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Abstract 

Background:  Clinical risk prediction models (CRPMs) use patient characteristics to estimate the probability of having 
or developing a particular disease and/or outcome. While CRPMs are gaining in popularity, they have yet to be widely 
adopted in clinical practice. The lack of explainability and interpretability has limited their utility. Explainability is the 
extent of which a model’s prediction process can be described. Interpretability is the degree to which a user can 
understand the predictions made by a model.

Methods:  The study aimed to demonstrate utility of patient similarity analytics in developing an explainable and 
interpretable CRPM. Data was extracted from the electronic medical records of patients with type-2 diabetes mellitus, 
hypertension and dyslipidaemia in a Singapore public primary care clinic. We used modified K-nearest neighbour 
which incorporated expert input, to develop a patient similarity model on this real-world training dataset (n = 7,041) 
and validated it on a testing dataset (n = 3,018). The results were compared using logistic regression, random forest 
(RF) and support vector machine (SVM) models from the same dataset. The patient similarity model was then imple-
mented in a prototype system to demonstrate the identification, explainability and interpretability of similar patients 
and the prediction process.

Results:  The patient similarity model (AUROC = 0.718) was comparable to the logistic regression (AUROC = 0.695), 
RF (AUROC = 0.764) and SVM models (AUROC = 0.766). We packaged the patient similarity model in a prototype web 
application. A proof of concept demonstrated how the application provided both quantitative and qualitative infor-
mation, in the form of patient narratives. This information was used to better inform and influence clinical decision-
making, such as getting a patient to agree to start insulin therapy.

Conclusions:  Patient similarity analytics is a feasible approach to develop an explainable and interpretable CRPM. 
While the approach is generalizable, it can be used to develop locally relevant information, based on the database 
it searches. Ultimately, such an approach can generate a more informative CRPMs which can be deployed as part of 
clinical decision support tools to better facilitate shared decision-making in clinical practice.

Keywords:  Patient similarity, Prediction models, Explainable artificial intelligence, Interpretable, Clinical decision 
support tool
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Introduction
Clinical risk prediction models (CRPM) are designed to 
assist healthcare professionals in making better clinical 
decisions [1]. In general, CRPMs use patient characteris-
tics to estimate the probability about having (or develop-
ing) a particular disease (or outcome) [2]. As healthcare 
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knowledge continues to expand and outstrip human 
cognitive capacity, CRPM have gained popularity as 
they offer a scalable way to consolidate growing volumes 
of data and information complexity to support clinical 
decision-making [3]. Such CRPMs range from predicting 
hospital readmissions, to various types of cancers, and 
more recently COVID-19 [4–7].

Despite their proliferation, CRPMs have yet to be 
adopted in clinical practice on a larger scale [8, 9]. While 
concerns regarding rigour in development and validation 
of CRPMs are being addressed by established guidelines, 
attention is shifting toward improving their explainabil-
ity and interpretability [9–19]. Explainability is defined as 
the extent of which a model’s prediction process can be 
described, while interpretability is defined as the degree 
to which a user can understand the predictions made by 
a model [20–22].

Recently, patient similarity analytics has become a 
popular technique for CRPM development [23]. The 
underlying concept is to identify similar patients to a 
patient of interest, and use them as a clinically meaning-
ful subgroup to derive more precise prognostic informa-
tion [24], and has also been shown to improve prediction 
accuracy [25, 26]. One advantage of this technique is 
that it is able to display the similar patients that it uses to 
make the predictions. This increases the transparency in 
the prediction process, thus improving model explaina-
bility. With the similar patients, case-based narrative can 
thus be crafted around the predictions to enhance their 
interpretability.

Methods
Study aim
This study aims to demonstrate the deployment of 
patient similarity analytics to develop an explainable and 
interpretable CRPM using an electronic medical records 
derived dataset of patients with type-2 diabetes mellitus 
(D), hypertension (H) and dyslipidaemia (L) and their 
DHL-related complications in primary care.

