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Abstract 

Background: As proven to reflect the work state of heart and physiological situation objectively, electrocardiogram 
(ECG) is widely used in the assessment of human health, especially the diagnosis of heart disease. The accuracy and 
reliability of abnormal ECG (AECG) decision depend to a large extent on the feature extraction. However, it is often 
uneasy or even impossible to obtain accurate features, as the detection process of ECG is easily disturbed by the 
external environment. And AECG got many species and great variation. What’s more, the ECG result obtained after a 
long time past, which can not reach the purpose of early warning or real-time disease diagnosis. Therefore, develop-
ing an intelligent classification model with an accurate feature extraction method to identify AECG is of quite signifi-
cance. This study aimed to explore an accurate feature extraction method of ECG and establish a suitable model for 
identifying AECG and the diagnosis of heart disease.

Methods: In this research, the wavelet combined with four operations and adaptive threshold methods were 
applied to filter the ECG and extract its feature waves first. Then, a BP neural network (BPNN) intelligent model and a 
particle swarm optimization (PSO) improved BPNN (PSO-BPNN) intelligent model based on MIT-BIH open database 
was established to identify ECG. To reduce the complexity of the model, the principal component analysis (PCA) was 
used to minimize the feature dimension.
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Background
Electrocardiogram (ECG) is a bio-electricity signal with 
low frequency and weak amplitude, objectively reflect 
the work state of the heart and the physiological situa-
tion, provides important information in the assessment 
of human health, especially for heart disease [1]. ECG is 
proven as the most accurate method to analyze and diag-
nose all kinds of arrhythmia [2]. People with cardiovascu-
lar disease usually tend to have abnormal heart rhythms 
in the early stages [3, 4]. If detected in real-time and find 
the type of abnormal heart rhythm, proceeding early 
warning and targeted treatment have important implica-
tions for prevention [5]. Nowadays, ECG has become a 
basis detection index in the clinic. In reality, ECG is one 
of the leading tools to assess the extent of cardiac involve-
ment in COVID-19 patients [6]. It is of great significance 
to correctly identify ECG. The accuracy and reliability of 
ECG decision depend to a large extent on feature extrac-
tion. However, it is often uneasy or even impossible to 
obtained accurate features, for the ECG detection pro-
cess is very easily disturbed by the external environment, 
and abnormal ECG (AECG) has many species and great 
variation. Even the same AECG of different patients also 
have differences. Therefore, it becomes the focus of ECG 
research to recognize ECG and reach the purpose of early 
warning or real-time disease diagnosis. Developing an 
intelligent classification model with an accurate feature 
extraction method is of quite significance to identify 
AECG. For ECG signal filtering, even though there is a 
corresponding filter bank in the system to filter out the 
noise in the acquisition process, the hardware denois-
ing has certain limitations. Software de-noising mainly 
include three kinds of method, i.e., designing a digital 
filter, wavelet filter, and neural network and mathemati-
cal morphology [7–9]. In general, digital filters is difficult 
to design, has relatively poor execution efficiency and 
larger calculation. The filtering effect of the neural net-
work is easily affected by the characteristic waveform and 
operation longer. For feature extraction, the detection 
of other characteristic waves depends on the premise of 
accurate detection of QRS. The method for detecting the 
QRS wave mainly includes mathematical morphology, 

difference threshold method, template matching method 
[10–12]. The plate matching method is based on the 
amplitude-frequency characteristics of the signal. The 
differential threshold method is simple and fast, but 
the detection accuracy is relatively low. The accuracy of 
mathematical morphology pretreatment is very high, but 
with complicated calculation. Overall, wavelet presents 
good results in signal filtering and feature extraction [13].

