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Abstract 

Background: Sepsis is a severe illness that affects millions of people worldwide, and its early detection is critical for 
effective treatment outcomes. In recent years, researchers have used models to classify positive patients or identify 
the probability for sepsis using vital signs and other time‑series variables as input.

Methods: In our study, we analyzed patients’ conditions by their kinematics position, velocity, and acceleration, in a 
six‑dimensional space defined by six vital signs. The patient is affected by the disease after a period if the position gets 
“near” to a calculated sepsis position in space. We imputed these kinematics features as explanatory variables of long 
short‑term memory (LSTM), convolutional neural network (CNN) and linear neural network (LNN) and compared the 
prediction accuracies with only the vital signs as input. The dataset used contained information of approximately 4800 
patients, each with 48 hourly registers.

Results: We demonstrated that the kinematics features models had an improved performance compared with vital 
signs models. The kinematics features model of LSTM achieved the best accuracy, 0.803, which was nine points higher 
than the vital signs model. Although with lesser accuracies, the kinematics features models of the CNN and LNN 
showed better performances than vital signs models.

Conclusion: Applying our novel approach for early detection of sepsis using neural networks will prove to be an 
invaluable, more accurate method than considering only simple vital signs as input variables. We expect that other 
researchers with similar objectives can use the model presented in this innovative approach to improve their results.
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Background
Sepsis is a fatal organic dysfunction caused by a patient’s 
deregulated response to infection, and septic shock is a 
subset of sepsis where circulatory and cellular/metabolic 
dysfunction occurs with a higher risk of mortality [1, 2]. 
Sepsis is considered as the disease with the highest rate 
of death from infection [3]. Overall, the occurrence of 
sepsis and septic shock treated in a hospital is 437 and 
270 cases per 100,000 person-years, respectively, with a 

total mortality rate of 26% [3, 4]. Nevertheless, according 
to Rhodes et al. [5], similar to most other diseases, early 
identification and management of the patient in the ini-
tial hours significantly improve the results of treatment.

Currently, several hospitals use the sepsis clinical score, 
called sequential organ failure assessment (SOFA), to 
define if a patient is diagnosed with sepsis. The score 
was recommended by the Third International Consen-
sus Definitions for Sepsis and Septic Shock (Sepsis-3) 
[1]. The authors also proposed quickSOFA, or qSOFA, 
as the rapid score bedside criteria to facilitate the iden-
tification of patients with suspected infection and high 
risk of death [6]. The sepsis-3 criteria require monitoring 
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patients’ vital signs (VS), such as heart rate, body temper-
ature, blood pressure, and laboratory test results, among 
other variables, and calculating a sepsis score based on 
these values. Therefore, monitoring a patients’ variables 
is essential for the diagnosis and treatment as well as for 
medical analyses in studies that improve the medicine [7, 
8].

In recent years, several studies have used VS data and 
other variables to predict sepsis and septic shock. Henry 
et al. [9] analyzed data from patients in ICUs and devel-
oped an algorithm based on survival analysis and super-
vised learning techniques to predict septic shock.

Manaktala and Claypool [10] proposed a system to 
detect sepsis and to provide decision support to medi-
cal staff during patient monitoring through a mobile app. 
The authors employed demographic, VS, medications, 
laboratory results, and nursing notes data to perform the 
detection and the decision support.

Horng et  al. [11] showed—through tokenization algo-
rithms, bigram detection, and text denial, in addition to 
machine learning—the possibilities of using data sourced 
from the text of patients’ medical registers, demographic 
data, and VS to identify patients with suspected infection 
and sepsis.

Mao et al. [12] developed a sepsis prediction algorithm 
based on a machine learning technique called gradient 
tree boosting, using six VS commonly available in ICUs.

Bock et  al. [13] presented a new type of shapelet, a 
technique for identifying subsequences of time-series 
data that are statistically most significant for prediction. 
The authors showed shapelet patterns using VS as indica-
tors of the severity of future sepsis.