Data description
This study was conducted using a real-world dataset 
consisting of de-identified electronic medical records of 
patients who visited a polyclinic in south-eastern Singa-
pore. This polyclinic manages about 450 to 500 patient 
attendances daily during office hours and serves about 
350,000 multi-ethnic Asians living in the district. About 
one-third of patients who attend the polyclinic are aged 
65 and above. For the purpose for this study, patients who 
visited for any of the DHL conditions during the period 
of April 1, 2014 to March 31, 2015 were included in the 
dataset. Their demographic characteristics, disease his-
tory, laboratory test results and prescribed medications 

data were extracted over a 10-year period from April 
1, 2009 to March 31, 2019. Ethics board approval was 
obtained before the conduct of this study (SingHealth 
Centralized Institutional Review Board Reference Num-
ber: 2019/2604).

Data definitions
The first visit of each patient during the period of April 
1, 2014 to March 31, 2015 was denoted as the base visit. 
This was the index visit used to provide a cross-sectional 
representation of each patient’s disease status, including 
years with disease, medications, and complications. The 
look-back period (April 1, 2009 to March 31, 2014) was 
used to obtain the DHL disease history, while the look-
forward period (April 1, 2014 to March 31, 2019) was 
used to obtain data on DHL complication onset.

Patients’ onset of any one or combination of DHL con-
ditions was their earliest visit with a pre-defined set of 
International Classification of Disease 9th or 10th revi-
sion (ICD) codes, or relevant medications (Table 2) in the 
look-back period. Patients with type-2 diabetes mellitus 
(D) were defined by ICD codes 250.90, 250.40, 250.80, 
E11.9, E11.21, E11.22, E14.31, E14.73 and E11.40, or if 
they were on insulin or other oral anti-diabetic medi-
cations. Patients with essential hypertension (H) were 
defined by ICD codes 401.1, 796.2, I10, or if they were 
being treated with any one or more anti-hypertensive 
medications. Patients with dyslipidemia (L) were defined 
by ICD codes 272.0, E78.5, or if they were taking pre-
scribed lipid-lowering medication(s).

Patients were deemed to have DHL-related complica-
tions if their visit history in both the look-back and look-
forward periods contained predefined set of ICD codes in 
Table 1. In addition to the ICD codes, patients were con-
sidered to have an eye complication if they had a diabetic 
referrable finding on eye examination and/or were on 
follow-up with an eye specialist. Patients were deemed to 
suffer from a foot complication if they have been flagged 
as high risk for foot ulcer during an examination and/or 
were on follow-up with a podiatrist or vascular surgeon. 
Patients were also deemed to have kidney complication 
if they had estimated glomerular filtration rate < 60  ml/

Table 1  International Classification of Diseases 10 codes for eye, 
foot, kidney and macrovascular complications

ICD: International Classification of Diseases

Complication ICD codes

Eye E1431, 3620

Foot E1140, E1473, I739, 4439

Kidney E1122, 25,040, N183, N184, N185, 5859, 585

Macrovascular I249, I259, 4149, I500, 4280, G459, I64, 4349
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Table 2  List of variables (and their description) included in computing degree of similarity

No Variables Description

Demographic

1 Age Age at base visit date

Duration of disease (years)