After feature extraction, there is remaining a big chal-
lenge for researchers to develop an intelligent and reliable 
system to recognize the AECG. Researchers have studied 
the classification method and or with a feature deduce 
algorithm to build a model and reduce its complication. 
While most ECG diagnostic systems established can not 
get the diagnosis result but only plays an auxiliary diag-
nostic role due to the complexity of ECG and difference 
of similar ECG. In a dynamic ECG, the classification of 
arrhythmia types of ECG signals has not achieved the 
expected real-time recognition and accurate recognition 
to meet clinical requirements. The analysis and recogni-
tion of ECG still need further study. A pressing problem 
remains in the development of an accurate method to 
classify AECG. In recent years, deep learning has devel-
oped rapidly, has achieved considerable progress in the 
research fields such as image and speech processing [14, 
15]. Many scholars have begun to explore the application 
of deep learning methods to the detection of atrial fibrilla-
tion (AF) or other arrhythmia classification, which shows 
superior performance [16–24]. By using convolutional 
neural network (CNN), the classification accuracy only 
up to 83%, there remains the problem that further handle 
the imbalance problems of CNN frameworks and accu-
racy further improve [25]. The ECG classification accu-
racy of the model based on adversarial domain adaptation 
reaches 92.3% [26]. Some scholars found that the classi-
fication effect of the support vector machine method is 
poor, the training of linear discriminant analysis is easy to 
overfit, and the training time of deep learning algorithms 
is too long [27–29]. Scholars’ study shows that building a 
back-propagation neural network (BPNN) model to clas-
sify AECG, the classification accuracy is only 72.27% [30], 
is not suitable for detecting cardiovascular disease as the 

Results: Wavelet transforms combined four operations and adaptive threshold methods were capable of ECG filter-
ing and feature extraction. PCA can significantly deduce the modeling feature dimension to minimize the complex-
ity and save classification time. The PSO-BPNN intelligent model was suitable for identifying five types of ECG and 
showed better effects while comparing it with the BPNN model.

Conclusion: In summary, it was further concluded that the PSO-BPNN intelligent model would be a suitable way to 
identify AECG and provide a tool for the diagnosis of heart disease.

Keywords: Abnormal ECG identification, BP neural network, Wavelet analysis, Principal component analysis, Particle 
swarm optimization
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CNN. However, BPNN has strong self-learning ability and 
high classification and recognition ability has been used in 
predicting the expected cases of acquired   immune defi-
ciency syndrome (AIDS) and shows good fitting and fore-
casting effects [31]. And improved BPNN also shows good 
effects in hand-motion recognition and water tempera-
ture forecasting [32, 33]. In this way, BPNN improved can 
be suitable to establish a classification model for detection 
AECG and cardiovascular disease, but how to design the 
ECG classifier based on BPNN with superior performance 
is worth further study.

BPNN is a multi-layer feed-forward neural network, 
consists of an input layer, hidden layer, and output 
layer. It belongs to supervised learning with the main 
characteristics of signal forward propagation and the 
error backpropagation. In general, it utilizes the differ-
ence between a theoretical value and an experimental 
value as a supervised signal, with an error generated in 
response when the output differs from that expected 
[34]. BPNN has the ability of simplicity, robust learn-
ing capability, and good solutions for nonlinear prob-
lems. However, it has the disadvantage of sensitivity 
to the weight of the initial network, is prone to a local 
minimum with slow convergence. And also, its lack 
of theoretical guidance and the selection of training 
samples will affect the generalization performance of 
the classifier [35]. Therefore, a lot of improved algo-
rithms emerged to cope with the practical application. 
It mainly includes two kinds of ways, that are heuristic 
learning algorithm and optimization algorithm. Among 
them, the first method is simple and easy to use, but 
the performance characteristics are not very easy to 
set up. The other has a lot to improve the convergence 
speed but increased the complexity of network comput-
ing. In this study, we choose the first method. particle 
swarm optimization (PSO) algorithm originated from 
the research on artificial intelligence and the hunt-
ing behavior of birds [36]. Based on the global search 
strategy of the population, PSO is optimized through 
cooperation and competition among particles of many 
populations. Nowadays, PSO has been widely used in 
many fields, for example, function optimization, image 
processing, and so on [37]. Raj Sandeep and Garcia 
Gabriel, et al. have researched cardiac arrhythmia beat 
classification using PSO tuned support vector machine 
(SVM) and got an accuracy of 89.10% for five classes 
[13, 38]. Liu Zhishuai has used two-dimensionality 
reduction methods principal component analysis (PCA) 
and time window selection to get better performance 
in classify ECG [39]. In theory, the advantage of PSO 
can fill a gap of BPNN, and can be suitable to classify 
ECG. In this study, we mainly aimed to explore an 
accurate de-noising and feature extraction method of 

ECG based on a wavelet and perform intelligent mod-
eling to classify AECG based on PSO optimized BPNN 
with combining the advantage of BPNN and PSO. With 
the consideration of the training time of deep learn-
ing algorithms is too long [27–29], the feature dimen-
sion reduction are also under consideration to reduce 
the complexity of the model to save class time and up 
accuracy.

