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Abstract 

Background: Computed tomography (CT) reports record a large volume of valuable information about patients’ 
conditions and the interpretations of radiology images from radiologists, which can be used for clinical decision-
making and further academic study. However, the free-text nature of clinical reports is a critical barrier to use this 
data more effectively. In this study, we investigate a novel deep learning method to extract entities from Chinese CT 
reports for lung cancer screening and TNM staging.

Methods: The proposed approach presents a new named entity recognition algorithm, namely the BERT-based-
BiLSTM-Transformer network (BERT-BTN) with pre-training, to extract clinical entities for lung cancer screening and 
staging. Specifically, instead of traditional word embedding methods, BERT is applied to learn the deep semantic 
representations of characters. Following the long short-term memory layer, a Transformer layer is added to capture 
the global dependencies between characters. Besides, pre-training technique is employed to alleviate the problem of 
insufficient labeled data.

Results: We verify the effectiveness of the proposed approach on a clinical dataset containing 359 CT reports col-
lected from the Department of Thoracic Surgery II of Peking University Cancer Hospital. The experimental results show 
that the proposed approach achieves an 85.96% macro-F1 score under exact match scheme, which improves the per-
formance by 1.38%, 1.84%, 3.81%,4.29%,5.12%,5.29% and 8.84% compared to BERT-BTN, BERT-LSTM, BERT-fine-tune, 
BERT-Transformer, FastText-BTN, FastText-BiLSTM and FastText-Transformer, respectively.

Conclusions: In this study, we developed a novel deep learning method, i.e., BERT-BTN with pre-training, to extract 
the clinical entities from Chinese CT reports. The experimental results indicate that the proposed approach can 
efficiently recognize various clinical entities about lung cancer screening and staging, which shows the potential for 
further clinical decision-making and academic research.
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Background
Lung cancer is the most commonly diagnosed cancer 
and the leading cause of cancer-related deaths, and the 
situation is particularly urgent in China [1]. Computed 
tomography (CT), as the primary examination of lung 
cancer, reports a large volume of valuable information 
about patients’ conditions and the interpretations from 
radiologists, which can be used for clinical diagnosis and 
progression assessment. Besides, the information in clini-
cal narratives was also utilized in many academic studies, 
e.g., risk evaluation [2, 3], staging [4], decision making 
[5], and achieved remarkable results. However, the free-
text nature of CT reports is a critical barrier to fully use 
this information [6], and manually extracting structured 
information from free-text data is time-consuming, error 
prone, and costly [7].

To extract the information from free-text corpus, 
Named Entity Recognition (NER) is applied to identify 
the types and boundaries of interested entities, which 
has been widely investigated [8]. In earlier studies, rule-
based approaches [9, 10] were first proposed to tackle 
this problem. Although valuable, simplified artificial rules 
can hardly cover all language phenomena, and intricate 
rules are difficult to update and maintain and often lead 
to poor generalization and portability [11]. To alleviate 
these problems, many researchers turned to machine 
learning algorithms, e.g., support vector machines 
(SVM), Conditional Random Fields (CRF), and achieved 
great power for NER [12–15]. However, the performance 
of these statistical methods heavily relies on predefined 
features, which can hardly cover all useful semantic rep-
resentations for recognition, resulting in poor discrimi-
natory ability of the model [16].

Recently, deep neural network (DNN), especially 
Recurrent Neural Network (RNN), achieves remark-
able performance in Clinical Named Entity Recognition 
(CNER) tasks. Mostafiz and Ashraf  [17] compared the 
RNN-based NER method with other information extrac-
tion tools, e.g., RapTAT [18], MTI [19], in extracting 
pathological terms from chest X-Ray radiology reports 
and demonstrated that deep neural network outper-
formed generic tools by a large margin. Gridach [20] 
added a CRF layer after the RNN layer to process the 
CNER task and obtained remarkable results on both 
JNLPBA and BioCreAtIvE II GM data sets. Zhang et al. 
[21] used Bi-directional Long Short-Term Memory and 
Conditional Random Field (BiLSTM-CRF) to automati-
cally identify clinical entities such as diagnosis, symptom, 
and treatment simultaneously from Chinese Electronic 

Health Records (EHRs) and achieved better performance 
than CRF model.