2 Duration of diabetes Duration of diabetes at base visit date

3 Duration of hypertension Duration of hypertension at base visit date

4 Duration of hyperlipidemia Duration of hyperlipidemia at base visit date

Biomarkers

5 Body mass index Body mass index at base visit

6 HbA1ca level (%) Hemoglobin A1c level at base visit date

7 Systolic BPb (mmHg) Systolic blood pressure at base visit date

8 Diastolic BPb (mmHg) Diastolic blood pressure at base visit date

9 LDLc level (mmol/L) Low-density lipoprotein level at base visit date

10 HDLd level (mmol/L) High-density lipoprotein level at base visit date

11 TGe level (mmol/L) Triglyceride level at base visit date

Anti-diabetic medications: daily dose

12 Metformin Total daily dose of each anti-diabetic medication at base visit

13 Glipizide

14 Gliclazide

15 Tolbutamide

16 Acarbose

17 Sitagliptin

18 Linagliptin

19 Dapagliflozin

20 Empagliflozin

21 Rapid-acting insulin

22 Isophane insulin

23 Insulin glargine

24 Insulin detemir

25 Pre-mixed insulin

Anti-hypertensive medications: daily dose

26 Candesartan Total daily dose of each anti-hypertensive medication at base 
visit

27 Captopril

28 Enalapril

29 Lisinopril

30 Losartan

31 Perindopril

32 Telmisartan

33 Valsartan

34 Atenolol

35 Bisoprolol

36 Propranolol

37 Amlodipine

38 Nifedipine

39 Hydrochlorothiazide

40 Indapamide

41 Spironolactone

42 Hydralazine

43 Methyldopa

44 Amiloride
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min/1.73m2 (based on CKD-EPI [Chronic Kidney Dis-
ease Epidemiology Collaboration] equation); and mac-
rovascular complication if they had been prescribed the 
following antiplatelet medications: aspirin, clopidogrel, 
dipyridamole or ticagrelor. [27].

Data preprocessing
Patients who developed complications before their base 
visit date were excluded in this study. In this way, the 
study population included patients with pre-existing 

conditions who were at risk of developing complications 
only after the date of their base visit (i.e. in the subse-
quent 5-years).

We included only laboratory test and medication that 
are related to DHL conditions. These were determined 
a priori by clinicians managing patients with DHL, and 
are based on clinical practice guidelines. Additional vari-
ables, namely medication class and number of medica-
tions taken for each purpose, were derived from the 
individual medication data. The final list of variables in 

a  HbA1c: Hemoglobin A1c
b  BP: Blood pressure
c  LDL: Low-density lipoprotein
d  HDL: High-density lipoprotein
e  TG: Triglyceride
f  For these variables, the count is either 0 or 1

Table 2  (continued)

No Variables Description

Lipid-lowering medications: daily dose

45 Lovastatin Total daily dose of each lipid-lowering medication at base 
visit

46 Pravastatin

47 Simvastatin

48 Atorvastatin

49 Rosuvastatin

50 Fenofibrate

51 Gemfibrozil

52 Ezetimibe

53 Cholestyramine

Anti-diabetic medication class (count)

54 Biguanides Count of number of medications in each class at base visit f

55 Sulphonylureas

56 Alpha-glucosidase inhibitors

57 Dipeptidyl peptidase 4 inhibitors

58 Sodium-glucose co-transporter 2 inhibitors

59 Insulin

Anti-hypertensive medication class (count)

60 Angiotensin-converting enzyme inhibitors 
and Angiotensin II receptor blockers

Count of number of medications in each class at base visit f

61 Beta blockers

62 Calcium channel blockers

63 Diuretics

64 Other anti-hypertensive classes

Anti-hypertensive medication class (count)

65 Statins Count of number of medications in each class at base visit f

66 Other lipid-lowering medications

Medication purpose (count)

67 Anti-diabetic medications Count of number of medications for each condition at base 
visit

68 Anti-hypertensive medications

69 Lipid-lowering medications
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the dataset are found in Table  2. All the variables were 
continuous variables.

Missing data was handled by data imputation. For non-
medication variables, normal values were imputed except 
for age and body mass index which we used mean values. 
Table 3 shows the normal values imputed for the missing 
data. For the medications, a zero value was imputed for 
medications the patient was not taking.

Patient similarity model development
This study aimed to demonstrate that patient similarity 
can be used to develop an effective model for risk pre-
diction. As such, we computed and aggregated the risk 
of K similar patients where K was determined using a 
grid-search. Min–max scaling was applied to each of 

the discrete variables. Additionally, expert input was 
also incorporated into the model, by obtaining weight-
age based on importance of each of the variables from 
consensus among a team of three clinicians. The weights 
were on a scale of 1 to 10 (1-least important, 10-most 
important). The expert consensus derived weights used 
in the model are shown in Table 4. The reason we elected 
to use a manual approach to deriving the weight was 
firstly to demonstrate how expert inputs can be incorpo-
rated into this approach of model development, and sec-
ondly to keep the model simple and easily explainable in 
how it derives the outputs (i.e. less numbers with many 
decimal points).

