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Abstract 

Background: In medical diagnosis and clinical practice, diagnosing a disease early is crucial for accurate treatment, 
lessening the stress on the healthcare system. In medical imaging research, image processing techniques tend to be 
vital in analyzing and resolving diseases with a high degree of accuracy. This paper establishes a new image classifica-
tion and segmentation method through simulation techniques, conducted over images of COVID-19 patients in India, 
introducing the use of Quantum Machine Learning (QML) in medical practice.

Methods: This study establishes a prototype model for classifying COVID-19, comparing it with non-COVID pneu-
monia signals in Computed tomography (CT) images. The simulation work evaluates the usage of quantum machine 
learning algorithms, while assessing the efficacy for deep learning models for image classification problems, and 
thereby establishes performance quality that is required for improved prediction rate when dealing with complex 
clinical image data exhibiting high biases.

Results: The study considers a novel algorithmic implementation leveraging quantum neural network (QNN). The 
proposed model outperformed the conventional deep learning models for specific classification task. The perfor-
mance was evident because of the efficiency of quantum simulation and faster convergence property solving for an 
optimization problem for network training particularly for large-scale biased image classification task. The model run-
time observed on quantum optimized hardware was 52 min, while on K80 GPU hardware it was 1 h 30 min for similar 
sample size. The simulation shows that QNN outperforms DNN, CNN, 2D CNN by more than 2.92% in gain in accuracy 
measure with an average recall of around 97.7%.

Conclusion: The results suggest that quantum neural networks outperform in COVID-19 traits’ classification task, 
comparing to deep learning w.r.t model efficacy and training time. However, a further study needs to be conducted 
to evaluate implementation scenarios by integrating the model within medical devices.
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Background
In the clinical trial and drug discovery process, the role 
of statistical analytics and machine learning has been 
shown to be significant, especially in biological imag-
ing and analysis, commonly used at various stages, from 
preclinical R&D to clinical trials, solving problems like 
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sputum detection [1], image augmentation [2] and other 
applications, such as nucleus counting [3]. In the recent 
past, substantial research work have been proposed stud-
ying various classical machine learning and deep learning 
methods applied to an image that assists scientists and 
medical practitioners in analyzing and seeing inorganic 
growth or accumulation of tissues, cells, and subcellular 
components in CT scans, along with a more technology-
oriented solution in the space of wearable technology 
[4] and tele-health care services to discover COVID-19 
[5]. An example of detecting brain tumors through deep 
learning methods has been studied by researchers [6] and 

diverse COVID-19 diagnosis research work using deep 
learning and traditional machine learning methods as 
shown in Table  1. Currently, with evolving COVID-19 
mutants it is now becoming extremely important to lev-
erage faster and accurate solutions for clinical discovery, 
prompting therefore our study to understand the evolu-
tion in terms of offering medical imaging solutions for 
factor detection of mutant variants [7].

There has been active research in biomedical image 
analysis using deep learning methods, whereby deep 
learning seems to have outperformed most com-
puter vision problems for instance [8]. Nevertheless, 

Table 1 Empirical research for detecting COVID-19 using deep  learninga

a Refer to Abbreviations for detailed nomenclature

Model proposed Study Dataset size Training 
samples 
sufficiency

Model performance

MODE (Multi-objective differential evolu-
tion) based CNN

Singh et al. [47] 1000 + CT images  +  +  + Accuracy—90.6%

UNET +  + Chen et al. [44] 46,000 + CT images  +  +  + Accuracy—95.24%
Sensitivity—100%
Specificity—93.55%

Stacked Two CNN three dimensional for 
classification and VNET for Segmenta-
tion

Xu et al. [43] 19,000 + CT Images with COVID-19, 1175 
healthy samples

 +  +  + Accuracy—86.70%

COVNet + ResNet 50 for classification and 
U-Net for segmentation

Li et al. [35] 4000 + CT Samples  +  +  + Sensitivity—90.0%
Specificity—96.0%

Transfer Learning + ResNet 50 for classifi-
cation and UNet +  + (3D) for segmenta-
tion