Beside the breakthrough of RNN, recently, self-atten-
tion, a special case of attention mechanism, has been 
widely used to capture richer correlation between words. 
Unlike RNNs that obtain long dependencies over sev-
eral time steps [22], which makes it a challenge to learn 
long-term dependencies when encoding long sequences, 
self-attention can directly capture long dependencies by 
calculating the cross interactions between the two tokens 
in a sentence regardless of their distance [23]. By focusing 
on some important information, it gives higher weight to 
important information, while assigning smaller weight to 
other information received at the same time [16]. Rely-
ing entirely on self-attention to draw global dependencies 
between input and output, Transformer [24] has achieved 
remarkable performance in a variety of sequence learning 
tasks [25, 26]. Despite these achievements, it still lacks 
the components necessary for modeling local structures 
sequentially and relies heavily on location embeddings 
that have limited its efficiency [27].

More recently, a novel language representation model, 
namely Bidirectional Encoder Representations from 
Transformers (BERT) [28], was proposed by pre-training 
on large unlabeled corpus using bidirectional transform-
ers. By pre-training Masked Language Model (MLM) and 
Next Sentence Prediction (NSP) on large plain text cor-
pus, BERT has achieved significant improvement on vari-
ous Natural Language Processing (NLP) tasks, e.g., NER, 
Question Answering (QA), Machine Reading Compre-
hension (MRC), and etc. One of the important applica-
tions of BERT is to provide word embedding as features 
of DNN. As an unsupervised feature learning techniques, 
word embedding maps the words to vectors of real num-
bers to capture the semantic and syntactic information 
between them [29], which has become an indispensa-
ble component of DNN for NER tasks. Unlike classical 
embeddings such as FastText [30] and GloVe that repre-
sent the word with polysemy using only one fixed vector, 
BERT can dynamically adjust the word representation 
by capturing contextual information and long distant 
dependencies between words in the sentence [31].

To build a supervised NER model, data annotation is 
an essential step, but it is expensive and time-consuming 
[32]. When the labeled data is limited, a lot of linguistic 
phenomena will not be covered in the training corpus, 
which may lead to poor generalization of models [33]. 
Unsupervised pre-training is a popular way to enhance 
the model performance by learning linguistic phenomena 
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from unlabeled data. In the sense of realizing the mini-
mum of the empirical cost function, unsupervised pre-
training can optimally initialize the model’s parameters, 
thereby somehow making the optimization process more 
efficient [34].

Although CNER has been extensively studied [17, 
20, 21], most of the previous studies did not focus on 
extracting entities for staging from radiology reports. In 
this paper, we proposed a novel deep learning approach, 
namely BERT-based-BiLSTM-Transformer network 
(BERT-BTN) with pre-training, to extract 14 types of 
clinical entities from chest CT reports for lung can-
cer screening and TNM staging. Specifically, BERT was 
applied as the word embedding layer to learn the word 
representation. Then, we combined LSTM with Trans-
former to enjoy the advantages of them while naturally 
avoid their respective limitations. Specifically, follow-
ing the traditional LSTM layer, we added a Transformer 
layer to capture the global dependencies between char-
acters. To alleviate the problem of insufficient labeled 
data, pre-training technique was employed to initialize 
the parameters of the proposed model. Experimental 
results indicate that our method achieves competitive 
performance for recognizing entities in comparison with 
benchmark models. To the best of our knowledge, this 
is the first study to combine those techniques to extract 
entities from Chinese CT reports for lung cancer screen-
ing and TNM staging.

Methods
Overview
The development pipeline of the proposed method 
is shown in Fig.  1. To develop our NER model, we first 
annotated the pre-defined entities in chest CT reports. 
And then, the pre-training technique was applied to ini-
tialize the parameters of the model. After that, the model 
was trained, validated, and test on the annotated dataset. 
The details of the proposed method are elaborated in 
follows.

Data and annotation
A total of 529 chest CT reports was collected from 
the Department of Thoracic Surgery II of Peking Uni-
versity Cancer Hospital. The data contained het-
erogeneous aspects including patient identification, 
examination time, findings, conclusion, diagnosis, and 
etc. In this study, we extracted the information from find-
ings because the information about cancer screening and 
staging was mainly recorded in findings.