The distance metric used in K-nearest neighbour 
(KNN) is euclidean distance. Euclidean distance met-
ric is a widely used distance measure for similarity 
search. Smaller distance implies higher degree of simi-
larity. In this study, we present each patient in a vector 
of m-dimensional feature space. Accordingly, patient A 
is represented as A = 

(

fa1 , fa2 , . . . fam
)

 and patient B as 
B = 

(

fb1 , fb2 , . . . fbm
)

.
Mathematically, formula for the patient similar-

ity model which uses a weighted Euclidean distance is 
expressed as follows:

where fai and fbi are the normalized ith feature of patient 
A and patient B; m is total number of features; wi denotes 
the feature importance weights derived from expert con-
sensus in Table  3. To ensure that no one feature domi-
nates the distance function, the variables were 

dist(A, B) =

√

√

√

√

m
∑

i=1

((

fai ∗ wi)− (fbi ∗ wi

))2

Table 3  Normal values imputed for the missing data

a  HbA1c: Hemoglobin A1c
b  LDL: Low-density lipoprotein
c  HDL: High-density lipoprotein
d  TG: Triglyceride
*  Mean value imputed

Variable Imputed value

Age (years) 63.2*

Body mass index (kg/m2) 25.2*

Systolic blood pressure (mmHg) 129.8*

Diastolic blood pressure (mmHg) 70.6*

HbA1ca (mmol/L) 6.0

LDLb (mmol/L) 3.0

HDLc (mmol/L) 1.0

TGd (mmol/L) 1.7

Table 4  Variable importance weights derived from expert consensus

a  HbA1c: Hemoglobin A1c
b  LDL: Low-density lipoprotein
c  HDL: High-density lipoprotein
d  TG: Triglyceride

Variable Importance weight (1-least 
important, to 10-most 
important)

Age 5

Number of years with condition (Diabetes, Hypertension, Hyperlipidemia) 10

Body mass index 2

HbA1ca 5

Blood pressure values (Systolic and diastolic) 2.5

Cholesterol biomarkers (LDLb, HDLc, TGd) 1.5

Individual medication daily dose 1

Count of medications in each medication class 2

Count of medications for each condition 5
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normalized using minimum–maximum (MinMax) scaler 
with the formula as follows:  fiscaled =

fi − fimin
fimax − fimin

  where fi 
is original value, fiscaled is transformed value, fimin and fmax 
are the minimum and maximum values in feature i . The 
scaled data will range between values of 0 to 1. In this 
formula, the Diabetes, Hypertension and Lipid status 
(and duration of disease) were treated as independent 
input variables to the model. The hyperparameters used 
in the patient similarity model are shown in Table 5.

The patient similarity model was compared to other 
methods, namely logistic regression, random forest (RF) 
and support vector machines (SVM). They were com-
pared using the area under receiver operating charac-
teristic curve (AUROC) to evaluate their effectiveness in 
predicting DHL complications on the same dataset. A 7:3 
train-test split was used for each model development and 
validation, with the same random seed for all methods.

All computations and analyses were conducted using 
open source software machine learning libraries and 
packages in Python 3.7 environment. To calculate the 
95% confidence intervals for the AUROC values, we addi-
tionally used the pROC package in R. The specific func-
tion uses 2000 bootstraps to perform the 95% confidence 
interval computation.

To demonstrate how the model generated its predic-
tions and how the predictions can be made explainable 
and interpretable, a prototype system was developed to 
allow deployment of the patient similarity model on the 
full dataset to identify similar patients and to produce 
risk predictions for new patients not in the dataset. The 
prototype was packaged as a web application using the 
Flask framework. It was deployed as a standalone sys-
tem (disconnected from the electronic medical record 
system).