Jin et al. [10] 1100 + total samples with 730 positive 
samples

 +  + AUC—0.991
Sensitivity—97.4%
Specificity—92.2%

Inception with Transfer Learning tech-
nique

Wang et al. [32] 450 + CT scans of confirmed COVID-19  + Accuracy—82.9%
Sensitivity—84.0%
Specificity—80.5%

Neural Networks with ResNET 50, atten-
tion technique and Feature Pyramid 
Network

Song et al. [42] 750 + Images  + Accuracy—86.0%
F-Score—87.0%
Sensitivity—93.0%

Deep Conv Net(2D) on ResNet-50 for clas-
sification and UNet for segmentation

Gozes et al. [41] 50 + patients’ samples  + AUC—0.996
Sensitivity—98.2%
Specificity—92.2%

VBNet neural network to
Segment COVID-19 infection regions in 

CT scans

Shan et al. [13] 200 + CT scan samples  + Dice Coef.—91.6%

2D CNN Jin et al. [10] 970 CT Scan samples  + Accuracy—94.0%
AUC—0.979

SVM + Wavelet transformation Barstugan et al. [39] 150 CT Scan Samples  + Accuracy—99.68%

Deep CNN(3D) for classification and U-Net 
for segmentation

Zheng et al. [46] 500 + Samples  + AUC-ROC—0.959

DCNN Heinrich et al. [31] 500 + Samples  + Dice Coef.—71.0%

CNN-LSTM Islam et al. [60] 4000 + X-ray Samples  +  +  + AUC—0.992
Sensitivity—99.3%
Specificity—98.9%

VGG-19-RNN Zabirul Islam et al. [59] 6000 + x-ray samples(sample with CoViD, 
pneumonia and normal cases)

 +  +  + Accuracy—99.9%
AUC—99.9%
Recall -99.8%

Ensemble DCCNs Singh [1] 6000 + (sample with CoViD, tuberculosis, 
pneumonia)

 +  +  + Accuracy—99.2%
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computer vision techniques have shown vast opportuni-
ties in numerous application areas, especially in medi-
cal research and healthcare [9]. Medical imaging does 
provide better visibility than standard medical records’ 
data assessment, such as solving for Diabetic Retinopa-
thy [10]. High-resolution images analyzed can provide 
any growth details on actuals, on a day-to-day basis, 
helping a medical practitioner to evaluate the situation 
quickly and provide a better treatment. It is apparent to 
be mentioned that the success of leveraging deep learn-
ing over traditional machine learning methods have 
been studied along with wide area of application in the 
medical domain [11]. Moreover, recent developments of 
quantum computing, vis a vis its application of quantum 
algorithm in varied domains, has now opened up new 
research areas for further optimizing classical machine 
learning problems [12]. In fact, recently, researchers from 
Massachusetts Institute of Technology (MIT) created an 
algorithm to overcome the challenges of developing com-
putationally efficient and performing algorithms in order 
to solve several medical imaging problems [13].

The domain of medical science needs significant devel-
opment for making sense of an analysis generated from 
an image. Previous studies dealing with this topic, have 
discussed the varied applications of machine learning, 
deep learning, and quantum algorithms in drug discov-
ery and screening process, thereby solving problems 
that include compound property and activity prediction, 
using multitask DNN on 12,000 compounds [14]. Impor-
tantly, Quantum is a new paradigm today, with multiple 

applications being evaluated to solve problems in the 
fields of optimizing deep learning or machine learning 
tasks, finance [15], drug discovery [16], along with help-
ing in shedding light on various clinical research [17]. 
Table 2 enlists extant literature that has dealt with drug 
discovery.

Although, there have been other studies that have 
deliberated upon the success of employing deep learning 
in drug discovery [16] and MRI image analysis for brain 
tumors, and for detecting and segmenting pneumonia 
traces using classical machine learning models [6] or 
leveraging deep learning in biomedical image segmenta-
tion applications [18]. The core purpose of this paper is 
to evaluate and provide empirical evidence for applying 
Quantum algorithms in medical imaging and drug dis-
covery problems.