In clinical practice, clinicians usually refer to TNM 
staging guideline to stage patients. Based on the 8th 
edition of lung cancer TNM staging guideline [35] and 
consultations of clinicians at the department, we finally 

defined a total of 14 types of named entities which cov-
ered the screening and staging information in chest CT 
reports. These entities and corresponding instances are 
shown in Table 1.

Based on i2b2 annotation guideline [36] and repeated 
discussions, we have formulated an annotation guide-
line, and the annotation guideline is listed in Additional 
file 1. Two medical informatics engineers were recruited 
to annotate the chest CT reports manually following the 
annotation guideline. We used the BIO label scheme, 
where B, I, and O denote the beginning, inside, and out-
side characters of an entity, respectively. Figure 2 shows 
an example of annotated chest CT report. We randomly 
selected 359 chest CT reports to annotate. The summary 
statistics of the annotations are shown in Table 2. Then 
the annotated data was used as the gold standard data to 
train and evaluate the proposed method. The annotation 
task was initiated by going through preliminary practice 
rounds in which annotators were given the same set of 50 
CT reports to annotate followed by team meetings where 
agreement was discussed to clarify ambiguous examples 
found during preceding practice sessions. Once good 
understanding of the annotation task was achieved, we 
selected 100 reports to annotated by both annotators to 
calculate the inter-rater agreement.

Clinical named entity recognition model
As shown in Fig.  3, given a sentence, we first input the 
sentence into embedding layer to capture the seman-
tic representation of each character. In this paper, we 
used the Whole Word Masking version of BERT (BERT-
WWM) [37] as the embedding layer, which mitigates 
the limitations of original BERT by forcing the model to 
recover the whole word in MLM pre-training task.

Following the word embedding layer, the BiLSTM layer 
was applied to capture nested structures of the sentence 
and latent dependency of each character. After that, we 
used a Transformer layer to draw global dependencies 
between each character regardless of distance, which 
can alleviate the burden of the LSTM compressing all 
relevant information into a single hidden state [38].Then 
a linear layer was employed to predict possible labels of 
each character in the sentence. To improve predictive 
accuracy, we added a CRF layer to learn some constraints 
from annotated labels to ensure the final predicted labels 
were valid. Finally, a softmax function was used to out-
put the probabilities of all labels for each character in the 
sentence.

Unsupervised pre‑training
When the labeled data is limited, pre-training has 
been proven to effectively improve model performance 
[39]. In this study, we applied a pre-training method 
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Fig. 1 The development pipeline of the proposed method
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described in the literature [40]. To pre-train the model, 
we first calculated Term Frequency–Inverse Docu-
ment Frequency (TF-IDF) vector TFIDF  based on all 
CT reports except those in the test set, the calculation 
method is shown in Eq. 1.

where d is a document, w is the word in the docu-
ment, TFw,d indicates the number of times w occurs in 

(1)TFIDFw,d = TFw,d ∗ log
(

N
DFw

)

Table 1 Entity types for clinical named entity recognition

a PAOP: Pulmonary Atelectasis/Obstructive Pneumonitis

Entity type Description Instance

Vessel Description of great vessel invasion 病灶包绕右下肺动脉主 (The lesion surrounds the right lower pulmonary trunk)

Vertebral Body Description of Vertebral Body invasion 颈7椎体压缩变扁(Cervical 7 vertebrae become compressed and flattened)

PAOPa Description of pulmonary atelectasis or 
obstructive pneumonitis

远端可见片絮影 (Fillets are visible at the far end)

Bronchus Description of bronchial invasion 凹陷 (indentation)

Pleura Description of pleural invasion or metastasis 增厚 (thickening)

Shape Shape of mass 类圆形 (round)

Density Density of mass 磨玻璃密度 (ground glass density)

Mass Suspected mass/lump/lesion in lung 结节 (nodule)

Enhancement Enhancement extent of mass 强化明显 (significant intension)

Size Size of mass or lymph nodes 25 × 22 cm

Location Location of mass or lymph nodes 左上肺右基底段 (upper left lung right basal segment)

Lymph Suspected lymph node metastasis 肿大淋巴结 (swollen lymph nodes)

Negation Negative words 未见 (no)

Effusion Condition of pericardial effusion 心包积液 (effusion)

Fig. 2 A chest CT report sample annotated with BIO tags a Original CT report. LOC: Location; SHP: Shape; MA: Mass; SZ: Size; Ng: Negation; LPH: 
Lymph. b Its’ translation version in English
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d, N indicates the total number of documents, DFw is 
the number of documents containing w.