Results
A total of 16,144 unique patients who visited the poly-
clinic for DHL between April 1, 2014 and March 31, 
2015 was initially included in the dataset. 6,085 of them 
developed any one of the complications prior to the base 
visit date and were removed from the final dataset. The 

characteristics of the 10,059 remaining patients used in 
study are presented in Table 6.

Patients in the dataset had a mean age of 
63.2 ± 11.3  years with a higher proportion of females 
(59.9%). The cohort also had a bias towards the combi-
nation of Hypertension and Hyperlipidemia (41.1%). The 
second most prevalent condition among the cohort of 
patient is Hyperlipidemia (22.1%), followed by the Dia-
betes, Hypertension and Hyperlipidemia combination 

Table 5  Hyperparameters used in the final patient similarity 
model

Hyperparameter Value

Nearest neighbours 10

Weights Uniform

Metric Euclidean distance

Search algorithm Ball tree

Table 6  Baseline characteristics of study patients

a  HbA1c: Hemoglobin A1c
b  LDL: Low-density lipoprotein
c  HDL: High-density lipoprotein
d  TG: Triglyceride
*  High number of missing values as not all patients had Diabetes to require a 
Hemoglobin A1c test
#  Discrepancy between LDL and HDL values as some patients had extremely 
high TG to invalidate calculated LDL

@ Not applicable as these were derived data

n = 10,059 Missing, n (%)

Characteristics

Age (years), mean (SD) 63.2 (11.3) 0 (0.0)

Sex, males, n (%) 4131 (41.1) 0 (0.0)

Race, n (%) 0 (0.0)

Chinese 8455 (84.1)

Malay 635 (6.3)

Indian 532 (5.3)

Others 437 (4.3)

Body mass index (kg/m2), mean (SD) 25.2 (4.5) 1433 (14.2)

Systolic BP (mmHg), mean (SD) 129.8 (17.7) 60 (0.6)

Diastolic BP (mmHg), mean (SD) 70.6 (10.8) 60 (0.6)

HbA1ca (%) 7.1 (1.4) 7712 (76.6)*

LDLb (mmol/L) 3.1 (0.9) 2175 (21.6)#

HDLc (mmol/L) 1.5 (0.4) 2124 (21.1)#

TGd (mmol/L) 1.4 (0.9) 2124 (21.1)

Diagnosis, n (%) 0 (0.0)

Diabetes only 150 (1.5)

Hypertension only 1501 (14.9)

Hyperlipidemia only 2223 (22.1)

Diabetes & Hypertension 149 (1.5)

Diabetes & Hyperlipidemia 315 (3.1)

Hypertension & Hyperipidemia 4133 (41.1)

Diabetes, Hypertension & Hyperlipidemia 1588 (15.8)

Complications, n (%) Not applicable@

Eye, n (%) 1180 (11.7)

Foot, n (%) 117 (1.2)

Kidney, n (%) 811 (8.1)

Macrovascular, n (%) 1119 (11.1)

Any of the above, n (%) 2590 (25.7)

Look-back duration (years), mean (SD) 4.1 (1.3) Not applicable@

Look-forward duration (years), mean (SD) 4.1 (1.5) Not applicable@
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(15.8%). A total of 2,509 (25.7%) patients in this study 
cohort developed at least one complication within five 
years after the base visit, with eye complications (11.7%) 
being the most common type.

With an initial K value of 5, the patient similarity model 
achieved an AUROC of 0.688 (0.667 to 0.709) in pre-
dicting DHL complications. The grid search (sensitivity 
analysis) yielded the best K value of 10, and the patient 
similarity model achieved an AUROC of 0.718 (0.697 to 
0.739) (see Table  7). Compared with the other models, 
the patient similarity-based model was shown to be more 
accurate than logistic regression (AUROC = 0.695), and 
slightly less accurate as the SVM (AUROC = 0.766) and 
RF (AUROC = 0.764) models.