Quantum machine learning
The recent developments of Quantum Enhanced Learn-
ing [19], fusing AI and ML to obtain significant optimal 
solutions for boosting algorithmic performance has given 
rise to a new area of research termed ‘Quantum Machine 
Learning’ (QML), which has effectively evolved from the 
theory of quantum computing. The concept behind lever-
aging quantum computing for machine learning tasks is 
to inherently achieve solution parallelism [20], achieved 
for optimal constraint solving, using Moore’s law [21]. 
Quantum algorithms are centered on the concept of 
Boolean algebra (e.g., OR, AND, and NOT gates) and 
quantum physics. The data storage layout is established 

Table 2 Previously studied applications of machine learning in drug discovery and medical diagnosis

a Refer to Abbreviations for detailed nomenclature

Description of study Author Methodsa

Skin cancer detection Kadampur and Al Riyaee [9] DNN

Protein structure prediction Torrisi et al. [18] DL-CNN, DL-RNN

Cuneiform Dehydration Method for Medical Diagnosis Baranov [50] Image Filtering, thresholding, Gaussian blur

Quantitative structure–activity relationship analysis in drug discovery Uesawa [51] Deep learning

Quantum chemical properties analysis Gilmer et al. [52] Message passing neural network (MPNN)

Predicting compound property and activity Mayr et al. [27] Multitask DNN

Predicting pharmacological properties of drugs and for drug repurpos-
ing leveraging transcriptomic data from the LINCS project

Aliper et al. [53] DNN

Automatic molecular structure learning Merkwirth and Lengauer [54]
Lusci et al. [55]

DNN and RNN

Method to model drug induced liver injury (DILI) Xu et al. [56] UGRNN

Neural fingerprints of the compound Duvenaud et al. [57] Graph CNN

Predicting the ligand–protein interactions Gomes et al. [48] CNN, DNN

Predicting the reactions and retrosynthetic analysis Liu et al. [36] Neural sequence to sequence model and 
Monte-Carlo tree search

Drug discovery with on short learning Altae-Tran et al. [58] LSTM

Visual Screening from protein–ligand complex Pereira et al. [49] DNN

Facilitating probe selection for gene-expression arrays Tobler et al. [3] Naïve Bayes, neural nets
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from Quantum bit (Qb) or qubits1 that depends on the-
oretical foundations of electron spin [22]. Importantly, 
quantum methods in addition can translate other than 1’s 
or 0’s such as complex information or negative values. A 
typical model development flow diagram is demonstrated 
in Fig.  1, explaining the basic control flow difference of 
classical machine learning versus Quantum machine 
learning algorithms.

The need for quantum algorithms
QML is considered as one of the future areas of research 
in deep learning algorithms. The two key tasks QML can 
better perform when compared to classical deep learning 
techniques include:

1. Optimization [23] and Gibbs Sampling [24].
2. Enhance learning algorithms like Bayesian networks 

[25], Tensors, and search.

QML’s ability to deal with large-scale biased datasets 
yield faster complexity factors for major classical com-
puting and machine learning tasks, consuming thereby 

Fig. 1 Execution block diagram of classical machine learning/deep learning versus quantum machine learning algorithm designing (refer to 
Table 4. for algorithmic details on QML)

