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Abstract 

Background:  Clinical notes are unstructured text documents generated by clinicians during patient encounters, 
generally are annotated with International Classification of Diseases (ICD) codes, which give formatted information 
about the diagnosis and treatment. ICD code has shown its potentials in many fields, but manual coding is labor-
intensive and error-prone, lead to researches of automatic coding. Two specific challenges of this task are (1) given 
an annotated clinical notes, the reasons behind specific diagnoses and treatments are  implicit; (2) explainability is 
important for practical automatic coding method, the method should not only explain its prediction output but also 
have explainable internal mechanics. This study aims to develop an explainable CNN approach to address these two 
challenges.

Method:  Our key idea is that for the automatic ICD coding task, the presence of informative snippets in the clinical 
text that correlated with each code plays an important role in the prediction of codes, and an informative snippet 
can be considered as a local and low-level feature. We infer that there exists a correspondence between a convolu-
tion filter and a local and low-level feature. Base on the inference, we come up with the Shallow and Wide Attention 
convolutional Mechanism (SWAM) to improve the CNN-based models’ ability to learn local and low-level features for 
each label.

Results:  We evaluate our approach on MIMIC-III, an open-access dataset of ICU medical records. Our approach sub-
stantially outperforms previous results on top-50 medical code prediction on MIMIC-III dataset, the precision of the 
worst-performing 10% labels in previous works is increased from 0% to 53% on average. We attribute this improve-
ment to SWAM, by which the wide architecture with attention mechanism gives the model ability to more extensively 
learn the unique features of different codes, and we prove it by an ablation experiment. Besides, we perform manual 
analysis of the performance imbalance between different codes, and preliminary conclude the characteristics that 
determine the difficulty of learning specific codes.

Conclusions:  Our main contributions can be summarized into the following three: (1) We present local and low-
level features, a.k.a. informative snippets play an important role in the automatic ICD coding task, and the informa-
tive snippets extracted from the clinical text provide explanations for each code. (2) We propose that there exists a 
correspondence between a convolution filter and a local and low-level feature. A combination of wide and shallow 
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Background
Clinical notes are written by clinicians during patient 
encounters, they are usually unstructured text narratives 
and accompanied by a set of metadata codes from the 
International Classification of Diseases (ICD), which pre-
sent a standardized way of indicating diagnoses and pro-
cedures that were performed during the encounter. There 
is much research that demonstrates the practical applica-
tion with ICD codes [1–3]. For example in work by Choi 
et al. [4], they proposed the Doctor AI system based on 
the presence of ICD codes to predict future patient states 
from learning patient representation from a large dataset 
of patient records.

Manual coding is time-consuming and error-prone, 
so much research on automatic coding has been done in 
the pastdecades, some recent works are Zhang et al. [5]; 
Kavuluru et al. [6] and Avati et al. [3]. Automatic coding 
is considered a multi-label classification task, and two 
domain-specific challenges are facing this task. First, 
a reasonable guess is that for a certain code prediction 
task, most of the text is not informative, only a few snip-
pets are related to the code. However given the annotated 
text, the connections between code and its correspond-
ing informative snippets are lost, in other words, the 
model has to learn the reasons behind specific diagnoses 
and treatments.Second, interpretability is a crucial obsta-
cle for practical automatic coding in both perspective 
of inferring and internal mechanics, the method is sup-
posed to explain its prediction as well as have an explain-
able internal mechanics.

To address these two specific challenges together, in 
this paper, we develop CNN-based methods for auto-
matic ICD coding assignment based on text discharge 
summaries from ICU stays, we come up with Shallow 
and Wide Attention convolutional Mechanism (SWAM), 
which allows our model to learn local and low-level fea-
tures for each label. Our model design is motivated by 
the way human clinicians manual label the clinical notes, 
which is to look for informative snippets that are relevant 
to each code. We consider the informative snippets as 
local and low-level features. SWAM address the two chal-
lenges in automatic coding: first, by transferring the base 
representation (i.e. clinical notes in the word-embedding 
form) to the convolution representation which represents 
the presence of informative snippets, the model could fil-
ter out the irrelevant information in the text, and through 
the attention mechanism the model could learn the 

correlation between informative snippets and labels Sec-
ond, SWAM gives informative snippets extracted from 
clinical notes as explanations of its prediction result, and 
provides a new perspective for understanding the inter-
nal mechanics of the machine learning method.