Next, we employed Eq.  2 to normalize the TFIDF  as 
TFIDFnormalized . Then, we multiplied the TFIDFnormalized 
with its corresponding char embedding E using Eq. 3 to 
obtain TF-IDF-weighted embedding as the target y∗ for 
pre-training. It was shown that these TF-IDF-weighted 

embeddings were able to capture some of the natural 
variation between different sentences [40].

To pre-train the model in an unsupervised manner, we 
used a tanh layer to replace the CRF layer, and the mean-
square-error loss to formulate the objective function 
(Eq. 4).

where n is the number of words in a sentence, ŷi indi-
cates output of the ith word in the sentence, y∗ is the 
corresponding TF-IDF weighted embedding. During pre-
training, we only updated parameters of BiLSTM layer, 
Transformer layer and Linear layer and froze parameters 
of other layers.

BERT optimizes two training objectives—MLM and 
NSP. MLM is the task of predicting missing tokens in a 
sequence from their placeholders. Specifically, it simply 
masks some percentage of the input tokens at random, 
and then predicts those masked tokens. In order to train 
a model that understands sentence relationships, BERT 
pre-train the NSP task, which takes two sequences ( XA , 
XB ) as input, and predicts whether XB is the direct con-
tinuation of XA . However, it requires a large collection of 
unlabeled text to pre-train BERT. Comparing to BERT, 
our pre-training approach is simpler and doesn’t need so 
much unlabeled text.

Experiments and results
To train and evaluate the proposed model, we ran-
domly separated 70% CT reports as the training set, 10% 
as the validation set, and 20% as the test set. To deter-
mine the optimal hyper-parameters, a grid search was 
applied to the training set. Our hyper-parameter spaces 
are Learning_Rate ∈{1e−4,5e−4,1e−3,5e−3}, Dropout ∈

{0,0.1,0.2,0.3,0.4,0.5}, Batch_Size ∈{8,16}, LSTM_Laye ∈
{1,2}, LSTM_Hidden_Size ∈{64,128}, Transformer_Layer 
∈{1,2,3,5}, Transformer_Head ∈{1,2,3,4,6,8,12}. The 
hyper-parameters used in this paper are listed in Table 3. 
The standard back-propagation was used to update all 
parameters and Adam algorithm [41] was employed to 
optimize the objective function. To avoid overfitting 
problem, an early stopping strategy [42] was employed on 
the validation set.

Two evaluation scoring schemes were used, i.e., exact 
match and inexact match, where exact match scheme 
only counts perfect matches when compared to the gold 
standard; the inexact match means entity is correctly 

(2)TFIDFnormalized =
TFIDF−min(TFIDF)

max (TFIDF)−min(TFIDF)

(3)y∗ = TFIDFnormalized ∗ E

(4)Loss = 1
n

n
∑

i=1

(

ŷi − y∗i
)2

Table 2 The statistics of annotated named entities in chest CT 
reports

Entity type Total

Count Average length

Vessel 51 10.82

Vertebral Body 28 13.75

PAOP 85 8.77

Bronchus 58 4.66

Pleura 230 4.27

Shape 513 4.37

Density 340 5.00

Mass 874 4.11

Enhancement 185 5.44

Size 774 7.35

Location 1937 8.77

Lymph 588 4.66

Negation 924 4.27

Effusion 412 4.37

Fig. 3 The architecture of the BERT-BTN model
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predicted if it overlaps with the corresponding entity in 
the gold standard. We selected precision, recall, and F1 
score as evaluation metrics to measure the performance 
of our model.

