random forest Elastic net Logistic regression
OR* (MSE†) (coefficients) (predictor)

dbc_2014_099899068  > 5 Nursing days acuut CHF 753 4.5 0.00055 0.66195 0.74370

dbc_2014_099899024  < 6 Nursing days acuut HF 674 3.9 0.00005 0.50642 0.84080

dbc_2014_099899046  < 6 Nursing days CHF 1692 2.7 0.00022 0.48950

zrg_2014_OX04070489 DBC laboratory research 2656 1.2 0.00015

zrg_2012_OX02070820 BNP/NT-proBNP Laboratory research 3130 1.2 0.00011

DRG_2012_C64_C68 Malignant neoplasm of urinary tract 553 1.5 0.00009

zrg_2014_500112001 Consult GP > 20 min 12,488 1.1 0.00009

ATC_2014_C09AA02 Enalapril/enalaprilaat 1996 1.3 0.00009

zrg_2012_U46012300 Consult GP 5086 1.2 0.00006

dbc_2012_099899003 Surgical team meeting and/or outpatient clinic 
visit in case of a disease of the heart

1112 1.8 0.00005

dbc_2012_131999206 Outpatient clinical visit rheumatism 401 0.6 0.57427 1.56740

ATC3_2014_A01 Mouth preparations 280 1.8 0.50668 0.82770

DRG_2012_C81_C96 Malignant neoplasm lymphoid and blood-
forming tissue

690 1.5 0.42163 0.72440

ATC_2012_R03AC12 Salmeterol 344 0.8 0.53758 0.70620

zrg_2012_OX04080080 DBC Radiology 269 0.1 0,67,103

ATC_2014_C09AA01 Captopril 291 0.9 0,46,435

dbc_2014_099899050  > 5 Nursing days acuut HF 977 4.0 0,43,989

zrg_2012_701013016 Post-operative consultation inc. removal of 
suture material, in practice GP aid

602 0.7 1.11550

DRG_2012_C64_C68 Malignant neoplasm of urinary tract 553 1.5 0.99730

dbc_2012_079999013 Outpatient clinic visit eye disease 333 0.8 0.76760

dbc_2012_100501045 Day treatment asthma 353 1.1 0.68920
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HF hospitalisation, RF for 1-year mortality and EN for 
3-years mortality.

Top-10 features of importance in our study are shown 
in Tables 5, 6, 7 and 8. For HF hospitalisation, previous 
HF hospitalisation for CHF or acute HF, comorbidities as 
COPD, diabetes or oncology and visit to the GP are the 
most common among the trained models. For mortal-
ity, age, sex and marital status are also often used in the 
models. Features from 2014 were more common com-
pared to 2012–2013.

Discussion
In this analysis, based on a HIC database of > 25,000 
patients with CHF, we have shown that the use of tradi-
tional and novel techniques indeed have clear predictive 
value for predicting long-term HF hospitalisation and all-
cause mortality for CHF patients, with AUC’s between 
0.7 and 0.8 [33, 34].

For our main performance metric, the AUC, EN out-
performed other statistical methods in predicting 1 
and 3  years HF hospitalisation and 1 and 3  years mor-
tality, although with only minor differences compared 

to traditional LR and only statistically significant 
between EN and LR compared with RF for 3-years HF 
hospitalisation.

Our results are comparable with earlier reported find-
ings. Angraal et al. reported in a recent study for 3-years 
mortality and HF hospitalisation that RF was the best 
performing model with a mean AUC of 0.72 (95% con-
fidence interval [CI] 0.69–0.75) for predicting 3-years 
mortality, and 0.76 (95% CI 0.71–0.81) for 3-years HF 
hospitalisation [35]. This study was based on a cohort 
with 1,767 patients in HF with preserved ejection frac-
tion. Chicco et al. [36] analysed 9 months mortality in 299 
patients with HF. RF outperformed all the other meth-
ods, by obtaining the top ROC AUC (0.800) The Artificial 
Neural Network perceptron, instead, obtained the top 
value on the Precision-Recall AUC (0.750). The AUC out-
comes on our HIC database are in line with these 2 recent 
studies, both based on clinical data, although RF did not 
outperform in our study. Mortzavi et al. found more pro-
nounced differences (10–25%) for 30-days HF hospitali-
sation and 180-days HF hospitalisation outcome between 
ML compared to traditional LR, but they only used the 
5 most important features as identified previously (blood 