Methods
BPNN model
To a neural network (NN) model with only one hidden 
layer, the process of BPNN is mainly divided into two 
stages. The first stage is the forward propagation of the 
signal, which passes through the hidden layer from the 
input layer to the output layer. The second stage is the 
error backpropagation, from the output layer to the hid-
den layer, and finally to the input layer, in turn, adjust the 
weights and bias of the hidden layer to the output layer, 
weights, and bias of the input layer to the hidden layer. 
The BP learning algorithm adjusts the weight along the 
direction of the negative gradient, which refers to the 
direction in which the function goes down the fastest 
[40]. The learning process of BPNN is shown in Fig.  1. 
The weight value is revised by Eq. (1).

where xk is weight and threshold matrix, gk is the gradi-
ent of the function, ak is the learning rate.

The derivation analysis process is as follows [41]. 
Define xi as input layer vector, yj as hidden layer vector, 
zl as output layer vector, ωji as the weight vector between 
the input layer and hidden layer, νlj as the weight vector 
between the hidden layer and output layer. When the 
prospect output vector is t1, the output vector of the hid-
den layer and the output layer is given as Eqs. (2) and (3):

Then, the error between the expected output value and 
the actual output value is given as Eq. (4):

The derivative of the error function concerning the 
output vector is given as Eq. (5):

(1)xk+1 = xk − akgk

(2)

yj = f

(

∑

i

ωjixi − θj

)

= f (netj), netj =
∑

i

ωjixi − θj

(3)

zl = f

(

∑

i

νljyj − θl
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= f (netl), netl =
∑
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νljyj − θl
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ωjixi − θj)− θl))
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The derivative of the error function concerning the 
hidden vector is given as Eq. (6):

(5)
∂E

∂νlj
=

∂E

∂zl
·
∂zl

∂νlj
= −(tl − zl) · f

′(netl) · yi

(6)
∂E

∂ωji
=

∑

l

∑

j

∂E

∂zl
·
∂zl

∂yj
·
∂yj

∂ωji
= −

∑

l

(tl − zl) · f
′(netl) · νlj f

′(netj) · xi

The weight correction function is given as Eqs. (7) 
and (8):

(7)

νlj(k + 1) = νlj − η
∂E

∂νlj
= νlj(k)+ η(tl − zl) · f

′(netl) · yj

Fig. 1 The supervised learning process of BP neural network
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∑

l

(tl − zl) · f
′(netl) · νlj in hidden layer node error is the 

error (tl − zl) · f
′(netl) in output node zl backpropagation 

to hidden layer node yj through weight νlj . The corre-
sponding threshold correction formula is given as Eqs. 
(9) and (10):

where η , η′ represents the learning rate of the hidden 
layer, the output layer, respectively.

When the transfer function is a binary type 
S function f (x) = 1

1+e−x , then its derivative is 
f ′(x) = f (x) · (1− f (x)) . Therefore, f ′(netl) and f ′(netj) 
can be given as Eqs. (11) and (12):

(8)

ωji(k + 1) = ωji(k)− η′
∂E

∂ωji

= ωji(k)+ η′
∑

l

(tl − zl) · f
′(netl) · νlj · f

′(netj) · xi

(9)

θl(k + 1) = θl(k)+ η
∂E

∂θl
= θl(k)+ η(t1 − zl) · f

′(netl)

(10)θj(k + 1) = θj(k)+ η′
∂E

∂θj
= θj(k)+ η′

∑

l

(t1 − zl) · f
′(netl) · νlj · f

′(netj)

(11)zl = f (netl), f ′(netl) = zl · (1− zl)

(12)yj = f (netj), f ′(netj) = yj · (1− yj).

Modeling process of BPNN

An artificial neural network (ANN) is a new cross-dis-
cipline, which is a nonlinear information processing 
system developed to simulate the structure and func-
tion of the human brain. A BPNN is a multilevel NN 
with anticipation. The most common transfer function 
adopted by BPNN is nonlinear transformation function 
(sigmoid function) in layers before the output layer, while 
linear function in the output layer. In a BPNN, the sig-
nal is transmitted via forwarding propagation and error 
by backward propagation. The BPNN is part of a multi-
layered network. The most widely used ANN, the BPNN, 
comprises an input layer, a hidden layer, and an output 
layer. In this study, the structure of the BPNN model 

includes multi-hidden layers, as shown in Fig. 2. The pro-
cess of modeling by BPNN is as follows:

1. Pre-process data.
2. Determine the number of network layers, train-

ing times, target errors, and learning speeds of the 
BPNN.