1 Refer to Abbreviations for detailed nomenclature.
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less space and time. Effectively, it uses quantum anneal-
ers and tunneling for loss function minimization tasks, 
solving thereby complex problems of finding super-local 
minima, and a close approximation of global minima. 
In fact, multiple methods within the QML strategy are 
based on fast quantum algorithms for linear algebra, 
and semi-definitive or constraint-specific problems like 
optimization, as in the case of neural network models 
for weight adjustment, during both search and optimiza-
tion tasks, similar to gradient descent-based optimizer. 
Assuming the task is to optimize a linear function of 
MxM matrix(X), over a parallel space with constraints(c), 
the solver has runtime complexity of O(c(c2 + nω + cns)
logO(1)(cnR/ϵ)) [26]. Notably, herein, ϵ is denoted as 
an approximation factor, while s denotes sparsity, and 
R represents a range that is bound to yield an optimal 
matrix(X). Notably, these proven methods outperform 
classical optimization methods, yielding thereby com-
plexity of O (ncs(Rr/ϵ)4 + ns(Rr/ϵ)7) as proposed by 
Arora and Kale [27]. The proposed optimizers in turn, 
tend to improve the overall solution convergence for any 
machine learning problems.

This paper looks to address two major research ques-
tions, while evaluating the application of QML in specific 
practice, specifically focusing upon medical image diag-
nostics and/or drug discovery,

RQ1 Are quantum algorithms suited for large-scale 
classification problems in medical image diagnostics 
dealing and industrial applications?

RQ2 Can quantum algorithms outperform classifica-
tion or segmentation tasks in comparison with classical 
deep learning methods w.r.t model efficacy, biased train-
ing, and inferencing performance on high-resolution 
clinical image data?

The research questions would further provide sup-
port to exemplify the application of quantum theory in 
optimizing deep learning techniques to achieve superior 
performance in solution convergence and quality of the 
model. Another important aspect to emphasize on sup-
porting production deployment is selecting appropri-
ate quantum hardware for training, while deploying the 
model for real-time inferencing in health informatics 
applications, which is discussed later in this paper under 
the experiment section.

Application of quantum machine learning
The foundation of QML targets to solve research foun-
dation problems in mathematical analysis to generalize 
quantum to improve classical learning tasks with poten-
tial optimization to speed of execution. Some of the task’s 

researchers are leveraging includes quantum techniques 
in Quantum Simulation [28], applied around nano-
tech, bio-medical imaging, physical chemistry, and with 
quantum systems tasks, such as search [29], which fur-
ther provides polynomial speed, as compared to classical 
algorithms for other varied scenarios.

Method
The section discusses the methodology followed for 
building the model, provide details on overall data col-
lection process followed, key modeling process imbibed 
for the study, and analysis performed with quantum 
networks.

Quantum neural network model
This study conducted an experimental analysis with a 
new variant of a learning model to further take advan-
tage of quantum computing devices to perform learning 
tasks with quantum data [30]. We assumed that Quan-
volutional neural network or Quantum neural network 
(QNN) would solve classical deep learning problems 
to be computationally faster from the design paradigm. 
Figure 2a illustrates the QNN architecture, which would 
help in understanding the Quantum network design 
methodology. Further, for simulation, we benchmarked 
the QNN model across other studies from extant lit-
erature. The rationale behind this exercise was to help 
in exploring varied application scenarios in the medical 
image analysis task that is presented in subsequent sec-
tions. Notably, the process of designing QNN has been 
described in Table 3 and has been elaborated upon in the 
subsequent sections.

The proposed system is illustrated below in Fig.  2b. 
From a practical implementation perspective, the model 
accepts input image rescaled to 4 ×  4 size before being 
fed into the Unitary matrix to obtain features at different 
channel. Further the features were leveraged to create a 
quantum circuit model, thereafter, followed by compiling 
the model using a loss function and optimizer using Ten-
sorFlow Keras model utility library.

Data and pre‑processing
This section discusses the data collection process and the 
pre-processing activities that were conducted during the 
experiments. Notably herein, the relative transformation 
measures were required for modeling a QML algorithm. 
Additionally, this section consists of two sub-sections; 
the first, describes the data collection process, along with 
the larger data schema, while the second, discusses the 
affirmative steps that are taken for pre-processing in pre-
modeling stages.
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Data collection
The model development and verification for quantum 
deep learning-based image classification would require 
a large sample set for the quantum machine to per-
form. As a pre-requisite step, learning models require 

a significant amount of training dataset for building 
an efficient model [32], thus a through process was 
followed for sampling the image files to eliminate any 
representational biases. Hereafter, this study combined 
data shared by semanticscholar.com, along with the 