Table 6  Variable importance 3 years HF hospitalisation

*Odds ratio, †mean square error

Feature Description feature N Univariate Random forest Elastic net Logistic regression
OR* (MSE†) (coefficients) (predictor)

dbc_2014_099899068  > 5 Nursing days acuut CHF 753 3.4 0.00155 0.59463 0.77700

DRG_2014_I00_I02 Acuut HF 1564 3.0 0.00095 0.56953 0.62340

dbc_2014_099899046  < 6 Nursing days CHF 1692 2.0 0.00059

ATC_2012_B01AC04 Buildings built between 1965 and 1974 2740 1.6 0.00054

RRafl_Amiodaron Number collected medication Amiodaron 1586 1.0 0.00029

DRG_2014_E10_E13 Diabetes 2517 2.0 0.00024

zrg_2014_B291079992 Home visit 3539 1.0 0.00019

zrg_2012_U46012300 Consult GP 5086 1.2 0.00016

zrg_2012_500112002 Visit GP 8540 1.0 0.00015

ATC_2012_C03DA01 Spironolacton 7301 2.0 0.00014

dbc_2012_029899013 Outpatient clinic visit benign growth of the skin 260 0.5 0.53165 − 0.71500

zrg_2014_5603P30 Complete dentures upper and lower jaw Com-
plete dentures upper and lower jaw

504 1.6 0.41897 0.61270

ATC_2014_V03AE02 Sevelameer 304 0.8 0.74320 − 0.58770

DRG_2014_D22_D23 Benign neoplasm skin 362 1.3 0.47009 0.52520

VERHUISD_2015 Movend out in 2015 255 1.3 0.53365

zrg_2012_OX04084602 DBC Radiology 679 0.8 0.45328

ATC3_2014_B05 Blood replacement agents 288 0.9 0.44734

ATC_2014_J02AC01 Fluconazol 251 0.8 0.43146

ATC_2014_R03BA08 Ciclesonide 570 0.8 − 0.60770

dbc_2014_131999210 Outpatient clinic visit gout 260 2.4 0.56250

dbc_2014_099899091 Outpatient clinic visit heart valve abnormality 399 1.5 0.48490

DRG_2012_T80_T88 Osteoarthritis revision prosthesis 304 1.5 0.47710
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urea nitrogen, glomerular filtration rate, sex, waist-to-
hip ratio, and history of ischemic cardiomyopathy) in LR 
and the remaining techniques were created using the full 
raw data of 472 inputs [37]. It should be noted that these 
studies had small datasets, which may limit the general-
izability of their conclusions. A meta-analysis and meta-
regression study of 117 prognostic models revealed only 
a moderate accuracy of models predicting mortality, 
whereas models designed to predict the combined end-
point of death or HF hospitalisation, or only HF hospi-
talisation, had an even poorer discriminative ability. The 
highest AUC-statistic values were achieved in a clinical 
setting, predicting short-term mortality with the use of 
models derived from prospective cohort/registry studies 
with many predictor variables. The mean AUC-statistic 
was 0.66 ± 0.0005 for the models reporting a standard 
error. Models using data from medical records had sig-
nificantly better AUC-statistic values than models using 
claims data. Also, models using more predictor variables 
had better predictive values; AUC-statistic increased 
0.0036 (SE = 0.0005) with each added predictor variable. 

There was no significant difference in AUC-statistic val-
ues between patients diagnosed with either CHF or acute 
HF [38].

Most currently existing prognostic models in patients 
with CHF are based on data from randomized controlled 
trials or extracted from administrative datasets, such as 
medical insurance claims [39]. To our knowledge, this 
was the first study that applied machine learning tech-
niques to a (Dutch) HIC database for CHF outcome 
prediction. A great advantage of a HIC database in the 
Netherlands is that it covers the entire healthcare utili-
zation since over 99% of the population has basic health 
insurance as mandated by law [40]. Most studies are 
based on data of 1 or a limited number of hospitals, but 
in a HIC database we have data of all the hospitals and 
patient visits. Moreover, a HIC database also includes 
General Practitioners (GP), pharmaceutical and other 
healthcare-related data. The relevance of covering a 
patient’s full healthcare usage was demonstrated by our 
feature importance analysis (Tables 5, 6, 7, 8) that shows 
that GP and pharmaceutical data are related to the 