We evaluate our approach on the MIMIC-III data-
set [7], an open dataset of ICU medical records. With 
the Shallow and Wide Attention CNN mechanism, the 
model can learn non-generic features associated with 
specific labels that are not informative for other labels, 
which the narrow one are failed to learn. With the per-
formance improvement gained from these specific labels, 
our approach outperforms previous results on medical 
code prediction on MIMIC-III dataset.

Related work
Automatic ICD coding
ICD coding has been a long-established task in the 
medical informatics community for decades, from the 
perspective of data, the current approaches of this task 
can be divided into two factions: much recent research 
focuses on unstructured text data [6, 8], while the other 
incorporates structured data as well [9]. We develop our 
methods on unstructured text data from the MIMIC-III. 
From the perspective of the code set, many approaches 
[10, 11] evaluate on a subset of the full ICD label space, 
while there are also methods [12] developed on the full 
code set. We develop our methods on the top-50 code set 
because the advantage of SWAM is learning specific fea-
tures associated with specific labels that are not generic 
feature for other labels, so instead of carrying out a sur-
prisingly large network to learn all non-generic features 
on the full code set, using ensemble method to cover the 
whole code set is preferred, which is discussed in later 
part.

A tendency in recent years is developing Neural Net-
work-based methods for this task. Shi et al. [13] applied 
attentional LSTMs to form a soft matching between 
sentence representations from discharge summaries 
and the top 50 codes. Prakash et al. [11] generated pre-
dictions of the top 50 codes by memory networks built 
from discharge summaries and Wikipedia. Mullenbach 
et  al. [12] applied a per-label mechanism to extract the 
most important snippet for each code from discharge 
summaries. SWAM is compared with the published 
result from all these papers, and it achieves state-of-the-
art results across many indicators. We attribute these 

convolutional layer and attention layer can help the CNN-based models better learn local and low-level features. (3) 
We improved the precision of the worst-performing 10% labels from 0 to 53% on average.

Keywords:  ICD coding, Machine learning, Attention mechanism, Convolutional neural network
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improvements to the ability to learn non-generic features 
associated with specific labels that are not informative 
for other labels, which bring significant performance 
improvements on these specific labels.

Attentional convolution for NLP and explainable text 
classification
Combing convolution with attention has been proved is 
efficient in different tasks among NLP [14–18]. Yang et al. 
[19] and Mullenbach et al. [12] utilize attentional convo-
lution to select the most relevant parts of the clinical text 
of each code. We refer to the per-label attention mecha-
nism from those of Mullenbach et al. [12], in which per-
label parameter vectors are used to compute attention 
over specific locations in the text. Our work differs in 
that SWAM establishes the correspondences between the 
“informative snippet” and convolution filter, which makes 
the network a wider one comparing to its of Mullenbach 
et al. [12] and is better tuned to our goal of learning low-
level feature, a.k.a. informative snippet with explainable 
internal mechanics.

Attentional Convolution has also been applied to make 
explainable text classification. Some prior works like 
Rushet al. [20] and Rocktäschel et al. [21] employ atten-
tion to highlight salient features of the text. The per-label 
attention mechanism [12] we referred extract snippet 
from the text as automatically generated explanation 
of the prediction in the same medical codes prediction 
task, and the informativeness of explanations are rated 
by a physician. Their work illustrates that the neural net-
work work in an explainable way for this task: the model 
will try to find parts of the text that are most relevant to 
each code. Our work differs in that instead of making the 
model explainable by explaining its prediction, we take a 
further step forward to make the internal mechanics of 
the method explainable by opening the black box of the 
neural network to establish the correspondences between 
the “informative snippet” and convolution filter. We also 
bring out a preliminary analysis of the imbalance perfor-
mance between the labels, provide a rational explanation 
of why the model performs terribly on certain codes.