Fig. 2 a QNN Architecture [31]. b The proposed model

Table 3 Algorithm design stages for quanvolutional neural network

a Refer to Abbreviations for detailed nomenclature

Stage 1: An input image with small region of interest is embedded into a quantum circuit. An example of a 2 × 22 × 2 square region

Stage 2: A quantum computation, associated with a unitary matrix(Ua) in Fig. 3, is performed on the system. A Cirq could generate the unitary, most 
quantum operations have a unitary matrix representation applied to the gate, operations and circuit that represents an object

Stage 3: The system is then quantified by obtaining the list of classical expected values

Stage 4: Similar to the classical convolution layer, each expected value is mapped to a different channel of a single output pixel

Stage 5: The process is iteratively executing across different regions of the image. A full input image scan is viable by re-positioning an output object 
positioned a multi-channel image

Stage 6: The quantum convolution layer would additionally abide to quantum or classical layers
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research work done by Chen et  al. [33], and Jin et  al. 
[34].

The data collection process adopted a strategy to 
collect CT scan samples of varied age groups, ranging 
from 20–30, 30–45, 45–60, and above 60 years of age, 
with both positive and negative samples. Key sources 
were identified, based on represented data statistics 
(Table  4), along with other open dataset sources from 
Microsoft open research database, Google dataset 
search, Stanford, and MIT datasets. Notably, the data 

search process ensured that the data resolutions were 
consistent across all the sources. The preferred resolu-
tion range of images were chosen (256 × 256 and 448 × 
448), because image resolution does play a vital role in 
deep learning space, and often, high-resolution images 
do go on to impact model training performance and 
efficacy to a great extent [35].

Figures  3a, b and 4, adopted from Shi et  al. [36]; 
Li et  al. [37]; and Hani et  al. [38] represent classical 
CoViD-19 and non-COVID-19 (influenzas and virus 
pneumonia) scans. Based on this, we discuss the overall 

Table 4 Dataset

Dataset description Data statistics Source

CT scans for COVID-19 349 CT images of 216 patients https:// github. com/ UCSD- AI4H/ COVID- CT

SIRM COVID-19 database Sample < 50 images https:// www. sirm. org/ en/ 2020/ 03/ 31/ COVID- 19- case-4/

Radiopedia COVID dataset Sample < 50 images https:// radio pedia. com

Eurorad dataset Sample < 50 images https:// www. euror ad. org/ case/ 16689

Center for artificial intelligence in medicine 
and imaging

More than 5000 + sample images of patients https:// aimi. stanf ord. edu/ resou rces/ COVID 19# data

Total samples selected  ~ 10,000 + 

Fig. 3 a Sample CT scan image illustrating small to medium patches forming with each week’s diagnosis. b Sample CT scan image of CoViD-19 
diagnosed

https://github.com/UCSD-AI4H/COVID-CT
https://www.sirm.org/en/2020/03/31/COVID-19-case-4/
https://radiopedia.com
https://www.eurorad.org/case/16689
https://aimi.stanford.edu/resources/COVID19#data
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finding that was observed from CT scans taken through 
a specific time duration.

The sample data illustrated in Fig.  3a is identified as 
CoViD-19 positive. A significant growth in building 
patches was observed in the lungs over 10 days during 
quarantine (day 5 and day 15 scan). The scan of day 20 
showed the formation of a dense mucus that was concen-
trated across the lungs. Figure 3b illustrates mucus, seg-
mented across a small patch growth across two weeks of 
supervision. An evaluation dataset of non-CoViD-19 suf-
fering from pneumonia and influenza was also sourced 
for validation of the model results.