3. Form the BPNN with training data.
4. Use the test type data to test the NN model and 

finally obtain a predicted value.
5. Compare and analyze the predicted and actual values 

obtained in the previous step.

Fig. 2 The structure of the BPNN model with multi-hidden layers
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Data collection and pre‑process
In this study, there are five different types of MLII lead of 
ECG data collected to establish the classification model, 
from MIT-BIH open database, for MLII lead can express 
the changes of whole ECG well. The original ECG signal 
collected generally contains high-frequency noise and 
baseline drift. And the accuracy and reliability of AECG 
decision results depend to a large extent on the accuracy 
of ECG feature extraction.

We adopt a wavelet of common different wavelet basis 
functions to decompose the collected ECG signals to 
layer 8, to obtain the corresponding detail coefficient and 
approximate coefficient. From the wavelet principle, the 
detail coefficients of layer 1 and 2 include most of the 
high-frequency noise, and the approximate coefficients of 
layer 8 include baseline drift [42]. Therefore, we set the 
detail coefficient of layer 1–2 to 0 and the approximate 
coefficient of layer 8 to 0 to eliminate the noise. After 
corresponding wavelet reconstruction, we can obviously 
get the de-noising signal with no high-frequency noise 
and baseline drift. To evaluate the effects of filtering, 
we adopt indexes include minimum mean square error 
(MSE, smaller is better), signal-to-noise ratio (SNR, the 
closer to 1, the better), and waveform with no change to 
evaluate the filtering results. Based on the Matlab2019b 
and the first 10-s wave of record 100 ECG from the MIT-
BIH arrhythmia database, the filter effects result of a 

wavelet of common wavelet basis function, as shown in 
Table  1. From the results, we found the wavelet of the 
sym2 basis function is the best to get smooth and pure 
ECG  with keeping the original information, and the 
D-value of MSE is negligible than that of sym8.

Heartbeat segmentation and data integration
As recognition of ECG mainly depends on the time dif-
ference and amplitude of the feature waves and heart rate 
[43, 44]. In AECG, there is always an abnormal heartbeat 
arise, which contains effective information for the diag-
nosis of heart disease. In this way, we performed cardiac 
beat segmentation to the collected data after filtering, 
according to the label. Then, combining the same labeled 
beats to form the type of ECG data to further treatment. 
The heartbeat of  four different types of AECG collected 
was shown in Fig.  3. The Fig.  3a is the heartbeat of the 
ventricular premature beat (Vpb), Fig. 3b is the heartbeat 
of right bundle branch block (Rbbb), Fig. 3c is the heart-
beat of atrial premature beats (Apb), Fig. 3d is the heart-
beat of left bundle branch block (Lbbb).

Through the heartbeat segmentation, the number of 
five different types of ECG we collected from 23 records 
(records 100–233, each 30minutes) are 4615 (Lbbb), 4347 
(Rbbb), 1596 (Vpb), 3016 (Apb), and 23,826 (Nb, the 
heartbeat of normal ECG), respectively. To minimize the 
calculated amount and uniform the number of beats, we 
selected the first 30 heartbeats into two groups to further 
study.

Feature extraction
The time difference and amplitude of the characteristic 
waves and heart rate of ECG are the basis of diagnosis. 
ECG mainly includes P wave, QRS complex wave, T wave, 
and U wave. The normal heart rate is between 60 and 
100 bpm. The P-wave represents the potential change of 
atrial depolarization. The PR interval represents the time 
when the atrium begins to depolarize, is from the begin-
ning of the P-wave to the beginning of the QRS group. 
The QRS group represents the potential change of ven-
tricular depolarization. ST-segment is the line segment 
from the end of the QRS group to the beginning of the 
T-wave, represents the process of slow ventricular repo-
larization. T-wave represents the potential change during 
rapid ventricular repolarization. QT interval represents 
the time required for the whole process of ventricular 
depolarization and repolarization,  is from the beginning 
of the QRS wave group to the end of the T-wave. U-wave 
is right after the T-wave, represents the potential of ven-
tricular follow-up. Specific changes in ECG always occur 
during the proceeding of disease. In clinical diagnosis and 
treatment, the index used to diagnosis whether the ECG 

Table 1 The filter effects result of  a wavelet  with common 
wavelet basis function