Neural network architecture design for text classification 
work
Hoa et  al. [22] compared the deep CNN and shallow 
CNN under text classification task, a practical rule is 
summarized that deep models do not seem to bring a 
significant advantage over shallow networks for text clas-
sification, another observation they made is that a global 
max-pooling [23], which retrieves the most influential 
feature could already be good enough for the text clas-
sification task. The authors believe one possible reason 
may be related to these facts that images are represented 

as real and dense values, as opposed to the discrete, 
artificial, and sparse representation of text. Their work 
indicates that local and low-level features extracted by 
shallow CNN work well for text classification tasks and 
inspires us to explore the underlying correspondences 
between local and low-level features and snippets in the 
text.

Gong and Ji [24] find that in CNN for the text classifi-
cation task, the convolution filters have learned division 
of labor. More than half of the kernels have a preference 
for one specific label. Their work inspires us to associate 
the width of the network with the learning of features of 
specific labels that are not generic for other labels.

Methods
In this paper, we use notations shown in Table 1.

We present SWAM, a CNN-based method for auto-
matic ICD coding from the clinical text, which provides a 
good explanation of its internal mechanics.

SWAM is motivated by the way human clinicians 
manual label the clinical notes, to help the reader under-
stand the method, firstly here is a brief introduction of 
the way human clinicians manual label the clinical notes. 
Normally, human clinicians will look for informative 
snippets that are relevant to each code. For example, as 
shown in Fig. 1, given code 96.04 in the figure, a human 
clinician will look for the presence of relevant snippets in 
the clinical notes. In this case, the relevant snippets are 
“intubation” and “endotracheal intubation”, if the human 
clinician finds the relevant snippets, he/she will give a 
positive prediction of code 96.04.

SWAM refers to the same idea of manual coding. As 
shown in Fig. 1, the first step, through the convolutional 
layer the model will extract informative snippets that 
could be relevant to any code. In the second step, the 
attention layer will assign importance weight to snippets 
to select the relevant snippets of each code, and in the 
final step the model summary the weighted score of all 
relevant snippets of each code to give the predictions of 
the presence of each code.

Correspondences between informative snippet 
and convolution filter
Our explanation of the internal mechanics of SWAM 
builds on correspondences between “informative snip-
pet” and convolution filter. Firstly, we classify the 
“informative snippet” into two categories: “generic snip-
pet” and “non-generic snippet”. “generic snippet” refers 
to snippets that are informative for multiple labels, for 
example, in our task, “experience fever” is likely to be 
a “generic snippet” since it is the symptom correlated 
with multiple diagnoses. “non-generic snippet” refers 
to snippets that are only considered as informative to a 
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specific or a few labels, for example, in top-50 code task, 
“endotracheal intubation” will be considered as a “non-
generic snippet” since it brings little information gain to 
the other 49 labels than it brings to the code 96.04 “Inser-
tion of endotracheal tube”.

Then we infer that there exists a correspondence 
between “informative snippet” and convolution filter, 
which means one convolution filter can only gener-
ate a high activation value for a specific “informative 

snippet”. Given that in the CNN context, the “inform-
ative snippet” can be considered as a set of word 
embedding sequences that are close in the embed-
ding space. For example, “large mucus plug” and “big 
mucus plug” are the same “informative snippet” since 
they have similar meanings and therefore are close in 
the embedding space. It is most likely that for different 
“informative snippets”, they will have very little chance 
to be close in the embedding space. For each filter, it 

Fig. 1  Internal mechanism of SWAM

Table 1  Table of Notations

Notation Description

L The set of ICD-9 codes

yi,ℓ ∈ 0, 1 The true value of the label task for instance i and ℓ ∈ L , 1 indicates the label is true for instance i

de The size of the input embedding

dc The size of the convolution output, a.k.a. the number of convolution filters

X = [x1, x2, . . . , xN] The matrix of a document instance, where N is the length of the document and xi is the vector 
representation of the word

Wc ∈ R
k×de×dc Convolution filters, where k is the width of filter window

H ∈ R
dc×N Convolutional representation of the document

∗ Convolution operator

g An element-wise nonlinear transformation

bc ∈ R
dc The bias in convolutional operation

uℓ ∈ R
dc Attention parameter vector for label ℓ

αℓ ∈ R
N Attention result vector for label ℓ

bℓ Scalar offset in linear layer for label ℓ

βℓ ∈ R
dc Vector of prediction weights

σ Sigmoid function

SoftMax () SoftMax(x) =
exp(x)∑
i exp(xi)

 , where exp (x) is the element-wise exponentiation of the vector x
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will be “highly activated” ouput exceeds threshold 
when the snippet in its window is close to its param-
eters in embedding space, and this snippet can be con-
sidered as the “informative snippet” corresponds to 
this filter.