To investigate the effectiveness of the proposed 
approach, extensive experiments were carried out over 
the collected data including (1) replacing BERT embed-
ding with FastText embedding, (2) removing transformer 
layer from the proposed model, (3) removing BiLSTM 
layer from the proposed model, (4) canceling pre-train-
ing step, (5) directly fine-tuning with BERT. We ran our 
experiments five times and averaged the 5 results as 
the final result to reduce the possible bias from dataset 
partitioning.

Based on the annotated 100 reports by the two anno-
tators, the inter-annotation agreement using kappa sta-
tistics [43] is 0.937, which indicates the annotation is 
reliable. Table  4 shows the overall performance of the 
proposed and benchmark models. As shown in Table 4, 
the BERT-BTN with pre-training achieves the best per-
formance with 85.96% macro-F1 score and 90.67% 
micro-F1 score under the exact match scheme and 
94.56% macro-F1 score and 96.78% micro-F1 score under 
the inexact match scheme in comparison with the bench-
mark models.

To prove the effectiveness of BERT embedding, we 
selected the FastText embedding, a classical embedding 
that represents the word using only one fixed vector, as 
the baseline. By analyzing the performances of these two 
word embedding methods, we can notice that models 
using BERT embedding outperform models using Fast-
Text embedding with an improvement of 4.55% macro-
F1 score under exact match scheme and 3.93% macro-F1 
score under inexact match scheme at most. The perfor-
mance improvements indicate BERT is more powerful in 
contextual information encoding by taking both left and 
right contexts of target words into account.

BERT-BTN provides 0.46% overall performance 
improvement under exact match scheme and 1.35% 
under inexact match scheme compared with BERT-BiL-
STM, indicating the long-term dependencies learnt by 
Transformer are useful for NER. When comparing BERT-
Transformer with BERT-BTN, the macro-F1 score drops 
by 2.91% under exact match scheme and 3.46% under 
inexact match scheme, indicating the position infor-
mation encoded by BiLSTM has a significant influence 
on Transformer’s performance. The reason for perfor-
mance reduction may be that Transformer only relies on 
self-attention to draw global dependencies of input and 
treats every position identically, which may neglect some 
fixed patterns in the sentences since some information is 
described by several clauses in a fixed order.

Also, we directly fine-tuned BERT and the result shows 
the simple fine-tuned BERT cannot achieve competi-
tive performances under both exact and inexact match 
scheme in comparison with the other BERT-based mod-
els, indicating that it remains a challenge to achieve good 
results by fine-tuning BERT directly on some domain-
specific tasks. Moreover, when applying the pre-training 
technique, both prediction accuracy and the speed of 
convergence gain considerable improvements in com-
parison with BERT-BTN. As depicted in Fig.  4, using 
TF-IDF–weighted character embeddings to pre-train the 

Table 3 The main hyper-parameters for the proposed model

Parameter Setting

LSTM_Hidden_Size 128

LSTM_Layer 1

Transformer_Layer 1

Transformer_Head 1

Dropout 0.13

Batch_size 8

Learning_Rate 1e−4

Table 4 The f1 scores of the proposed and benchmark models

Bold value indicates the values is best score in the current evaluation index

Model Inexact‑match Exact‑match

Macro Micro Macro Micro

FastText-Transformer 89.29 ± 2.64 95.25 ± 0.46 77.12 ± 4.14 86.85 ± 1.18

FastText-BiLSTM 90.46 ± 1.31 95.72 ± 0.70 80.67 ± 0.87 88.08 ± 1.41

FastText-BTN 90.47 ± 1.82 95.22 ± 0.52 80.84 ± 3.16 87.76 ± 1.30

BERT-Transformer 90.94 ± 0.69 95.80 ± 0.31 81.67 ± 6.14 87.35 ± 1.23

BERT-BiLSTM 93.05 ± 0.89 97.27 ± 0.16 84.12 ± 1.59 90.13 ± 0.92

BERT- BTN 94.40 ± 0.91 97.28 ± 0.60 84.58 ± 2.72 90.78 ± 1.04

BERT-fine-tune 92.43 ± 0.61 96.22 ± 0.93 82.15 ± 3.41 88.33 ± 3.00

BERT-BTN (with pre-training) 94.56 ± 0.80 96.78 ± 0.73 85.96 ± 0.46 90.67 ± 0.51
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model can almost optimally initialize the model’s param-
eters so as to accelerate convergence.