Table 7  Variable importance 1 year all-cause mortality

*Odds ratio, †mean square error

Feature Description feature N Univariate Random forest Elastic net Logistic regression
OR* (MSE†) (coefficients) (predictor)

oms_burg_staat2 Marital status 25,776 0.7 0.00236 0.84190

geslacht Sexe 25,776 1.3 0.00075

ATC_2014_B03XA02 Darbepoetine alfa 356 4.9 0.00040

age Age 25,776 1.1 0.00036

DRG_2014_C30_C39 Malignant neoplasm intrathoracic 552 3.5 0.00035

zrg_2014_500112003 Visit GP > 20 min 5932 1.2 0.00031

zrg_2014_I001196001 Ambulance 5909 1.4 0.00031

dbc_2014_099899068  > 5 nursing days acuut CHF 753 4.1 0.00028

zrg_2014_701013035 Visit GP > 20 min 274 1.4 0.00027

ATC_2014_H02AB06 Prednisolon 4712 2.3 0.00027

dbc_2014_090301002 Outpatient clinical visit high bloodpressure 270 0.1 0.85177 −1.39220

dbc_2014_099899068  > 5 nursing days acuut CHF 753 4.1 0.74860 1.20540

DRG_2014_C30_C39 Malignant neoplasm intrathoracic 552 3.5 0.92866 0.86620

DRG_2014_R52_1 Pain 359 0.9 0.78378 −0.84680

DRG_2014_C00_C98 Malignant neoplasms—other 584 2.6 0.66214 0.81190

DRG_2014_AULG_01 Audiology 250 0.5 0.75475

dbc_2012_090301002 Outpatient clinical visit high bloodpressure 567 0.5 0.68019

zrg_2014_6409120361 Toilet riser device 358 2.4 0.59082

zrg_2014_6404330361 Seat cushion foam/static seat cushion 315 5.2 0.58836

dbc_2012_039999015 Outpatient clinic visit blood disease 313 1.8 1.04530

dbc_2012_100501046 Outpatient clinic visit asthma 471 0.7 −0.95950

dbc_2012_099599003  < 6 Nursing days acuut heart disease 277 1.7 0.82520

zrg_2014_OX02089402 Examination with X-ray of the knee and / or 
lower leg. Radiological examination

577 0.6 −0.77200

DRG_2012_C81_C96 Malignant neoplasm lymphoid and blood-
forming tissue

690 1.9 0.74920
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endpoints in our study. Primary care plays a central role 
in many countries, such as the Netherlands and the UK 
in the diagnosis, long-term management, and end-of-life 
care for these patients. While there is specialist support 
available from nurses and cardiologists especially after 
admission and later on at a regular basis once or twice 
a year, GPs remains responsible for overseeing most 
patient care once a diagnosis is made including manage-
ment to delay progression, recognition of HF decompen-
sations, and patient follow-up in the vulnerable period 
following an HF hospitalisation [41, 42].

Most machine learning techniques for adverse out-
comes in CHF focus on a short time period, mainly on 
30-days HF hospitalisation [6]. Although the risk for 
HF hospitalisation declines over time, patients with 
a CHF hospitalisation have a significantly elevated 
risk of HF hospitalisation for at least 1  year [4]. From 
a public health and patient perspective long-term 
adverse outcomes are as important and a HIC database 
has adequate information to examine this long-term 
perspective.

The most important features in our study are well 
known and reported in earlier studies, for instance age, 
sex, comorbidities as diabetes or COPD, and living in 
buildings built between the years 1965 and 1974 as a 
proxy for socio-economic status. HF Hospitalisation in 

the baseline period was unsurprisingly an import predic-
tor of HF hospitalisation in the future, as well as Acute 
HF. Visit of the GP was an import predictor, but we 
do not know the reason of this visit. Most likely it was 
related to comorbidities. Importantly, most data-driven 
machine learning techniques, including the ones we 
used, are correlational in nature and not causal, so cau-
tion while interpreting these results is advised [43].

As the current study was only utilizing HIC data, 
potentially important clinical features are not included 
in the current models. For instance, Parenica et  al. [44] 
found higher age, LV dysfunction, comorbidities and high 
levels of natriuretic peptides as the most powerful predic-
tors of worse prognosis in long-term survival. Reduced 
ejection fraction is a powerful predictor of long-term 
mortality, especially after the 6th year [45]. Ouwerkerk 
et al. [38] found 3 variables with a high predictive value: 
sodium; blood urea nitrogen; and systolic blood pressure. 
Clinical features such as ejection fraction and natriuretic 
peptides are not available in a HIC database, but age and 
comorbidities based on pharmacy-based cost groups or 
DRGs are.