Pre‑processing and normalization
Importantly, the datasets that were used come from mul-
tiple sources; the process of data normalization included 
comparing the homogeneity of data sources, while fur-
ther calibrating the images to the required scale for 
modeling. The study leveraged upon color models of an 
abstract mathematical model, describing the way colors 
can effectively be represented as tuples of numbers that 
are useful in viewing conditions. Once the image was 
thoroughly analyzed, the dataset was normalized using 
erosion and dilation [39], leveraging upon OpenCV 
library, a morphological transformation method, primar-
ily used for handling noise, or detecting intensity col-
lisions. Further, image de-noising (Buades et  al. 2011) 
and scaling was done, using Python-OpenCV library, 
which in turn, was implemented to the entire dataset for 
standardization, with the help of fast Nl Means Denois-
ing function for colored images, where the source image 
input of 8-bit 3-channel images were provided with tem-
plate window size of 7 pixels and 21-pixel, and hColor of 
10 in order to remove the colored noise; post this, they 
were kept into consideration for the completion of the 
de-noising process. Notably herein, de-noising generally 

impacts the image segmentation process in the overall 
modeling situation.

Handling representation and measuring bias in image 
dataset
The section discusses the impact of measuring bias that 
depicts the systematic value distortion, which takes place 
when an issue with a specific device is utilized to visu-
alize and observe an image quality from a training per-
spective. Importantly, this type of bias is hard to replicate 
with sampling technique, and thus requires a manual 
review of the colored images, being used for training [40]. 
This study further leverages upon bootstrapping resam-
pling technique [41] with different ratios to assemble the 
required representation of the dataset for experiments.

Experiments
In this section, the data pre-processing, model imple-
mentation, and evaluation methods have been explained. 
The experiment processes involved choosing a base 
model for initial trials and develop the same using the 
data collected. Based on various performance criteria 
compared between QNN, QCNN,2 Hybrid CNN with a 
single filter and Hybrid CNN with multiple filters (Fig. 5) 
from the simplicity of circuit design and performance 
measurement, QNN was chosen for remaining bench-
marking during the trials. Furthermore, the experiments 
were performed using TensorFlow Quantum (TFQ), and 
a python framework for QML development. Notably, 
we leveraged upon D-wave Leap and TensorFlow Quan-
tum Framework as a platform for training and evaluat-
ing the experimental setup. The estimated wait time for 
problem submission was 1–10 s on a 2041 qubits system, 

Fig. 4 CT scan of two patients of 45-year and 48-years of age with influenza virus pneumonia and Goodpasture syndrome shows bilateral 
ground-glass opacities in contrast to COVD-19 patients (Hani et al. 2020)

2 Refer to Abbreviations.
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under 13.5 qubit temperature (mK). Detailed specifica-
tions of the platform may be referred from D-wave and 
TensorFlow.3

TFQ’s core focus area is generally on quantum data, 
and a hybrid quantum-classical model. Various compo-
nents that need to be followed to build a quantum circuit 
within the TensorFlow environment have been described 
below,

a. Circuit—Cirq is used to design the quantum circuit 
(Fig.  6). Cirq4 is a python framework for writing, 
optimizing quantum circuits executing in quantum 
hardware.

b. Pauli Sum—the linear combinations of tensor prod-
ucts of Pauli operators5 defined in Cirq is represented 
by Pauli sum, operations like circuits, create batches 
of operators of varying size are of such type.

The experiments performed, involved various fea-
ture engineering and transformation stages applied to 
design. Since the quantum machine cannot handle the 
large size of the image, we re-scaled it to 4 × 4 at the data 

processing stage. The overall image calibration steps per-
formed are stated as below,

1. Input raw data using Keras
2. Filtering the dataset to only 3 s and 6 s
3. Downscales the images to fit in a quantum hardware.
4. Treating and removing contradictory examples
5. Convert binary images to Cirq circuits
6. Convert the Cirq circuits to a TensorFlow quantum 

circuits

In QML, a pixel is represented as a qubit, wherein each 
stage would actually depend on the pixel value. The pro-
cess of encoding the data into the Quantum circuit was 
iterated at multiple threshold values, in the range [0.5, 
0.6, 0.7]. A circuit at 0.5 threshold is represented in Fig. 7, 
and which effectively is a form of 2-layer circuit design 
for binary classification problems. In terms of model 
development, various iterations were performed to 