Based on the above inference, an obvious conclu-
sion is that the choice of the width of the convolution 
layers, a.k.a. the number of convolution filters should 
depend on the total numbers of “informative snip-
pets” in the task, more accurately, the number of “non-
generic snippet” since it will be much larger than the 
number of “generic snippet” in the large-scale coding 
task. Besides, empirical guidance in our architecture 
design is that there could be multiple “non-generic 
snippets” for each code [24].

Therefore we develop Shallow and Wide Attention 
CNN for this task: the presence of the informative 
snippet of each code could be considered as a local, 
low-level feature learned by the shallow CNN, and we 
also need the convolutional layer to be wide since the 
model needs to learn the “non-generic snippets” of all 
codes.

The mechanism behind Shallow and Wide Attention 
CNN is general for a set of similar text classification 
tasks that informative snippets relevant to each label 
scattered at random locations in the input document. 
So SWAM can be regarded as a general architecture 
with the following three characteristics, and imple-
ment details can be varied (e.g. the attention layer in 
the model can be either per-label attention mechanism 
[12] or the full connected layer in textCNN [25]). 

1.	 The convolutional layer should be sufficiently wide, 
a.k.a. enough convolution filters to not only extract 
all generic snippets that are informative for multiple 
labels, but also all non-generic features that are cor-
related to specific label and not informative to other 
labels, the certain number of filters depends on task 
context, a.k.a. the total number of generic features 
and non-generic features in the task.

2.	 The network architecture should be shallow, this 
model is designed to extract snippets of text, which 
can be considered as local, low-level features, so a 
deeper network is unnecessary since informative 
snippets relevant to each label scattered at random 
locations in the input document, it is not likely that 
we can earn any benefit from the global, high-level 
features by combining the adjacent snippets.

3.	 Attention mechanism should be introduced to learn 
the correlations between important/informative 
snippets and each code.

Word embedding
The word embedding model used in this paper is the 
word2vec CBOW method by Mikolov et  al. [26], we 
pre-train word embedding of size de = 100 on the 
preprocessed text from all discharge summaries in 
MIMIC3, which is the same dataset for training our 
model. Details about the dataset can be found in Data-
set. We treat ICD code prediction as a multilabel text 
classification problem [27]. For clinical note instance i, 
we want to determine yi,ℓ ∈ 0, 1 for all ℓ ∈ L . We train 
a neural network which passes text through a convolu-
tional layer to compute a base representation of the text 
of each document [25], and makes |L| binary classifica-
tion decisions.

Convolutional Layer
The input of convolutional layer is the clinical notes in 
form of pre-trained embeddings representing by the 
matrix X = [x1, x2, . . . , xN ] . The convolution of adjacent 
embeddings are computed with a convolution filter 
Wc ∈ R

k×de×dc . At step n, we compute

The input is padded on both sides with zeros so the base 
representation H keeps the same length as X.

Attention layer
Nowadays attention mechanism has been general-
ized and has been employed in many different forms 
[28]. The core idea of the attention mechanism can 
be regarded as “giving weight to different parts of the 
input, to select the part in the input that is more impor-
tant for the current task”. So the full connected layer in 
textCNN [25] can also be regarded as a kind of “atten-
tion” since it weighs input separately for each label.

As we mention in Correspondences between 
“informative snippet” and convolution filter, SWAM 
can be regarded as a general CNN architecture, and 
implement details can be varied. We adopt two differ-
ent implements of the attention layer in our model for 
different consider considerations. The first one is the 
per-label attention mechanism by Mullenbach et  al. 
[12], we adopt it because it can extract snippets from 
the clinical text as explanations of the model predic-
tion, which can be used to verify our conjecture about 
the correspondence between “informative snippet” and 
convolution filter. The second one is the common full 
connected layer in textCNN [25], we adapt it since the 
textCNN is the basis of many works so it can prove the 
versatility of SWAM.