Basis function Lead Evaluate indexes

SNR MSE

Haar MLII 0.2898 4.1575e−05

V5 0.2180 2.2217e−05

Bior2.6 MLII 1.5821 2.0868e−05

V5 0.8767 1.9091e−05

Daubechies (db4) MLII 0.2461 2.1572e−05

V5 0.4242 4.0207e−05

Daubechies (db6) MLII 1.4215 2.1942e−05

V5 0.8622 1.9155e−05

Daubechies (db8) MLII 0.8610 2.6452e−05

V5 0.6100 2.0300e−05

Sym2 MLII 1.6802 3.0186e−05

V5 1.1862 1.7778e−05

Sym4 MLII 1.2878 2.2030e−05

V5 0.7427 1.9689e−05

Sym6 MLII 1.2881 2.2027e−05

V5 0.8214 1.9225e−05

Sym8 MLII 1.5279 2.1191e−05

V5 0.9292 1.8818e−05
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is normal or not mainly includes heart rate, PR interval, 
QRS interval, and so on.

To obtain the diagnosis basis of ECG, accurate detec-
tion of QRS is the premise of feature extraction. To detec-
tion of QRS, the R-wave needs to be addressed first. In 
this study, we present a wavelet of type sym2 combined 
with four operations and adaptive threshold methods to 
perform feature extraction. We found that the energy of 
the R-wave is mainly contained in the detail coefficient 
of layer 3–5 while observing the ECG decomposed into 
8 layers with wavelet sym2. Therefore, the decomposed 
signals at layers 3, 4, and 5 will be used for reconstruc-
tion. R-wave is oscillatory, it is still difficult to detect it 
after QRS composite wave is detected. Through further 
analysis, we found that the negative energy in the posi-
tion of the Q-wave of layer 5 nearly counteracts the posi-
tive energy in the same position of layers 3 and 4. And 
the energy of layers 3 and 5 together nearly has the same 
direction of energy in layer 4. Thus, we infer that if add 
layers 3–5 together, the positive energy in the R-wave 
position can be concentrated while canceled Q-wave and 
S-wave that are not currently considered. And if the addi-
tion results of layers 3 and 5 multiply layer 4, there will be 
only positive energy left concentrated in the position of 
R-wave. Through experiments, we found that it is useful 
for making four operations to the decomposed signals at 
layers 3–5 to enhance R-wave by Eqs. (13) and (14):

where d3 represents the decomposed signals in layer 3, d4 
represents the decomposed signals in layer 4, d5 repre-
sents the decomposed signals in layer 5.

After the four operations, the energy of the R-wave 
enriched and  other characteristic waves eliminated. 
In this way, only the position value of the R-wave is 
retained. To avoid R-wave missing and false detection, an 
adaptive threshold to extract R-wave was used as follows: 
firstly, set a fixed window with width and step length of 
215 Epochs. Then, obtain the maximum value within the 
window and use the 60% of the maximum value as the 
threshold value. Lastly, sliding the window to extract the 
R-wave. To evaluate the extraction effect of R-wave, we 
use sensitivity (Se) and precision (P) to perform, by using 
Eq. (15). The results tested by using the first group col-
lected data of five different types of ECG were shown in 
Table 2. For the Se and P of the five types of ECG are all 
over 93%, we think wavelet of type sym2 combined with 
four operations and adaptive threshold method is suit-
able to extract R-wave. Same as the R-wave extraction, 
we located all other feature waves like P-wave, Q-wave, 
S-wave, and T wave. Then, the time difference and ampli-
tude of the characteristic waves and heart rate can be 

(13)e1 = d3 + d4 + d5, e2 = d4 × (2× d3 + d5)

(14)e11 = e1 × e2
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Fig. 3 The heartbeat of  four different types of AECG
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extracted. The flow chart of the feature wave location is 
shown in Fig. 4.

where TP represents the number of correctly classified 
positive examples, i.e., it is actually a positive example 
and is marked positive, FP represents the number of 

(15)Se =
TP

TP + FN
, P =

TP

TP + FP

falsely classified positive examples, i.e., it is actually a 
negative example but marked as positive, FN represents 
the number of falsely classified as negative, i.e., it is actu-
ally positive but marked as negative.