Fig. 5 A quantum CNN: hybrid Convolution with multiple quantum filters

Fig. 6 A quantum circuit

3 https:// www. dwave sys. com; https:// www. tenso rflow. org/ quant um/ conce pts

4 Refer to Abbreviations for detailed nomenclature.
5 Refer to definition of pauli operators in nomenclature section.

https://www.dwavesys.com
https://www.tensorflow.org/quantum/concepts
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optimize the general performance of the model through a 
range of hyper-parametrization testing at various epochs.

Finally, the experiment encompassed creating a 2-lay-
ered model (Fig. 7) fitting the data-circuit size, including 
both preparation and readout operations. In fact, this 
method could possibly be compared to running a small 
recurring neural network across pixels. Notably herein, 
each layer uses n instances of the same gate, with each 
of the data qubits acting on the readout qubit. Addition-
ally, the model building process further used hinge loss 
as a loss function, along with adaptive learning rate opti-
mization (ADAM) optimizer instead of stochastic gradi-
ent descent-based optimizer, which was computationally 
inexpensive, and possibly even easier to implement. The 
experimentation process was conducted with different 
epoch and batch sizes, and the results are presented in 
the following sections; notably, the overall model param-
eters are shown in Table 5 below.

Evaluation criteria
This paper presents validation loss and validation accu-
racy as evaluation criteria for the QNN model, whereby 
the selected metric is ‘hinge loss’ for the experiment, as 
the problem formulation alludes to a binary classification 
problem [42]. Importantly, the ‘hinge loss’ represents the 
difference in prediction from actuals. Moreover, since 
validation loss is not used to update weights in general, 
it possibly serves as the right measure of any neural net-
work model. A hinge loss6 i.e., l(y) is calculated by com-
paring prediction (y) with the actual target for prediction 
(t), followed by subtracting the value from 1, while com-
puting thereafter the maximum value between 0 and the 
result of the earlier computation.

Fig. 7 The circuit from the training samples in the first iteration of the 2-layer circuit

Table 5 QNN parameter

Parameter(s) Value

Layer PQC

Output shape (None, 1)

Param 32

Model Sequential

Loss function Hinge

Optimizer ADAM

Evaluation metrics Hinge accuracy

Table 6 Loss score and hinge accuracy

Epoch Loss Hinge accuracy Validation loss Val hinge 
accuracy

1/10 0.6566 0.7534 0.3870 0.8160

2/10 0.3568 0.8263 0.3348 0.8311

3/10 0.3281 0.8497 0.3269 0.8579

4/10 0.2994 0.9061 0.2894 0.8769

5/10 0.2707 0.9542 0.2594 0.8978

6/10 0.2707 0.9582 0.2293 0.9188

7/10 0.2133 0.9586 0.1993 0.9397

8/10 0.1872 0.9582 0.1692 0.9607

9/10 0.1872 0.9582 0.1692 0.9607

10/10 0.1821 0.9692 0.1691 0.9657

6 Refer to Abbreviations for detailed nomenclature.
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Results
To conclude the experimentation process and bench-
marking with other relevant methods adopted for 
detecting COVID-19 patients, the model built, used a 
9500-training dataset, encompassing an evaluation con-
ducted over 1500 validation sample sets. The efficacy 
and the performance evaluation criteria are based on 
experiments performed with three, five and ten epochs 
and similar batch sizes. The key metrices taken into 

the consideration are loss and hinge accuracy shown in 
Table 6 and confusion matrix shown in Table 7.

The change in epoch lowers the loss score, while 
improving the overall hinge accuracy. The change in 
accuracy score sees a significant lift after the third epoch, 
and gradually improves, reducing thereby the loss to 
0.1559; notably, the percentage score of the change of 
loss is shown in the analysis in Fig. 8. The overall preci-
sion of the implemented model is 97.11%, whereas recall 
is 97.76% respectively.