Kamaleswaran et  al. [14] compared the performances 
of some machine learning techniques to predict the onset 
of severe sepsis in children using VS as input.

Mohammed et  al. [15] used five VS collected every 
minute and a support vector machine classifier to detect 
sepsis approximately 17 h before its onset.

Perng et  al. [16] proposed a convolutional neural net-
work (CNN) to predict sepsis-related mortality. They 
used 53 selected clinical variables and showed that 
the accuracy of the CNN model was higher than other 
machine learning methods and qSOFA.

Li et  al. [17], Lin et  al. [18], and Lauritsen et  al. [19] 
proposed new model architectures composed especially 
of CNN and long-short term memory (LSTM) neural 
networks for predicting sepsis. The authors proved that 
their approach was more efficient for the early detection.

Lake et al. [20] studied 4096 intervals (25 min) of res-
piratory rates of neonatal ICU patients using approxi-
mate entropy [21] and sample entropy [22]. They verified 
that entropy values were lower right before the sepsis 
onset.

Ahmad et al. [23] analyzed the continuous heart rate 
of patients hospitalized for bone marrow transplanta-
tion and observed a 25% reduction in sample entropy 
before the diagnosis of sepsis.

Drewry et al. [24] proposed a temperature curve anal-
ysis that could find an abnormal pattern before sepsis 
onset, using the maximum, minimum, and variations of 
the ICU patients’ temperature continuous time-series.

Additionally, Shashikumar et  al. [25] analyzed the 
dynamics of continuous blood pressure and heart rate 
time-series to predict sepsis in ICU patients. They 
found that entropy-based measures of the two VS 
dynamics are independent predictors of sepsis.

Even though other important works have dealt with 
sepsis prediction in the past decade, we can consider 
those mentioned above a representative sample of 
the scientific community’s goals in this regard. These 
goals are, in most cases, to implement efficient models 
based on statistics, machine learning, and deep learn-
ing, to detect the most precise sepsis onset, to achieve 
the highest prediction accuracy as early as possible, to 
investigate the dynamics of measured features (varia-
bles) and to use the smallest number of easily collected 
features.

The above prediction models analyze the behavior 
of time-series variables until they classify the patient 
as positive for sepsis or identify a threshold probabil-
ity for sepsis as early as possible. Although these studies 
have achieved commendable results, we propose a novel 
approach to accomplish some goals of the scientific com-
munity. The innovation is that we consider, at each times-
tamp, a “distance” measurement between the values of 
the patient’s variables and a proposed sepsis point. We 
developed a sepsis prediction model that considers not 
only the patient’s time-series VS behavior but also their 
kinematics over time, including position, velocity, and 
acceleration.

Therefore, we assumed that a patient can be repre-
sented by a point moving in an n-dimensional space, 
where n is the number of VS. We defined sepsis point as 
a single target point in this vital sign space. The position 
of the sepsis point is estimated from the patients’ VS val-
ues at their sepsis onset. Then, at each instant of time, we 
computed the relative distance between the patient and 
the sepsis point positions, as well as their relative velocity 
and acceleration. We named these variables as kinematics 
features (KF). When the KF were included as input vari-
ables of sepsis prediction neural networks (KF model), 
we verified that accuracies were higher compared to 
including only VS as input (VS model). In this work, we 
used a database where the sepsis-3 criteria were applied 
to define the sepsis onset of patients who developed the 
disease in the ICU.
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We expect that other researchers with similar objec-
tives can use this innovative approach to enhance their 
early detection models. To promote the reproducibility 
of our work and contribute to its scientific expansion, we 
published sample data and essential source code in [26].

Methods
Kinematics analysis of patient’s variables
Patient’s position, velocity, and acceleration

In our approach, we represented a patient as a point in 
an n-dimensional space, and the patient’s n VS values at 
each instant of time are the coordinates that define the 
patient’s position vector [27, 28].