With regard to the clinician assigned weights, we found 
that it helped to improve the model performance. When 
removing the variable importance weights shown in 

Table  3, the patient similarity model had a poorer per-
formance (AUROC = 0.688). While the coefficient val-
ues or Gini importances of individual medications was 
similarly low across all the two models, which corre-
sponds with the expert consensus for the patient similar-
ity model, there were differences in the way the variables 
were ranked between the models. The logistic regression 
coefficients and RF Gini importances can be found in the 
Additional file 1: Table 1.

Patient similarity model explainability and interpretability
The patient similarity model was implemented as a web 
application to allow users to enter details about a new 
patient and to generate an estimated risk of DHL compli-
cations (see Fig. 1).

In terms of explainability, this approach is transparent 
in how it generates its risk predictions. The first step is to 
perform a multi-dimensional search across 69 variables, 
with importance weights applied, to find the ten most 
similar patients, based on Euclidean distance. The next 
step is to then aggregate the known outcomes of these 
ten patients from the database to compute the risk. For 
example, if four out of the ten patients had a DHL com-
plication, the estimated risk for the new patient would be 
40%.

In terms of interpretability, for the same example 
above, the predicted risk can be understood by patients 
as “based on the ten most similar patients to myself, four 

Table 7  Comparison of patient similarity model performance 
with other models

Model AUROC (95% CI)

Patient similarity (K = 10)—weighted 0.718 (0.697 to 0.739)

Patient similarity (K = 10)—unweighted 0.688 (0.667 to 0.709)

Logistic regression 0.695 (0.672 to 0.718)

Random forest 0.764 (0.744 to 0.784)

Support vector machine (kernel = linear) 0.766 (0.746 to 0.785)

Fig. 1  The landing page (zoomed in at 175%) of the prototype web application using the patient similarity model. Users can enter demographic, 
biomarker and medication inputs to identify similar patients from the database
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in ten of them had a DHL complication within the next 
5 years”. Furthermore, with the ability to pinpoint the ten 
most similar patients, healthcare providers can select 
a particular similar patient to view his/her longitudi-
nal medical history over the subsequent five years. This 
could be used as a basis for crafting a more compelling 
narrative to deliver prognostic information.

Proof of concept
To illustrate how the web application can be used, we 
conducted mock consultation with a young patient with 
poorly controlled diabetes (Patient X). The attending 
doctor (primary user of the application) entered relevant 
details of Patient X in the web application. Patient X 
was 40  years old with pre-existing Diabetes, Hyperten-
sion and Hyperlipidemia for 4 years, 5 years and 5 years 
respectively. He had poorly controlled Diabetes with 
HbA1c of 10.0%. He was taking metformin (total daily 
dose [TDD]: 2000 mg), and glipizide (TDD: 20 mg), lisin-
opril (TDD: 20 mg), amlodipine (TDD: 10 mg) and atorv-
astatin (TDD: 20 mg) (see Fig. 2).

The backend system would identify the top-10 most 
similar patients from the database of 10,059 patients 
and display them as a list of anonymised records (see 
Fig.  3). In this case, among the top-10 most similar 

patients to Patient X, four of them had developed a 
complication. This can be interpreted by Patient X to be 
“for the 10 most similar patients to myself, four had a 
DHL complication in the next five years.” The attending 
doctor would leverage on such prognostic information 
to prompt Patient X to take action to optimize his/her 
glycemic control.

Going one step further, the system also allows the 
attending doctor to select a particular similar patient 
to generate a timeline. In this case, the attending doc-
tor selects Patient #10,845 who is a 59  year old with 
Diabetes, Hypertension and Hyperlipidemia each for 
5  years. Patient #10,845 also has poorly controlled 
Diabetes with HbA1c of 10.1%. From the timeline, it 
shows Patient #10,845 starting Insulin Glargine and 
later increasing the dose of the medication to eventu-
ally achieve good glycemic control and staved off all 
complications (see Fig. 4). Using this timeline informa-
tion, the attending doctor would be able to craft a case-
based narrative to recommend Patient X to start Insulin 
Glargine to achieve glycemic control. Conversely, the 
attending doctor can select a patient, who has devel-
oped a complication, to present an adverse scenario to 
alert Patient X.