We have given an overview of model performance 
of several machine learning algorithms and traditional 
statistics in predicting risk for HF hospitalisation and 
all-cause mortality in a representative sample of the 

Table 8  Variable importance 3 years all-cause mortality

*Odds ratio, †mean square error

Feature Description feature N Univariate Random forest Elastic net Logistic regression
OR* (MSE†) (coefficients) (predictor)

dbc_2014_099899068  > 5 nursing days acuut CHF 753 3.4 0,00,036 0.62778 0.82270

Age Age 25,776 1.1 0,00,501

Geslacht Sexe 25,776 1.2 0,00,222

zrg_2014_500112003 Visit GP > 20 min 5932 1.4 0,00,151

RRPDD_Loop PDD Loop 14,166 1.0 0,00,065

DRG_2012_KGER Clinical geriatrics 1225 3.2 0,00,064

ATC_2014_A03FA01 Metoclopramide 1059 2.4 0,00,062

DRG_2014_C30_C39 Malignant neoplasm intrathoracic 552 3.0 0,00,060

oms_burg_staat2 Marital status 25,776 0.7 0,00,044

DRG_2014_C00_C98 Malignant neoplasms—other 584 2.1 0,00,035

dbc_2014_100501025  > 5 nursings days COPD 377 5.5 0.60695 0.92830

DRG_2014_C30_C39 Malignant neoplasm intrathoracic 552 3.0 0.71789 0.88990

DRG_2014_C00_C98 Malignant neoplasms—other 584 2.1 0.64685 0.71970

DRG_2014_M16 Osteoarthritis hip 320 0.6 0.58461 − 0.62770

ATC3_2014_V03 Other therepeutic devices 475 3.6 0.49412 0.61010

ATC_2014_R03DC03 Montelukast 253 0.8 0.72986 − 0.90920

ATC_2012_N05AD01 HALOPERIDOL 363 3.8 0.71630 0.72350

DRG_2014_J80_J84 Interstitial lung disease 298 1.9 0.73885 0.72180

ATC3_2014_L01 Oncolytica 415 1.9 0.52782

ATC_2014_B03XA02 Darbepoetine alfa 356 4.9 0.62320
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Dutch population from a HIC database. Our find-
ings are therefore generalisable to all CHF patients in 
the Netherlands. However, several limitations should 
also be acknowledged. First, models based on admin-
istrative claims data lack certain clinically relevant 
features, such as New York Health Association Class 
[46], left ventricular ejection faction, intoxications 
such as smoking, blood pressure and physical activity 
[47]. Enriching HIC data through clinical data cou-
pling would be preferred. Strict general data protec-
tion regulation (GDPR) rules limit these possibilities. 
Using a trusted third party or novel techniques like 
Multi Party Computation could provide a good solu-
tion to overcome the legal burdens to clinical and HIC 
data coupling [16]. Second, due to GDPR regulations, 
patient data history is limited to 7  years in HIC data-
bases, hence, relevant historical data may be missing. 
Third, the ability to explain and interpret ML models is 
limited, especially NN. Hence, it is difficult to embrace 
these models and apply them in a clinically relevant 
way. More research is needed to explore the causal 
relationship of features that could be of importance in 
medical practice. In general, we found poor or moder-
ate overlap between methods in their assessment of fea-
ture importance for the top10 features, even when their 
performance is comparable and relatively good. Most 
overlap was between EN and LR and least with RF, 
because RF was heavily nonlinear. The ability to explain 
and interpret RF is most elaborate, because RF has an 
integrated procedure of producing variable impor-
tance’s [48]. However, for LR we used the multivariate 
method. This is the simplest feature importance meas-
ure tested, and unsurprisingly has strong assumptions, 
namely that a predictor’s importance is independent of 
all other factors. It is also important to note that sig-
nificant predictors in LR may not make useful predic-
tions [49]. Finally, we reduced the input claims features 
using prevalence prioritization and Lasso Regression, 
due to performance reasons. By doing so we perchance 
excluded features which could have been relevant.

In this study based on a Health Insurance Claims 
database we have shown clear predictive value for pre-
dicting long-term HF hospitalisation and mortality of 
CHF patients. Novel machine learning techniques like 
RF and NN can obviate more redundant HF hospitali-
sation or mortality, because they allow for non-linear 
relations or in the case of EN can reduce irrelevant 
features. In the long run, we hope that applying state-
of-the-art machine learning on clinical data combined 
with HIC data can improve risk stratification and prog-
nosis by offering high-risk patients timely interven-
tion through for example cardiac rehabilitation and by 

optimizing medical therapy and stimulating medical 
adherence.
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