Table 5 shows the macro-F1 score of each type of enti-
ties under exact match scheme. As shown in Table 5, all 
models achieved competitive performances and over 90% 
macro-F1 scores for recognizing Size type of entities, 
Effusion type of entities, Lymph type of entities, Nega-
tion type of entities, and Size type of entities. For com-
plex entities with various expression types, i.e., PAOP 
type of entities, Vessel type of entities, and Pleura type 

of entities, the performances were significantly different 
between different models. Specifically, BERT provided 
the most improvement because it can dynamically adjust 
embeddings according to the current context to capture 
more meaningful semantic information. For instance, 
we notice that some abnormal tokens such as “ 增厚
(thickening)”, “凹陷 (indentation)”, “截断 (truncated)” 
are labeled as Pleura type of entities or Bronchus type of 
entities based on different contexts, BERT can provide 
different embeddings for the same token depending on 

Fig. 4 The training loss of models using BERT embedding

Table 5 The exact match macro-f1 scores of the proposed and benchmark models about 14 types of entities

Bold value indicates the values is best score in the current evaluation index

Entity type FastText‑
Transformer

FastText‑
BiLSTM

FastText‑BTN BERT‑
Transformer

BERT‑BiLSTM BERT‑ BTN BERT‑fine‑
tune

BERT‑BTN (pre‑
training)

Vessel 58.01 ± 11.71 54.54 ± 3.20 56.63 ± 13.56 47.42 ± 14.93 58.48 ± 5.28 59.05 ± 0.51 57.31 ± 18.21 65.95 ± 7.63

Vertebral Body 62.67 ± 24.11 59.01 ± 22.65 65.02 ± 12.48 74.41 ± 21.69 63.70 ± 24.61 70.67 ± 16.36 55.71 ± 35.11 82.41 ± 10.86

PAOP 60.54 ± 11.24 62.43 ± 8.84 66.94 ± 10.75 55.27 ± 18.44 75.49 ± 9.25 74.50 ± 12.46 72.32 ± 11.29 78.97 ± 11.53

Bronchus 60.55 ± 7.26 72.01 ± 3.48 70.79 ± 6.93 76.30 ± 7.61 79.81 ± 9.71 80.15 ± 5.64 82.13 ± 5.24 79.37 ± 4.06

Pleura 66.71 ± 10.56 84.22 ± 7.32 82.46 ± 7.53 79.64 ± 7.51 85.61 ± 5.83 84.30 ± 2.60 85.10 ± 6.41 85.57 ± 3.87

Shape 69.90 ± 7.34 77.52 ± 2.95 73.56 ± 2.64 79.25 ± 9.93 82.00 ± 3.40 80.69 ± 2.77 81.65 ± 1.79 82.00 ± 2.99

Density 84.33 ± 1.19 81.37 ± 3.23 83.85 ± 1.65 85.49 ± 8.00 87.46 ± 2.51 88.75 ± 2.55 87.21 ± 4.56 86.08 ± 1.88

Mass 80.16 ± 2.28 82.35 ± 3.16 83.04 ± 2.11 84.99 ± 7.43 84.76 ± 2.72 85.13 ± 2.47 77.44 ± 6.07 85.41 ± 3.78

Enhancement 74.51 ± 5.76 80.66 ± 2.81 76.54 ± 10.95 87.70 ± 7.77 85.29 ± 5.76 84.33 ± 7.36 80.24 ± 14.90 84.27 ± 6.36

Size 93.30 ± 1.65 95.58 ± 1.09 95.58 ± 1.08 95.70 ± 4.59 95.63 ± 1.78 96.05 ± 1.39 96.03 ± 0.87 95.70 ± 1.32

Location 83.87 ± 6.41 86.84 ± 2.46 86.87 ± 1.65 89.00 ± 3.58 91.36 ± 0.66 91.59 ± 0.97 88.55 ± 4.00 90.60 ± 2.54

Lymph 90.51 ± 4.00 94.30 ± 2.34 94.16 ± 3.24 93.13 ± 1.17 93.65 ± 7.06 93.60 ± 3.66 94.09 ± 2.26 91.98 ± 3.46