Fig. 2  Data input into the prototype web application. The attending doctor enters the details of Patient X into the web application. Fields are 
non-mandatory. After entering the details, the attending doctor clicks the “Search” button which triggers the patient similarity model to identify the 
top-10 most similar patients in the database
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Fig. 3  An anonymized list of the top-10 most similar patients to Patient X is presented. An aggregate prognostic value is calculated based on the 
proportion of the top-10 patients who encountered a DHL complication. The green/orange/red indicators represent the outcomes of each patient 
over the subsequent 5 years from base visit. Green indicates that the patient did well (i.e. no complications). Orange indicates the patient had some 
complications or worsening in biomarker, while red indicates that the patient did poorly with multiple complications. In this case, four of the ten 
patients had either orange or red indicators

Fig. 4  Timeline of a similar patient (Patient #10845). A particular similar patient can be selected to produce a timeline. In this case, Patient #10845 
was selected to illustrate to Patient X a patient like himself who did well, and what Patient #10845 did to achieve the good results
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Discussion
In this study, we presented an approach of using a con-
ventional machine learning technique, namely K-nearest 
neighbor, which can incorporate expert clinician knowl-
edge to develop a patient similarity model for DHL 
complications prediction. For usage of the model, we 
proposed a two-layered presentation of information to 
patients. The first layer presents an aggregated risk of 
similar patients, while the second layer presents a narra-
tive of a similar patient. The latter addresses a gap in con-
ventional risk models, such as logistic regression models. 
Furthermore, unlike conventional risk models which pro-
vide more abstract predictions (i.e. “this is your estimated 
risk”), patient similarity models can couch the informa-
tional output more realistically (i.e. “this is what actually 
happened to X out of Y patients similar to yourself”). 
Given that different doctors and patients have unique 
preferences for the type and style of information delivery, 
patient similarity models will probably not replace con-
ventional risk models, but complement them with a new 
variety of information that can be selectively used in the 
appropriate consultation context.[28].

Previous work had employed different strategies to 
develop explainable prediction models [9, 16–19]. Shickel 
et  al. used a self-attention approach to highlight time 
steps in their model’s input time series that the model 
believes to be most important in formulating the final 
mortality prediction. This was visualized in a two-dimen-
sional grid [16]. Zhang et al. also developed an attention 
based prediction model and used a heatmap to present 
the relative importance of events over time [17]. While 
Rajkomar et  al. explored using free text data within the 
dataset to enhance explainability, Lundberg et  al. pre-
sented several tools like dependence plots and explana-
tion embeddings to better explain tree-based model 
outputs [18, 19].

In spite of these developments, adopting them in clini-
cal settings remains a challenge. Our patient similarity 
approach is easy to use and may be applied to various set-
tings, diseases and patient groups. As long as there is an 
available database of patient records, a patient similarity 
CRPMs can be developed. Using this approach, they can 
be contextualized to the local patient characteristics and 
type of data variables in the database, which can then be 
used to develop an end-product that is locally relevant 
and applicable.

Complementing hard facts with patient stories have 
been shown to be an effective means of patient education 
by increasing personal relevance and reducing counter-
arguing [29]. Bokhour et  al. showed that an education 
intervention using patients’ success stories in controlling 
their hypertension resulted in more emotional engage-
ment and reported intentions to change behavior [30]. 

This is further supported by Lesselroth and Monkman 
who have advocated embedding powerful narratives and 
stories in health information technology and for further 
research and development to evaluate its effectiveness 
[31]. In this way, our idea of using similar patients to 
craft narratives for CRPMs is an elegant way of weaving 
together qualitative and quantitative prognostic informa-
tion to support decision-making.