For the per-label attention mechanism (the imple-
ment shown in Fig.  2), the idea is to calculate the 

(1)hn = g(Wc ∗ xn:n+k−1 + bc)
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per-label representation of the document and use an 
attention vector αℓ to represents importance distribu-
tion over locations in the document. To obtain the per-
label representation of the document, formally a vector 
parameter uℓ ∈ R

dc is used to compute the matrix-vec-
tor product, H⊤

uℓ , which can be taken as that the base 
representation H is weighted for label ℓ . The resulting 
vector is then normalized using a SoftMax operation, 
obtaining αℓ , the attention vector, the value of the ele-
ment in the attention vector is the weighted sum of 
convolutional features from all kernels in the same 
place of the document.

αℓ is also taken as the location indicator of the most 
important snippet for label ℓ , every element in αℓ is cor-
responding to a location in the document, the value of 
the element is seen as the importance of the correspond-
ing location for label ℓ . The highest element value in αℓ 
means the snippet in this location is most important 
(a.k.a. most informative) for the prediction of labelℓ . 
Therefore we obtain an explanation of the prediction in 
the form of extracted snippets from the document.
αℓ,nhn , the element-wise vector product is then com-

puted, applies the attention vectors on the base repre-
sentation to get the vector document representations vℓ 
for label ℓ,

(2)αℓ = SoftMax(H⊤
uℓ)

For full connected attention, we instead use max-pooling 
to filter the base representation down to a vector v ∈ dc 
where every element in v corresponds to the highest 
action value of a convolution filter in the text,

Classification
Given the vector representation vℓ , the likelihood for label ℓ 
is computed using a linear layer and a non-linear function 
sigmoid:

Loss function
The training procedure use BCE (binary cross-entropy) as 
the loss function, the optimization goal is to minimize the 
loss.

(3)vℓ =

N∑

n=1

αℓ,nhn

(4)vj = max
n

hn,j

(5)ŷℓ = σ

(
β⊤
ℓ vℓ + bℓ

)

(6)

LBCE(X , y) = −

L∑

ℓ=1

yℓ log
(
ŷℓ
)
+

(
1− yℓ

)
log

(
1− ŷℓ

)

Fig. 2  The architecture of the model with per-label mechanism. The notations are annotated in 1
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Results
Dataset
MIMIC-III [7] is an open-access dataset comprising 
health data in the form of text and structured records of 
ICU admissions. Since MIMIC was built, it has become 
the basis of many works on multi-label classification [10, 
29]. Following previous works, we train our model on 
discharge summaries in MIMIC, which summary records 
about one stay into a single document. We focus on the 
raw text of the data and ignore the attached features like 
admission time. Every discharge summary is correspond-
ing to an admission, and each admission is annotated 
with a set of ICD-9 codes, describing both diagnoses and 
treatments that occurred during the patient’s stay. We 
train and evaluate SWAM on a label set consisting of the 
50 most frequent labels. We filter the dataset down to the 
instances that have at least one of the top 50 most fre-
quent codes. Some patients have multiple admissions and 
therefore multiple discharge summaries. To prevent the 
model from learning unnecessary correlations, we split 
the data by patient ID, so that no patient appears in both 
the training and test sets. After the split, there are 8,067 
summaries for training, 1,574 for validation, and 1,730 
for testing. Other detailed statistics for the setting are 
summarized in Table 2.

Preprocessing
We remove the tokens that contain no alphabetic charac-
ters (e.g., removing ‘100’ but keeping ‘100ml’ ). For those 
tokens that appear too few times to make their semantics 
difficult to learn, a threshold that only remains tokens 
that appear in no fewer than 3 training documents is set-
ting, and all tokens that failed the threshold are replaced 
with an ‘UNK’ token. The distribution of discharge sum-
maries conforms to the long-tailed distribution, 90% of 
discharge summaries are short than 2500 tokens, so we 
truncated discharge summaries to a maximum length of 
2500 tokens.