Negation 98.56 ± 0.41 98.97 ± 0.40 98.58 ± 0.58 98.45 ± 2.97 98.84 ± 0.39 98.30 ± 0.22 94.59 ± 8.53 98.79 ± 0.38

Effusion 96.12 ± 1.72 97.84 ± 0.18 97.82 ± 1.07 96.62 ± 4.10 95.61 ± 3.47 98.01 ± 1.80 97.78 ± 0.92 96.52 ± 0.48
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its context so that the BERT-based models can achieve 
better results. Besides, the self-attention mechanism can 
bring some benefits to recognize complex entities due to 
the ability to capture the global long dependencies and 
maximize the useful context-related information in the 
resource. Moreover, for the two longest entity types, i.e., 
Vertebral Body type of entities and Vessel type of enti-
ties, pre-training leads to significant improvements on 
the macro-F1 score from 70.67% to 82.41%, 59.05% to 
65.95%, respectively. Since pre-training can obtain more 
general linguistic phenomena from unlabeled text, which 
can provide some benefit for the model to identify long 
entities.

Discussion
In this study, we proposed a novel deep learning method, 
namely BERT-BTN with pre-training, to recognize 14 
types of clinical entities from chest CT reports for lung 
cancer screening and TNM staging. The results illus-
trated in Tables 4 and 5 indicate that models with BERT 
embedding obtains a significant improvement compared 
with models with FastText embedding. Besides, Trans-
former provides overall performance improvement 
and positional information has an important impact 
for Transformer-based models to recognize entities. 
Pre-training gain significant improvements in both rec-
ognition accuracy and the speed of converge. Also, fine-
tuning BERT directly on some domain-specific tasks 
may not achieve so satisfactory results. The experimental 
results indicate that the proposed method can efficiently 
recognize various clinical entities about lung cancer 

screening and staging, which shows the potential for fur-
ther clinical decision-making and academic research.

Although the proposed method achieves competitive 
overall performance for the NER task, it should be men-
tioned that there are some limitations in our work.

First, we should notice that some types of entities are 
still not accurately recognized. As shown in Tables 5 and 
6, the Vessel type of entities is not recognized satisfacto-
rily like the other types of entities. The first reason may be 
the number of Vessel type of entities is small, so that an 
inaccurate recognition can significantly reduce its accu-
racy. Secondly, the average length of Vessel type of enti-
ties is much longer and its pattern is more complex than 
the other entities, which make it difficult to identify the 
entity boundaries. When the Vessel type of entities con-
tain some other types of entities that appear frequently 
like Mass type of entities and Location type of entities, 
it is a challenge for the model to exactly recognize the 
whole Vessel entity. For instance, the phrase “右肺动脉
分支局限性管腔变窄 (The lumen of the right pulmonary 
artery branch narrowed)” was annotated as the Vessel 
type of entities, while our model identified the token “狭
窄(narrowed)” in this phase as Bronchus type of entities. 
One straightforward approach is to get more labeled data 
containing entities mentioned above to train our model. 
Zhao et al. [44] showed that training on a specific domain 
dataset provided better performance than training on a 
large, general domain dataset. Moreover, using more 
Chinese clinical corpus to train the Bert-based embed-
ding may be another way to improve the recognition per-
formances of long and complex entities.

Second, as shown in Tables 5 and 6 and Figs. 5 and 
6, the different performances under inexact match 

Table 6 The inexact match macro-f1 scores of the proposed and benchmark models about 14 types of entities

Bold value indicates the values is best score in the current evaluation index

Entity type FastText‑
Transformer

FastText‑
BiLSTM

FastText‑BTN BERT‑
Transformer

BERT‑BiLSTM BERT‑ BTN BERT‑fine‑
tune

BERT‑BTN (pre‑
training)

Vessel 68.74 ± 5.78 59.25 ± 8.77 62.63 ± 9.30 51.06 ± 13.44 67.00 ± 9.22 73.48 ± 12.46 70.74 ± 10.08 77.25 ± 6.73

Vertebral Body 91.81 ± 7.22 92.75 ± 6.39 93.81 ± 8.52 85.95 ± 6.79 80.00 ± 27.39 85.79 ± 11.08 85.24 ± 10.16 91.69 ± 13.64