Table 2 The results of R-wave extracted by making adaptive discrete wavelet transform

ID represents the number of heartbeats marked in the data

Types ID TP FP FN Sensitive (Se) Precision (P)

Vpb 15 15 0 0 1 1

Rbbb 15 15 0 0 1 1

Nb 15 15 0 0 1 1

Apb 15 14 1 1 0.9333 0.9333

Lbbb 15 14 1 1 0.9333 0.9333

Start

Wavelet 
decomposition

Selecte detail coefficient with 
high energy of R-wave to carry 

out four operations

Set the R- wave 
threshold according 

to the maximum 
value

Fixed 
window 
sliding

Adaptive threshold 
method to extract 

R-wave

 Extracted S-wave according 
to the minimum value in the 

finite window after R 
position

Wavelet 
decomposition

Select detail coefficient with 
high energy of Q and S waves 

to carry out four operations

Extract the Q 
and S waves Wavelet decomposition

Extracted Q-Wave 
according to the minimum 

value in front finite window 
of R position

Select detail coefficient 
with high energy of P and 
T waves to carry out four 

operations

Extract the P 
and T waves

Extracted P-
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to the maxmum 
value in front 

finite window of 
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 Extracted T-
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to the minimum 

value in the finite 
window after S 

position

End

Fig. 4 Flow chart of feature wave location
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After all the character waves extracted, we get the fea-
ture vector consists of the time difference, amplitude, and 
heart rate extracted from ECG, show as Eq. (16).

where PQ represents the time difference (TTD) between 
the peak values (TPV) of P-wave and Q-wave, PR repre-
sents TTD between TPV of P-wave and R-wave, PS rep-
resents TTD between TPV of P-wave and S-wave, PT 
represents TTD between TPV of P-wave and T-wave, QR 
represents TTD between TPV of Q-wave and R-wave, QS 
represents TTD between TPV of Q-wave and S-wave, QT 
represents TTD between TPV of Q-wave and T-wave, 
RS represents TTD between TPV of R-wave and S-wave, 
RT represents TTD between TPV of R-wave and T-wave, 
ST represents TTD between TPV of S-wave and T-wave, 
ampP represents TPV of P-wave, ampQ represents TPV 
of Q-wave, ampR represents TPV of R-wave, ampS rep-
resents TPV of S-wave, ampT represents TPV of T-wave, 
H represents the heartbeat of ECG.

Through the above procedure, the feature of 30 sets 
of each type of ECG was extracted. Set the feature data 
of each type of ECG into two groups, and then combine 
each group as BPNN modeling training data set and test 
data set. Before modeling, the data normalized. Then 
the BPNN model of classifying AECG was established 
through the process of modeling by BPNN.

PSO‑BPNN model
PSO algorithm
PSO algorithm originated from the research on artificial 
intelligence and the hunting behavior of birds [45]. Based 
on the global search strategy of the population, the PSO 
algorithm is optimized through cooperation and compe-
tition among particles of many populations [46]. Nowa-
days, PSO has been widely used in many fields such as 
function optimization, image processing, prediction, 

and so on, due to its simple operation, fast convergence, 
and global optimization capability [47, 48]. The particle 
swarm optimization algorithm described as follows [49]:

(16)F = [PQ,PR,PS,PT ,QR,QS,QT ,RS,RT , ST , ampP, ampQ, ampR, ampS, ampT ,H ]

In an n-dimensional search space, m particles are form-
ing a population X = (X1,X2, . . . ,Xm)

T ,  the position of 
the   i-th particle is  Xi = (Xi1,Xi2, . . . ,Xin)

T , the  speed 

is Vi = (Vi1,Vi2, . . . ,Vin)
T ,  the individual extreme value 

is Pi = (Pi1,Pi2, . . . ,Pin)
T . The global extreme value of 

the population is Pg =
(

Pg1,Pg2, . . . ,Pgn
)T . After find-

ing the individual extreme value and the global extreme 
value, the particle updates its speed and position respec-
tively according to Eqs. (17) and (18).

where c1 and c2 both are non-negative constants, which 
are called learning factor, rand() is a random constant 
between (0,1), V k

id and Xk
id are the velocity and position 

values of particle i in the d dimension in the k-th iteration 
respectively, Pk

id is the position of the individual 
extremum of particle i in the d-dimension, Pk

gd is the 
position of the global extreme value of the group in the d 
dimension.

Initial weights and thresholds optimization of BPNN
In this study, we use the PSO algorithm with an intro-
duced speed adjustment factors to optimize the initial 
weight and threshold of BPNN and the conventional 
BP  neural network model. In this way, the optimized 
BPNN model will have both the global optimization 
ability of the PSO algorithm and the local search ability 
of the BP algorithm.