Baselines
As mentioned in Correspondences between “informative 
snippet” and convolution filter, SWAM can be regarded 
as a general CNN architecture and implement details 

can be varied. In model part Attention layer two different 
implements of attention layer are adapt for different con-
siderations, we name those two implements as “SWAM-
textCNN” [25] and “SWAM-CAML” [12] separately to 
indicate the attention approaches they refers.

The baseline we compare against is a bag-of-words 
logistic regression model, we also compare SWAM-
CAML with the origin implement of CAML [12] at the 
same setting.

For SWAM-textCNN and SWAM-CAML we initialize 
the embedding weights using the same pre-trained word-
2vec vectors. The logistic regression model consists of |L| 
binary one-vs-rest classifiers acting on unigram bag-of-
words features.

Parameter tuning
We tune the hyper-parameters of our SWAM models 
using grid search. We sample parameter values for the 
learning rate η , as well as filter size k, number of filters dc , 
and dropout probability q as shown in Table 4. We also 
adopt hyper-parameter tuning in the previous works as 
empirical guidance [12, 25, 31]. We use a fixed batch size 
of 16, and train the model with early stopping, in the case 
that the f1-macro does not improve for 10 epochs the 
training will terminate.

Evaluation metrics
We focus on two metrics: Macro-averaged F1 and preci-
sion at n (denoted as ‘P@n’), which is the fraction of the 
n highest-scored labels that are present in the ground 
truth. The reason we focus on Macro-averaged F1 is that 
it pays attention to per-label performance, which can 
reflect the average performance of the model on different 
label tasks. As for P@n, we choose it because it reflects 
the performance of the model as a practical decision sup-
port system which presents a fixed number of predicted 
codes to help user annotated the clinical text. To facili-
tate comparison with both future and prior work, we also 
report a variety of metrics includes the area under the 
ROC curve (AUC) and micro-averaged F1. For recall, 
Macro-averaged values are calculated by averaging met-
rics computed per-label. Micro-averaged values are 
calculated by treating each (document, code) pair as a 
separate prediction.

Results on quantitative evaluation
Our main quantitative evaluation involves predict-
ing the 50-code set of ICD-9 codes based on the text of 
the MIMIC-III discharge summaries. These results are 
shown in Table 3. We adopt two different implements of 
attention layer, named “SWAM-textCNN” and “SWAM-
CAML” The SWAM models give the strongest results 
on all metrics, especially on F1-Macro, which emphasis 

Table 2  Descriptive statistics for MIMIC3

MIMIC-III full MIMIC-III 50

Training documents 47,724 8,067

Vocabulary size 51,917 51,917

Mean tokens per document 1,485 1,530

Mean labels per document 15.9 5.7

Total labels 8922 50



Page 8 of 11Hu et al. BMC Med Inform Decis Mak          (2021) 21:256 

average performance over different labels. We attribute 
this improvement to SWAM, by which the wide architec-
ture gives the model ability to more extensively learn the 
unique features of different codes.

Ablation experiment on the width of the network
According to our inference about the correspondence 
between the informative snippet and convolution fil-
ter, since each “non-generic snippet” has to correspond 
to a convolution filter, if the network is too narrow, the 
model will fail to learn the “non-generic snippets” of 
some labels. Therefore the impact of the width of the net-
work can be observed from the perspective of per-label 
performance.

We carry out an ablation experiment on the width of 
the network by comparing the per-label performance of 
the wide model (wide-SWAM) and the narrow model 
(narrow-SWAM) (Fig.  3).  The only difference between 
wide-SWAM and narrow-SWAM are the width of the 
network, the former has 500 convolution filters and the 
latter has 50. The experiment results are in line with our 

expectations. For the narrow model, 5 labels have a preci-
sion of 0, while on the opposite, the wide model makes 
significant performance improvement that 4 of 5 labels 
that with a 0 precision in the narrow model now have 
an average precision of 0.53, at the same time the overall 
performance of the model is improved. As for the only 
ICD-9 code 285.9 “Anemia, unspecified” that has a 0 pre-
cision in both models, we make a manual analysis in sec-
tion analysis of the reason behind bad performance code.