Thus, the VS values x1, x2, . . . , xn at time t are the val-
ues of the components of the position vector −→r Ai of a 
patient Ai at time t , that is:

where n = 1, 2, ...,N  VS or clinical variables.
We also calculated the velocity −→v Ai and acceleration 

−→
a Ai vectors at each instant of time t as follows:

Sepsis position, velocity, and acceleration
Defining sepsis and identifying its onset is a challenging 
task, and the criteria or methodology adopted can vary. 
There are several criteria available like SIRS criteria [29], 
sepsis-3 criteria [5, 30], Angus methodology [31], and 
Martin methodology [32], among others. The database 
adopted in this work uses the sepsis-3 criteria to set the 
sepsis onset; however, the criteria used by the database 
are not relevant to our approach but just the indication of 
sepsis onset by some criterion.

Each patient has a sepsis onset with their correspond-
ent values of VS variables. In a simple and immedi-
ate configuration, the sepsis position point or just 
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sepsis position would be a unique and static point in the 
n-dimensional space defined by some simple statistical 
calculation, common for all patients. In a more sophisti-
cated configuration, the sepsis position could be a mov-
ing point according to some statistical and/or medical 
rule of position changing, also applied to all patients as 
a common sepsis point path. Another issue is that the 
patients can be grouped by characteristics like gender, 
age range, comorbidity, among others. Here, the defini-
tion of the sepsis position would be made for each group.

In this work, we decided to non-group the patients and 
use a statistic median to calculate a unique static sep-
sis position for all patients, as an initial configuration to 
test our approach, because our goal is to verify the better 
accuracy between the VS and KF models.

Therefore, considering that ts represents the sepsis 
onset time for the positive patients, we established that 
the sepsis position vector for all patients were defined by 
the median values of each VS on the sepsis onset. That is, 
−→r Bi(t) = −→r B(t) =

−→r B will be given by

where I is the number of positive patients.
Once the vector −→r B has been identified, it will be used 

to determine the relative position of patients to the sep-
sis position, at each instant, for positive and negative 
patients.

Movement of patient Ai relative to sepsis point B
As the components of −→r B are composed by the median 
of VS values at ts , it is not probable that patient Ai will 
reach this exact sepsis position. Thus, after some time, a 
positive patient Ai reaches some position (given by −→r Ai ) 
“near” the sepsis position given by −→r B , while a nega-
tive patient “never” gets “near” this position. There is no 
special need to calculate in advance “how near” or how 
the patients’ positions spread around the sepsis posi-
tion point because the learning process of the prediction 
model will consider it internally. Therefore, we focused 
on the relative position vectors −→r Ai/B of the patients rel-
ative to the sepsis position at each instant t:

Figure  1 shows an example of vectors −→r Ai , 
−→r B , and 

−→r Ai/B , considering only three VS (3D space). The sche-
matic illustrates the movements of a patient (red) that 
reached a position “near” the sepsis position point and 
another patient (green) that did not.

The distance between patient position point and sepsis 
position point at each instant t is the intensity of position 
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)
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vectors −→r Ai/B at each instant t , 
∣

∣

−→r Ai/B(t)
∣

∣ , and it is cal-
culated using the Euclidian Distance formula:

The velocity vector of patient Ai relative to the sepsis 
position vector B is denoted by −→v Ai/B:

Similarly, the acceleration vector is denoted by −→a Ai/B:

Projection of vectors −→v Ai/B and −→a Ai/B in direction 
of the vector −→r Ai/B

We considered that the relative movement between a 
patient and the sepsis point must be “rectilinearized,” 
that is, it must be viewed at each instant as a potential 
rectilinear movement of the patient directly to the sep-
sis point. Using the projection of the vectors −→v Ai/B and 
−→
a Ai/B in the direction of the vector −→r Ai/B is a way to 
express this “tendency” of patient Ai to move straight 
through the sepsis point B.