To accelerated convergence and balance the global 
velocity versus local velocity of the particle, introduce 
inertia weight w and shrinkage factor k into the above 
PSO algorithm. The particle updates its speed accord-
ing to Eq. (19)

And we use the newff function to create network 
objects:

(17)
V k+1
id = V k

id + c1rand()
(

Pk
id − Xk

id

)

+ c2rand()
(

Pk
gd − Xk

id

)

(18)Xk+1
id = Xk

id + V k
id

(19)
V k+1
id = k ·

[

wV k
id + c1rand( )

(

Pk
id − Xk

id

)

+ c2rand( )
(

Pk
gd − Xk

id

)]

k =
2

∣

∣

∣
2− ϕ −

√

ϕ2 − 4ϕ
∣

∣

∣

, ϕ = c1 + c2, ϕ ≥ 4

(20)net = newff
(

PR, [ S1 S2 · · · SN ],
{

TF1 TF2 · · · TFN
}

,BTF ,BLF ,PF
)
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where PR is R× 2 matrix to define the minimum and 
maximum values of R input vectors, Si express the num-
ber of layer i neurons, TFi is the transfer function of 
layer i , the default function is tansig, BTF  is the training 

function, the default function is trainlm function, while 
the traingdx function is more applicable to pattern clas-
sification, BLF  is the weight/threshold learning function, 
default function is the learngdm function, PF  is the per-
formance function, the  default function is the  MSE 
function. The training net and parameters are shown as 
follows:

net = newff(pr,[5, 16],{’tansig’ ’purelin’},’traingdx’,’lea
rngdm’),
pr(1:16,1) = − 1,
pr(1:16,2) = 1,
net.trainParam.epochs = 100,000,
net.trainParam.goal = 0.0002,
net.trainParam.lr = 0.0003,

The steps of the PSO algorithm optimizing the con-
ventional BPNN is shown in Fig.  5. According to the 
modeling process of BPNN, we adopt the same data 
set for PSO-BPNN modeling. The initial and training 
parameters that used in modeling as shown in Table 3. 

Fig. 5 The procedure of PSO algorithm optimizing BPNN

Table 3 The initial and training parameters

Parameters Numerical value Significance

indim 16 Number of input variables

hiddennum 5 Number of hidden unit

outdim 1 Number of output variables

vmax 1 Maximum velocity

minerr 0.0001 Minimum error

wmax 0.95 Maximum inertia weight

wmin 0.10 Minimum inertia weight

itermax 100 Maximum iteration number

c1 2.5 Local learning factor

c2 2.7 Global learning factor

k 0.37 Shrinkage factor

N 75 Number of particles

D2 116 Length of particle
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In this study, the fitness function of the PSO algo-
rithm selected the MSE of the test data set, as shown in 
Eq. (21):

where ̄ ŷi is a predictive sequence and yi is a sequence of 
true values.

Feature dimension reduction and impact 
on modeling analysis
PCA is one of the most widely used data dimen-
sion reduction algorithms. Its main idea is to map the 
N-dimensional feature to the K-dimension, which is a 
new orthogonal feature, known as the principal com-
ponent, and a re-constructed K-dimensional feature 
based on the original N-dimensional feature [50]. In 
this study, to reduce the computation and network 
complexity in classification, we used PCA to directly 
reduce the dimensions of each type of ECG heartbeat 
information to form the feature matrix. In theory, it 
is applicable to choose the dimension of accumulative 
contribution a > 85% [51]. To keep as much informa-
tion as possible, we choose the dimension of accumu-
lative contribution a > 85% and a > 99%. Then, use the 
left dimension containing nearly all the information 

(21)f (x) =
1

n

∑n

i=1

(

ŷi − yi
)2

to establish  a model by using BPNN and PSO-BPNN, 
and to analyze the impact on modeling.

Results
BPNN model validation and performance analysis
National Engineering Research Center for Health-
care Devices and The Guangdong Key Lab of Medical 
Electronic Instruments and Polymer Material Prod-
ucts were selected for experiments. The experiment 
was performed on Matlab2019b in the workstation 
(model: DELL 210-ANJK). To establish and evaluate 
a model, 30 heartbeats of feature data were collected 
for each of five different types of ECG  collected from 
the MIT-BIH arrhythmia database. That is, there are 
150 sets of extracted feature data. We use 75 sets of 
the extracted feature data to modeling, the last 75 for 
testing to validate the effects of the established model. 
When performing the experiments, we set different IDs 
to represent the five types of ECG, i.e., 1 represents Nb, 
2 represents Lbbb, 3 represents Rbbb, 4 represents Vpb, 
5 represents Apb. The results were shown in Fig.  6, in 
which the predicted value was round off.