Secondary evaluation
Comparing informative snippets extracted by narrow 
and wide models
To verify our inference about Correspondences between 
“informative snippet” and convolution filter, we also 
compare the informative snippets extracted by both the 
narrow and the wide model. In order to make the cases 
representative, from the five labels that has 0 precision in 
the narrow model, we pick up a label (276.1: Hyposmo-
lality and/or hyponatremia) that has a improved preci-
sion in the wide model, and the only label(285.9 Anemia, 
unspecified) that has 0 precision in both models for 
analyse.

Table 5 shows the informative snippets extracted by the 
wide-SWAM and the narrow-SWAM model during the 
prediction of code 276.1 in two random selected docu-
ments. Through a simple analysis, it can be found that 
the word “hyponatremia” extracted by the wide-SWAM 
model that appears in both the document and the code 
description plays an important role in the prediction. 
While on the opposite, the snippet extracted by the nar-
row-SWAM model is not informative since it has 0 preci-
sion on this code.

The word “hyponatremia”, as a local and low-level 
feature can be learned by a single convolution filter 
according to our inference Correspondences between 
“informative snippet” and convolution filter. Since the 
only difference between the wide-SWAM model and the 
narrow-SWAM model is the number of filters in the con-
volutional layer. Table 5 proves that the performance dif-
ference between the narrow and the wide model comes 
from the learning of non-generic “informative snippet”.

Factors determine which “non‑generic snippet” will fail to be 
learned by narrow model
According to our inference, a narrow network will fail 
to learn the “non-generic snippet” of a part of labels, 
which naturally raises a question: what factors deter-
mine which “non-generic snippet” will not be learned? 
The essence of failing to learn different “non-generic 
snippet” is that the model converges to different local 
optimal parameters. The convergence result of the 
model is related to the distribution of data during 

Table 3  Results on MIMIC-III, 50 labels

(*) by the bold (best) result indicates significantly improved results compared 
to the other methods, the bootstrapping method [30] is used for the statistical 
significance analysis, p < 0.01

Model AUC​ F1 P@5

Macro Micro Macro Micro

C-MemNN [11] 0.833 – – – 0.42

Shi et al. [13] - 0.900 - 0.532 -

CAML [12] 0.875 0.909 0.532 0.614 0.609

Logistic regression 0.828 0.862 0.477 0.530 0.545

SWAM-CAML 0.900* 0.924* 0.593 0.648 0.625*
SWAM-textCNN 0.892 0.919 0.603* 0.652* 0.620

Table 4  Hyper-parameter tuning ranges and optimal values for 
SWAM model

Range Optimal value

η 0.0001,0.0003, 0.001

(learning rate) 0.001,0.003

k 1–10 4

(filter size)

dc 50–500 500

(number of filters)

q 0.2–0.8 0.2

(dropout probability)
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training, in other words, the order that “non-generic 
snippets” appear during training: once a filter learns 
a specific “non-generic snippet” for some labels, the 
loss function will encourage it to keep its parameters 
unchanged, and after all the filters have learned cor-
responding “informative snippet”, it’s difficult for the 
model to leave the current local optimal solution and 
learn new “informative snippet”.Therefore we shuffle the 
training dataset with a different random seed and re-
train the models with the shuffled dataset. The results 
are shown in Table 6.

The results in Table  6 are in line with our expecta-
tions, after shuffle and re-training, the 0 precision labels 
in the narrow model change. On the opposite, the only 
0 precision label 285.9 in the wide model still can not 
be learned. The distribution of data during training is a 
factor that determines which “non-generic snippet” will 
fail to be learned by the narrow model. And the reason 

Fig. 3  Ablation experiment on the width of the network, the only difference between two models are the width of the network. wide-SWAM has 
500 filters, while narrow-SWAM has 50 filters

Table 5  Informative snippets extracted by the wide model and the narrow model for prediction of ICD code 276.1, bold snippet 
indicates the snippets evaluated as informative

ICD code 276.1: “Hyposmolality and/or hyponatremia”

Wide-SWAM ...Dehydration and increased abd...

Wide-SWAM ...Hyponatremia and possible initiation of chemotherapy...

Narrow-SWAM ...Peritonitis renal failure and ileus on the floor the patient was followed by...

Narrow-SWAM ...Renal failure and small bowel obstruction of note the provided information on...