These projections comprise calculating their scalar 
products with the unit relative position vector −→e i , which 
has the same direction and sense of the relative position 
vector −→r Ai/B:
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The projection of the velocity vector, Proj
−→
v Ai/B

(t)
−→e i(t)

, is a 
scalar that can be positive, null, or negative. Its value, at 
every instant, either maintains, increases, or decreases 
the distance between the patient Ai and the sepsis point 
B . Likewise, the projection of the acceleration vector, 
Proj

−→
a Ai/B

(t)
−→e i(t)

, is a scalar value that, at every instant, signi-
fies the changes in the rate that patient Ai and sepsis 
point B are distancing from or approaching each other.

Sepsis early detection and kinematics features
In our study, we propose to calculate the patients’−→e i , 
Proj

−→
v Ai/B

(t)
−→e i(t)

 and Proj
−→
a Ai/B

(t)
−→e i(t)

 at each instant, and the 
hypothesis we seek to verify is whether accuracy is gained 
by including these KF as the input of neural network pre-
dictors/classifiers, instead of using VS alone.

If the KF show that a patient, as an n-dimensional space 
point, is approaching the sepsis position with a certain 
velocity and acceleration during the monitoring time, it 
could show more precisely that the patient will be diag-
nosed with sepsis in the future.

Hence, we consider a general prediction/classification 
mathematical function:

where aj ( j = 1, 2, . . . , n ) are the input parameters and cj 
( j = 1, 2, . . . , n ) are the coefficients to achieve the best 
accuracy.

Our goal is to compare the resultant of this function 
using the KF as input parameters with the resultant con-
sidering only VS as the input parameters. If we demon-
strate that KF increases the accuracy of early detection 
of sepsis, we will have contributed to our intended 
objectives.

Data source and preprocessing
As a data source, we used the clinical multivariate time-
series database published in the Early Prediction of Sep-
sis From Clinical Data: The PhysioNet/Computing in 
Cardiology Challenge 2019 [33–35]. This database has 40 
hourly clinical variables, including VS, laboratory tests, 
and static patient descriptions, collected from United 
States hospitals—namely Beth Israel Deaconess Medical 
Center and Emory University Hospital with respective 
institutional approval. The authors of the database used 
the sepsis-3 clinical criteria [5] to define the sepsis onset 
and included a variable to show the instant it occurs. 
Only the positive patients have this sign, thus we relied 
on it to define a precise sepsis position vector and sepa-
rate the positive and the negative patients. According 

Proj
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a Ai/B

(t)
−→e i(t)

=
−→
a Ai/B(t) •

−→e i(t)

f (a1, a2, .., an) = c1a1 + c2a2 + · · · + cnan,

Fig. 1 Schematic of −→r Ai/B : the position vector −→r A of patient Ai 
relative to the sepsis position vector −→r B . Adapted from [27, 28]
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to what we posed in the kinematics analysis section, we 
assumed that the last instant of a positive patient series is 
the sepsis onset time, therefore all the registers after this 
time were rejected.

The dataset posted publicly for download has 40,336 
patients, divided into test sets A and B, both with the 40 
hourly clinical variables. From these clinical variables, we 
selected six common VS monitored in hospitals (Table 1).

The authors of the database challenged contestants to 
develop algorithms for the early prediction of sepsis and 
published the results on the corresponding website [35], 
but the authors plan to publish a paper about the results 
as soon as possible [36]. The best-ranked result achieved 
82.8% accuracy on test set A and 88.8% on test set B 
using all 40 clinical variables. Because we used only six 
common VS, it is important to have a point of reference.

Because the authors of the database intentionally pre-
served the missing data and erroneous values, we pre-
processed the selected data before setting the sepsis 
position and calculating the KF. First, it was necessary to 
define a minimum number of registers, which we could 
deal with. Once in this work we considered patients 
who developed sepsis in the ICU, any number of regis-
ters we chose would be compatible with the database 
used because it is sourced from ICU patients. We chose 
to eliminate patients with fewer than 36 registers, which 
correspond to three 12-h medical shifts of measured 
data. Additionally, if a patient had at least one of the six 
VS with all Not a Number (NaN) values, we eliminated 
that patient. Figure  2  shows the exclusion flowchart 
where the number of patients reduced from 40,336 to 
15,515.