While comparing the traditional deep learning model 
with QNN (Fig. 9), the latter obtained a 2.92% lift from 
the 2D CNN model, trained for classification problems in 
the CT scan data set of COVID-19 patients. The analysis 
further describes the efficiency of the overall system to 
scale classification models, whereby the total time to train 
the model with 9500 images was observed to be 52 min 
on quantum optimized hardware, while compared to an 
experiment using CNN on K80 GPU Instance.

Discussion
The study does entail certain limitations; for instance, the 
dataset and the training time comparison were limited to 
available samples. The images collected were limited to 
CT-Scan with a focus on identifying discoverable patches 
denoting COVID-19 infection. Further, a detailed study 
is required to incorporate signals that may occur in a CT-
Scan image tending to non-COVID signals to make the 
model more robust on detection. Further, this study is 
limited to a minimum viable solution model that would 
possibly need additional research to take the present ver-
sion of the model into readily deployable services mode, 
within the ambit of the biomedical device ecosystem 
from an end-to-end technology implementation stand-
point, supporting thereby large-scale usage in clinical 
trials.

The crucial point of discussion from a future research 
standpoint would be around how to leverage the power 
of quantum algorithms on hardware and localize it to 
biomedical devices for seamless analysis. This study did 
demonstrate a substantial advantage to overall medical 
imaging problems, using quantum learning techniques, 
while also implementing classical learning models in the 
context for performance and efficacy in improved model 
implementations. The model demonstrates robustness 
while comparing the overall recall value, as any incor-
rect misclassification of CoViD-19 infected patient could 
lead to reduction in the overall significances of the pre-
dicted outcome further deferring accurate medical diag-
nosis when compared to a wrongly classified patient with 
pneumonia or other viral infection that may show similar 
strains.

Table 7 Confusion matrix
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Fig. 8 Change in loss per epoch (training and validation)

90.6
86.7

82.9
86.01

94.01
96.92

75
80
85
90
95

100

MODE Stacked
CNN

Transfer
Learning

NN with
Resnet

2D CNN QNN

% Accuracy
Fig. 9 Comparison of various DL models versus QNN



Page 12 of 14Sengupta and Srivastava  BMC Med Inform Decis Mak          (2021) 21:227 

While the study also discussed the aspects of hardware 
requirements for training and evaluation of such models, 
significant research is still under process, whereby there 
has been an attempt to launch an economical cloud plat-
form for quantum hardware simulation and modeling. 
Further, this study provides scope for new development 
area of edge-quantum computing, and opens up research 
dialogues around faster diagnostics, and easy interpreta-
tion of quantum algorithms in the medical world.

Conclusion
In this study, we proposed a quantum neural learning 
model to classify patients with COVID-19 infection, 
leveraging upon computed tomography scan images in 
medical diagnosis. The suggested model attained optimal 
degree of model efficacy during an experimental com-
parison, yielding 96.92% of accuracy overall, leveraging 
9500 + CT-Scan sample images. Additionally, the overall 
computation time for training the model recorded was 
52 min, with the entire sample, along with the inferenc-
ing time recorded, which was a minute per image. This 
overall model training time was significantly less as com-
pared to classical CNN model building with similar sam-
ples, using quantum hardware. Our results thereby yield 
not only a significant lift in the overall accuracy, but also 
optimizes upon the execution time. The model could be 
further deployed in clinical trials and medical diagnoses, 
which have a significant impact on overall decision sup-
port for treating patients with early symptoms. Moreo-
ver, a medical practitioner could also leverage upon our 
framework for quicker diagnostics, helping him/her to 
follow-up with the right treatment, and thereby save a 
life.

The impact of this paper not only quantifies the abil-
ity of QML, but also would help clinical scientists build 
diagnostic tools applied to drug discovery and disease 
identification problems with much faster analytical capa-
bility using quantum hardware. The study further pro-
vides prospects to evaluate quantum algorithms for more 
complex problems pertaining to image segmentation.
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