While our experimental patient similarity model may 
not have the best performance in terms of discrimina-
tory power, it was able to achieve an acceptable AUROC 
comparable to other machine learning methods such as 
SVM and RF [32]. With fine-tuning of other hyperparam-
eters and ongoing research into novel similarity metrics 
and algorithms, patient similarity models may be able 
to perform even better in future [24]. For now, there is 
a trade-off between accuracy and explainability. In addi-
tion, unlike other CRPMs which generate a probabilis-
tic output for a particular patient, the patient similarity 
model risk estimates are interpreted on the basis of “what 
actually happened to patients like yourself”, rather than 
“what will happen to you”. Based on this perspective, we 
posit that the validation of patient similarity models may 
not need to be as heavily scrutinized as other types of 
CRPMs before deployment.

We acknowledge that there are several limitations in 
this current patient similarity model. Firstly, it does not 
use all the variables, such as gender, race, diet and life-
style, which are associated with DHL complications. The 
reason we did not include diet and lifestyle was because 
these data were not available in the datasets. While gen-
der and race are used in some clinical risk scores, they 
were not included in our patient similarity model as their 
associations with DHL complications are comparatively 
weak.[33, 34] Furthermore, although we had different 
races in our study populations, they were mostly South 
Asian. This ethnic homogeneity would have lessened the 
value of including the race variable. If the variables were 
not used in the patient similarity model, they were also 
not used in all the other models used for comparison. 
Secondly, the current patient similarity model uses input 
data from a single time point. This would not completely 
be reflective of DHL which are chronic diseases. While 
we have included the duration of these diseases, plotting 
out the trajectories of these would be even more useful. 
Such disease progression models have been shown to 
be effective at predicting cardiovascular risk of diabetes 
and lipid disorders.[35, 36] These progression models 
or trajectories can be incorporated as additional input 
variables to improve model performance further. Thirdly, 
because the model building and validation included 
right-censored cases, it could have introduced bias. This 
is probably not very significant in our case since majority 
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of the cases were not censored, but approaches such as 
inverse probability of censoring weights should be con-
sidering in datasets where larger proportion of censored 
cases are used.[37] Fourthly, such an approach of using 
K-nearest neighbour would rely on having a database of 
patient information to search for similar patients. This 
may require regular updates to the database, requir-
ing additional effort to maintain. Furthermore, this may 
also encounter some data security concerns, which may 
be alleviated by removing personally identifiable infor-
mation from the database. Lastly, the interpretability of 
the outputs would depend on the complexity of the cases 
and the size of the data. For example, in some cases this 
approach may not be able to find sufficient number of 
similar patients, by the fact that the case of interest is an 
outlier. In this case, the model should flag that it is not 
applicable. This would be similar to other models which 
do not perform well on outlier type of cases. However 
these could potentially be addressed in this approach by 
having an as large as possible dataset, and with as much 
details, to perform the search on.

Looking ahead, patient similarity analytics can be 
used to develop effective, explainable and interpretable 
CRPMs as clinical decision support and shared-decision 
making tools to enhance patient care. The patient similar-
ity model will be fine-tuned and optimized with research 
to create optimal training hyperparameters, including 
search algorithms and similarity metrics. We will also 
explore other methods of deriving feature weights such 
as multivariate feature selection and Mahalanobis dis-
tance with a trainable covariance weight matrix and 
other machine learning model training. We will assess a 
to-be-developed patient similarity based tool for clini-
cal decision support in clinical practice. For this, we plan 
to conduct a multi-site hybrid implementation trial to 
determine its impact on decision-making quality, patient 
and clinician satisfaction, patient health outcomes and 
process outcomes (such as consultation duration). Ulti-
mately, we look forward to the tool being integrated 
within our electronic medical records and other IT sys-
tems, and clinical workflows.

Conclusion
In this study, we have presented patient similarity as 
an approach to develop an explainable and interpret-
able CRPM. The patient similarity model is comparable 
to other machine learning based models in predicting 
DHL-related complications. Furthermore, we introduced 
a prototype system to demonstrate transparency in the 
prediction process and the utility of the generated results 
to craft patient narratives. A proof of concept illus-
trates how this can be used in clinical practice. Adopt-
ing a patient similarity approach in developing CRPM 

can result in the development of more explainable and 
interpretable clinical decision support tools to ultimately 
enhance the decision-making process in clinical practice.
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