After the exclusion process, we found VS with absurd 
values, probably because of sensor reading or typing 
errors. Here, we set the operating limits for each variable 
based on [11], and we replaced those values with NaNs. 
Figure 3 illustrates this step and the subsequent preproc-
essing steps.

The number of registers varied from patient to patient. 
Some of them reached hundreds of hours before the 
instant of sepsis detection whereas others reached sepsis 
position in a few hours. However, because we intended to 

use the data as input for neural networks, we established 
that all the patients should have the same number of reg-
isters. Therefore, we arbitrated that the last 48  h (four 
medical shifts) were "adequate and sufficient" to analyze 
the data behavior and to determine the risk of sepsis 
occurrence. For patients who had less than 48 registers, 
with or without NaNs in their time series, we filled the 
"previously missing data" with NaNs.

To tackle the NaNs, we used the mean value of each 
VS of all patients at each hour and proceeded with the 
imputation of values accordingly. After this process, we 
linearly interpolated the remaining missing values after 
verifying that just 1 or 2 h remained with NaN in some 
VS.

Table 1 VS selected. Adapted from [33]

# Measurement Description Unit

1 HR Heart rate beats/min

2 O2Sat Pulse oximetry %

3 Temp Temperature °C

4 SBP Systolic blood pressure mm Hg

5 DBP Diastolic blood pressure mm Hg

6 Resp Respiration rate breaths/min

Eliminate patients with 
fewer than 36 registers

Eliminate patients with 
all-NaN values variables

15,515 Patients
1,521 Positives
13,994 Negatives

40,336 Patients
2,932 Positives
37,404 Negatives

26,620 Patients
1,655 Positives
24,965 Negatives

Final DB

Initial DB

Fig. 2 Preprocessing: exclusion flowchart

Normalize the values

Replace values outside operational limits with NaN

Get the patients’ last 48 registers

Replace the NaNs (imputation)

Interpolate the remaining NaN 

Smooth the time series

Fig. 3 Preprocessing
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After the imputation, the VS curves showed a rug-
gedness even bigger. Although the necessity of smooth-
ing the curves was not imperative, we preferred to do 
this using the moving average of the 3 last values from 
hour minus 2 to the present hour.

Then, to address the problem of having multiple vari-
able units, we normalized the VS values based on their 
maximum values. Thus, we fixed the minimum as zero 
and applied the formula, xNormj = xj/xjMax.

After all these preprocessing procedures, we could cal-
culate the sepsis position components and the KF using 
the 1521 positive and 13,994 negative patients. With the 
six VS along with their KF, each patient had 48 registers. 
Tables 2 and 3 present part of the sample database availa-
ble in [26], where the six columns in Table 2 are the nor-
malized VS, and the eight columns in Table 3 are the KF, 
that is, the six components of the unit vector −→e i followed 
by the scalars Proj

−→
v Ai/B

(t)
−→e i(t)

 and Proj
−→
a Ai/B

(t)
−→e i(t)

.
Moreover, we randomly selected 3316 negative patients 

from the total 13,994 to balance the number of positive 
and negative patients according to the processing capac-
ity of the technological infrastructure used. Thus, the 
final database contained one CSV file with 1521 positive 
and another CSV file with 3316 negative patients. We 
labeled the positives with 1 and the negatives with 0 for 
inputting to the prediction models. Table 4 shows unnor-
malized values of the basic statistics of the final database.

Preprocessing the data is a necessary step in the sta-
tistical analysis that can artificially affect the outcome 
of modeling studies. However, as our approach aims 
to compare the accuracy of the VS and KF models, all 
effects from any preprocessing will not compromise the 
result achieved because they will equally improve or 
degrade the quality of both models.

Neural networks for early detection of sepsis
In our research, we calculated KF values using six 
patients’ VS values at each instant of time. Then, we used 
these KF values as the input of some neural networks 
(NN) for the early detection of sepsis.

We decided to use LSTM NN to test our hypoth-
esis because of its “remember” or “forget” features (as 
it receives inputs sequentially along with the training). 
These features improve the LSTM’s capacity to discover 
dependencies in time-series data [37].