Table 6  ICD Code with 0 precision in both the wide model 
and the narrow model before and after data shuffle, bold code 
indicates the codes with 0 precision emerged after the shuffle

Before shuffle ICD Code with 0 precision

Wide-SWAM 285.9 “Anemia, unspecified”

Narrow-SWAM 285.9 “Anemia, unspecified”

V15.82 “History of tobacco use”

276.1: “Hyposmolality and/or hyponatremia”

305.1 “Tobacco use disorder”

311 “Depressive disorder, not elsewhere classified”

After shuffle ICD Code with 0 precision

Wide-SWAM 285.9 “Anemia, unspecified”

Narrow-SWAM 285.9 “Anemia, unspecified”

V15.82 “History of tobacco use”

272.0 “Pure hypercholesterolemia”
V45.81 “Postsurgical aortocoronary bypass status”
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behind the bad performance ICD code 285.9 “Anemia, 
unspecified” is something beyond the local optimum.

Analysis of the reason behind bad performance code
The ICD-9 code 285.9 “Anemia, unspecified” is failed 
to be predicted by both narrow and wide models. 
Through manual analyzing, we found there are more 
than 50 codes in the ICD-9 that are in form of “Anemia 
+ specific reason”, which means the snippets related to 
anemia cannot are necessary but not sufficient for pre-
diction of code 285.9. The prediction of 285.9 Anemia, 
unspecified is not only based on the presence of snip-
pet related to ‘Anemia’, it is also based on the informa-
tion that all possible reasons are absent. This is a blind 
spot in all current machine learning models. It is dif-
ficult for models to learn inferences based on missing 
information.

Why shallow and wide attention CNN
Through the above experiments, we show that compared 
to other methods, SWAM significantly improves the pre-
cision of the worst-performing 10% labels meanwhile 
achieves better overall performance on the automatic 
coding task. We proved that this improvement is closely 
related to SWAM’s ability to learn a large scale of local 
and low-level features, which makes it suitable for the 
multi-label text classification task that informative snip-
pets relevant to each label are not shared. Also, SWAM 
addresses the challenges of interpretability: it provides a 
satisfactory explanation of the internal mechanics of the 
deep learning method by establishing the correspond-
ence between “informative snippet” and convolution 
filter.

Discussion
For future work, we are considering several different 
directions. From the application perspective, since our 
approach does work well on 50 labels task, the next step 
is to apply the approach to the full code set. A major chal-
lenge is for full code set, we may need tens of thousands 
of convolution filters, as the number of filters in the net-
work increases, unnecessary overlap in the features cap-
tured by the network’s filters will also increase [32]. We 
plan to address this challenge by adapting the ensem-
ble method, we plan to cluster the ICD codes and train 
a classifier for each clustered subset. From the linguistic 
perspective, we plan to explore reasons behind hard-to-
learn codes such as ICD-9 code 285.9 “Anemia, unspeci-
fied”, and leverage the hierarchy of ICD codes to improve 
performance on these codes. From the architecture per-
spective, in the current model, the filter size has to be 

fixed before training, which means the model can only 
learn the ”informative snippet” less than a certain fixed 
length. A possible solution to this limitation is to ensem-
ble sub-CNN models with different filter sizes, we would 
like to explore this direction in the future.

Conclusion
Our main contributions can be summarized into the 
following three: 1) SWAM has achieved a significant 
improvement in the overall performance of the automatic 
coding task by emphasizing the learning of local and low-
level features, thus validating that local and low-level fea-
tures, a.k.a. informative snippets play an important role 
in the automatic ICD coding task. The informative snip-
pets extracted from the clinical text provide explanations 
for each code, which address half of the explanatory chal-
lenge mentioned in Background that the model should 
provide explanations for its predictions. 2) Through abla-
tion experiment on the width of the network, we validate 
that there exists a correspondence between a convolution 
filter and a local and low-level feature, and a combina-
tion of wide and shallow convolutional layer and atten-
tion layer can help the CNN-based models better learn 
local and low-level features. This finding can help under-
stand the internal mechanics of deep learning methods 
on tasks like automatic coding, thus bringing progress in 
the other half of the explanatory challenge mentioned in 
Background. 3) We improved the precision of the worst-
performing 10% labels from 0 to 53% on average.
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