PAOP 76.25 ± 7.62 73.30 ± 14.43 77.31 ± 14.70 83.17 ± 4.08 91.16 ± 1.23 93.80 ± 3.13 85.44 ± 10.16 93.93 ± 2.26

Bronchus 73.86 ± 9.92 85.79 ± 6.32 83.21 ± 5.63 83.74 ± 3.51 93.27 ± 3.88 90.54 ± 3.49 89.67 ± 4.51 91.83 ± 3.00

Pleura 85.45 ± 7.95 93.70 ± 3.08 91.71 ± 4.50 84.78 ± 3.55 96.17 ± 1.77 95.25 ± 2.62 94.36 ± 4.48 96.20 ± 2.24

Shape 87.30 ± 6.44 89.73 ± 1.43 88.04 ± 2.74 89.01 ± 1.09 94.51 ± 1.71 93.96 ± 2.10 93.28 ± 2.13 92.41 ± 1.74

Density 91.68 ± 1.34 91.06 ± 1.77 92.72 ± 1.01 92.45 ± 1.83 93.34 ± 1.16 96.17 ± 2.36 94.86 ± 2.81 95.49 ± 0.78

Mass 95.32 ± 2.39 96.20 ± 1.11 96.83 ± 1.11 94.34 ± 1.06 97.01 ± 0.61 97.93 ± 0.84 95.38 ± 3.96 96.86 ± 0.75

Enhancement 89.62 ± 5.16 92.68 ± 3.00 89.04 ± 7.50 92.74 ± 1.89 95.48 ± 3.98 95.28 ± 3.2 94.51 ± 4.86 95.58 ± 2.98

Size 98.61 ± 0.46 98.44 ± 0.83 98.34 ± 0.46 97.74 ± 0.74 99.04 ± 0.62 99.03 ± 0.59 98.45 ± 0.55 98.62 ± 0.77

Location 93.52 ± 2.18 95.33 ± 1.05 95.48 ± 0.48 93.77 ± 0.92 97.46 ± 0.53 97.41 ± 0.61 94.51 ± 3.35 97.24 ± 2.08

Lymph 99.58 ± 0.37 99.78 ± 0.18 99.71 ± 0.30 95.85 ± 2.54 99.13 ± 0.28 98.25 ± 1.76 99.41 ± 0.57 98.60 ± 2.28

Negation 98.88 ± 0.36 99.06 ± 0.28 98.66 ± 0.52 99.05 ± 0.14 99.08 ± 0.30 98.97 ± 0.25 99.00 ± 0.25 98.88 ± 0.11

Effusion 99.51 ± 0.28 99.31 ± 0.59 99.09 ± 0.64 97.65 ± 1.01 99.05 ± 1.31 99.08 ± 0.79 99.18 ± 0.61 99.30 ± 1.00
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scheme and exact match scheme indicate some enti-
ties, e.g., Vessel type of entities, Vertebral Body type 
of entities, were only recognized partially. Yu et  al. 
[45] presented a model which labeled the start and 
end positions separately in a cascade structure and 
decoded them together by a multi-span decoding 
algorithm. They found that predicting end positions 
might benefit from the prediction results of start posi-
tions, which may help to narrow the gap between exact 
match and inexact match. In the future, we can also try 

this strategy to explore whether it can further improve 
the performance.

Conclusion
In this paper, we proposed a novel deep learning 
method, namely the BERT-BTN with pre-training, to 
extract 14 types of clinical entities from Chinese chest 
CT reports for lung cancer screening and TNM stag-
ing. The experimental results show that our model out-
performs the benchmark BERT-BTN, BERT-LSTM, 

Fig. 5 Comparison of the proposed and benchmark models about 14 types of named entities under exact match scheme

Fig. 6 Comparison of the proposed and benchmark models about 14 types of named entities under inexact match scheme
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BERT-fine-tune, BERT-Transformer, FastText-BTN, 
FastText-BiLSTM and FastText-Transformer models 
and achieves the best macro-F1 score of 85.96%, which 
shows great potential for further utilization in clinical 
decision support and academic research.
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