LSTM is a variation of a recurrent neural network 
(RNN) proposed by Hochreiter et  al. [38]. The authors 
solved two known problems of traditional RNNs when 
dealing with time-series data: (1) the backward propaga-
tion error over time becomes extremely high or extremely 
low, and (2) the progress of the back-propagated error 
highly depends on the NN weight values. These can cause 
the weights to vary abnormally, which can increase the 
time for the learning process significantly [39].

Therefore, we defined an LSTM NN model with the 
input formed by the VS, and another LSTM model with 
KF as input. The output layer is always binary (0–nega-
tive for sepsis and 1–positive for sepsis). Then, we cross-
validated the main LSTM parameters to find those that 
resulted in better accuracy and lower standard deviation 
(STD). Thus, we arrived at a model with 128 nodes, 20% 

Table 2 Sample data with the normalized VS values (ranged 
from 0 to 1)

HR O2Sat Temp SBP DBP Resp

0.5582 0.9900 0.9282 0.5486 0.4887 0.3924

0.5677 0.9825 0.9210 0.5570 0.4932 0.4349

0.5779 0.9825 0.9223 0.5742 0.5135 0.4714

Table 3 Sample data with the KF values (ranged from − 1 to 1)

e.HR e.O2Sat e.Temp e.SBP e.DBP e.Resp
Proj

−→
v Ai /B

(t)
−→
e i (t)

Proj
−→
a Ai /B

(t)
−→
e i (t)

0.7251 0.1787 0.0129 0.5146 0.3997 0.1326 0.0217 − 0.0100

0.7231 0.1686 0.0272 0.5131 0.3985 0.1609 0.0012 − 0.0207

0.7185 0.1698 0.0274 0.5167 0.4013 0.1620 − 0.0025 − 0.0037

Table 4 Basic statistics of the final database

Plus–minus values are means ± STD. All values are unnormalized

Variable Unit Positive Negative

Number # 1521 3316

Age years 62.35 ± 16.40 64.06 ± 15.48

Gender %

Female 40.28 41.34

Male 59.72 58.66

Vital signs

HR beats/min 88.05 ± 16.24 85.65 ± 14.19

O2Sat % 97.26 ± 2.26 97.39 ± 1.95

Temp °C 37.13 ± 0.52 37.10 ± 0.49

SBP mm Hg 104.68 ± 19.88 120.87 ± 17.24

DBP mm Hg 62.15 ± 10.73 60.26 ± 9.61

Resp breaths/min 20.78 ± 4.66 18.40 ± 4.14
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dropout, a batch size of 64, and a sigmoid output acti-
vation function that was compiled with a binary cross-
entropy and Adagrad optimizer [40].

Even though the LSTM NN is sufficient to show if the 
KF model had a positive impact on accuracy, we com-
pared its results with other models. Hence, we also used 
a CNN, a linear NN (LNN), and the non-NN classifiers, 
logistic regression, and decision tree. All of them have 
the same input and output as the LSTM NN.

Although CNNs are usually applied to visual recogni-
tion and text tasks, some researchers have proposed them 
to classify time-series data [41–43]. Thus, after using the 
cross-validation process to find the best parameters, we 
created a CNN model with 64 filters and a kernel size of 
3 and used a rectified linear unit (ReLU) as the activation 
function [44]. The CNN was also compiled with binary 
cross-entropy and the Adagrad optimizer.

The LNN and the non-NN classifiers do not have char-
acteristics tailored to deal with time-series data. There-
fore, we used them only as references, keeping their 
default parameters.

Results
Rather than using traditional prediction models, we 
applied classification models that could discriminate if 
a set of time-series data represents a positive or nega-
tive patient for sepsis at a certain number of hours before 
sepsis onset (HBS). HBS is the number of hours before 
the patient’s last timestamp; therefore, it represents the 
earliness of the prediction and affects the number of rows 
in the model input. In our work, we used 6 HBS; thus, 
we used only the first 42 rows out of the total of 48 rows 
available. Hence, when we used VS, the input model had 
6 columns and 42 rows, and when we used KF, the input 
model had 8 columns and 42 rows. In both cases, when 
the model classifies patients as positive or as negative 
with certain accuracy, it is predicting sepsis six hours 
before its onset with the accuracy achieved.

Because the model with KF had a higher-dimensional 
input, we had to use some model-selection criteria for a 
fair comparison of the models. After searching for crite-
ria suitable for neural network models, we used the mean 
accuracies of k-fold cross-validation and the standard 
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Fig. 4 Accuracies of the classifiers comparing KF and VS models. Error bars denote the STDs of the accuracies of the cross‑validations

Table 5 Comparative summary

# Classifier Mean Acc. KF model Mean Acc. VS model Mean Diff STD KF model (%) STD VS 
model 
(%)

1 LSTM 0.8025 0.7074 0.09 6.15 3.27

2 CNN 0.7556 0.7006 0.06 2.82 1.14

3 Linear NN 0.7224 0.6954 0.02 2.07 0.90

4 Logist. Regres 0.7139 0.7048 0.00 1.18 1.09

5 Decision Tree 0.6279 0.6230 0.01 1.26 1.45
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deviation. We used the same sepsis position to calculate 
the KF for the entire database; thus, the data in each fold 
of the cross-validation process had the same reference.

Figure 4 shows the results of the cross-validation pro-
cess for each model. Inside the bars are the mean accu-
racies values with KF or with VS as input, that is, the 
prediction accuracies at 6 HBS.

As required in our hypothesis, we delineated the differ-
ences between the accuracies of the KF and VS models: 
the LSTM model using KF as input achieved a signifi-
cant difference of 9 compared with the model using VS 
as input. The CNN models achieved lower accuracies, 
but the results were similar because using KF as input 
increased the accuracy by 6 points. As expected, when 
we tried to classify the patients using an LNN model, the 
accuracies were particularly lower than the LSTM model, 
but there was only a slight difference between the KF and 
VS results. The logistic regression and decision tree clas-
sifiers showed virtually no differences between the KF 
and VS models; moreover, the decision tree reached the 
worse accuracies of all.

Table 5 presents a comparative summary of the results 
of each classifier ordered by KF accuracy. The accuracies 

shown by the LSTM and CNN classifiers were higher. 
Unlike the other classifiers, they have characteristics that 
are essential for classifying the data we had constructed: 
the KF is time-dependent, has an onset (sepsis position), 
and each register has values that are relative to the onset.

Figure  5 shows the calibration curves of the models. 
As expected, decision tree models are the less calibrated 
ones.

Our hypothesis became more distinct with the LSTM 
and CNN classifiers because the differences between the 
mean accuracies with and without KF as input (Mean 
Diff. column) were at least three times higher than the 
mean differences of the other classifiers. As a result, the 
other classifiers could not achieve our goal, especially if 
we consider the STDs.

Discussion
In our approach, we showed a novel way to handle the 
input parameters of NN-based sepsis classification mod-
els to improve their accuracies. Instead of inputting 
directly the patients’ time-series variables, as is com-
monly proposed, we treated them as points with veloc-
ity and acceleration relative to a sepsis reference and 

Fig. 5 Calibration curves of considered models
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generated a new type of input: the patients’ time-series 
kinematic features.

KF models have proven to be more accurate than the 
VS models, because of the higher capability of KF to dis-
tinguish positive patients from negative patients, as the 
distance from the sepsis point is considered at every 
instant and the speed with which the patients reach the 
sepsis point.

In the approach we posit, any set of time-series vari-
ables can be used as inputs, although in this work, we 
selected only six VS commonly monitored in hospitals: 
heart rate (HR), pulse oximetry  (O2Sat), temperature 
(Temp), systolic blood pressure (SBP), diastolic blood 
pressure (DBP), respiration rate (Resp). Therefore, this 
work can be easily reproduced and expanded by incorpo-
rating data from additional and different databases.

In this work, we also assumed that the last 48 h of VS 
data were a sufficient window size to prove our hypoth-
esis. However, future works can verify if different window 
sizes affect the results.

Likewise, the criteria for selecting the VS variables 
can be improved by fitting probabilistic models applied 
to their time-series values or by any new technique for 
selecting the most statistically significant time-series 
variable for prediction, such as the one proposed by [13]. 
The entropy of the VS dynamics [20, 23–25] can also be 
useful in this matter.

In addition, other missing data imputation, interpola-
tion, and normalization procedures certainly would con-
tribute to the preprocessing stage and overall results. It 
would also be useful to verify how other options of pre-
processing methods affect the models’ accuracies with 
KF and VS as input.

The proposed kinematics approach can also be applied 
in real-time vital sign monitoring. Here, the position of 
the sepsis point must be previously defined using the 
existing data of positive patients, and each new positive 
patient datum can be used to recalculate a new sepsis 
position. In this manner, all KF can be calculated in real-
time and imputed in the NN model at every instant.

Although the assumption of a static median for the 
sepsis position point is a simplified way used as baseline 
to test our hypothesis, there are different ways of defin-
ing the sepsis position point. It can be a moving point set 
according to some statistical method of changing variable 
values or according to some clinical rules relative to the 
variables (Fig.  6). Additionally, it can be set combined 
with clustering techniques to find a moving sepsis posi-
tion point for each group of patients, depending on their 
features, such as previous diseases, gender, age range, 
ethnic group. Therefore, other ways to define sepsis posi-
tion point will be an enhancement for this work and fur-
ther validation of the approach proposed here.

Among the six components of the sepsis position 
vector, only two of them are included as variables in the 
qSOFA score, which, together with the SOFA score, is 
part of the sepsis-3 criteria to set the sepsis onset. In 
this work, the “unnormalized” values of components 
SBP and Resp achieved 90.91 and 21.65 respectively, 
which mean the attendance of 2-point of the qSOFA 
score ( SBP ≤ 100,Resp ≥ 22 ), which is sufficient to 
define a positive condition for sepsis. However, this is 
not true all the time because the positiveness for sepsis 
could come from the third qSOFA score variable. In any 
case, our approach does not depend on this verifica-
tion, as different variables can be chosen independently 
of the sepsis criteria variables.

We identified the KF model of the LSTM classifier 
achieved the highest accuracy. To compare its perfor-
mance with other works that used VS as input for early 
detection of sepsis, we present Table 6 that shows their 
HBS and area under the receiver operating character-
istic (AUROC) values. The KF model reached a similar 
AUROC but a better HBS value, excluding the “outlier” 
result achieved by Mohammed et al. [15].

Despite proving our hypothesis using ordinary classi-
fiers, we pondered the possibility of improving the KF 
model performance using new neural network architec-
tures, based on CNN and LSTM [16–19], or new meth-
odologies/algorithms [9, 12].

Fig. 6 Sepsis path of a moving sepsis position

Table 6 AUROC of LSTM KF model compared with other works

# Work Model HBS AUROC

1 Lauritsen et al. [19] CNN‑LSTM 03 0.856

2 Mao et al. [12] Gradient tree boosting 04 0.850

3 KF model LSTM 06 0.835

4 Kamaleswaran et al. [14] CNN 02–08 0.830

5 Mohammed et al. [15] Support vector machine 17.4 0.781
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Furthermore, we think that it is essential to compare 
our results with the results obtained using other data-
bases to reveal any bias, even though it is difficult to 
locate public databases that identify the disease onset.

Conclusion
In recent years, researchers have proposed various 
models for predicting patient illnesses, seeking to use 
fewer variables while maximizing accuracy and speed 
of prediction. Applying our new and innovative kin-
ematics approach for early detection of sepsis using NN 
classifiers will prove to be a valuable and more accurate 
approach than considering only simple VS input vari-
ables, showing its significant potential in the develop-
ment of this scientific knowledge.
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