To assess the accuracy of the BPNN model, we use 
Eq. (22) to evaluate.
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where X ′ represents the number of predicted value 
equal to the actual value, X represents the number of 
actual value. From the experiments, we can obtain the 
accuracy of the BPNN model is only 77.33%, lower than 
81% of using the convolutional neural network (CNN) 
[52]. The time spent is 1334 s. It is not meet the practi-
cal application demand.

PSO‑BPNN model validation and performance analysis
To evaluate the PSO-BPNN model and make it a com-
parison to the BPNN model, we used the same data and 
platform. The results were shown in Fig.  7. The accu-
racy of the PSO-BPNN model is up to 96%. The time 
has been reduced to 899 s. Even the accuracy meets the 
practical application demand, but the time is still too 
long to realize a real-time diagnosis.

Dimension reduction and impact on modeling analysis
The results of dimension reduction was shown in Table 4. 
We can see the when a > 99% , the feature dimension 
reduces to half part of the original feature dimension.

Therefore, to analysis the impact on modeling time, 
seven feature dimensions were selected for modeling 
by BPNN and PSO-BPNN, respectively. The results are 
shown in Figs. 8 and 9.

The accuracy of the BPNN model is up to 80% and 
the time spent to cut down to 91 s. The accuracy of the 
PSO-BPNN model is up to 97% and the time spent to cut 
down to 65 s.

(22)Acc =
X ′

X
× 100%

Discussion
In this study, through experiments on the same plat-
form with the same data, the PSO-BPNN model 
improves the accuracy and reduces the time cost, com-
pared with the BPNN model. It indicates that the PSO 
algorithm has made up the defect of BPNN, which is 
sensitive to the weight of the initial network and prone 
to a local minimum. However, the classification time is 
still too slow to meet the actual application. The main 
reason could be what scholars have found, that is train-
ing time of deep learning algorithms is too long [13, 37, 
38]. Except for the parameter adjustment and conver-
gence rate of the BP neural network, the data for mode-
ling always contained some information redundancy. In 
reality, too many inputs always complicate the model, 
which is also one reason to spend time more. To further 
study the reason and applicability of the PSO-BPNN 
model in classifying the arrhythmia. PCA, one of the 
feature dimension reduction algorithm was used. The 
reduced time and improved accuracy mean that data 
redundancy increases the complexity of the model. The 
PSO-BPNN model established in this study is suitable 
for ECG classification.

Table 4 Dimension reduction of different accumulative 
contribution rates of five types of ECG

a means the selected principal components can represent a× 100% of the 
original information

Accumulative 
contribution

Types The original 
feature 
dimension

feature dimension after 
PCA

Training data Test data

a > 85% Vpb 15 3 3

Rbbb 15 4 3

Nb 15 3 4

Apb 15 4 3

Lbbb 15 3 4

a > 99% Vpb 15 6 6

Rbbb 15 7 6

Nb 15 6 6

Apb 15 7 6

Lbbb 15 6 7
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Fig.8 ECG classification results of the BPNN model
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Several limitations still exist in this study. First of 
all, based on our results, future work will aim to estab-
lish data communication combined with more capable 
computer software to form a more complete, advanced, 
and simple operation. In the NN model, the study of the 
impact of the learning rate on the NNs has been insuf-
ficient. In general, if the learning rate is overly high, the 
learning process will be unstable. On the contrary, if the 
learning rate is too low, training will take an extended 
length of time. Secondly, the selection of the appropri-
ate learning rate is the next step in optimizing the NN. 
The classification precision and time are analyzed qual-
itatively according to the given error. In future work, 
more test data will be added for model training to 
obtain a more perfect, more accurate, and more rapid 
soft measurement model of ECG classification.

Conclusions
Algorithm selection has a significant impact on the accu-
racy of classifying results. This study employs wavelet 
transform combined with four operations and adap-
tive threshold method to perform filtering and feature 

extraction of ECG. Then, employ a BPNN algorithm for 
analysis and classification of ECG, for BPNN can make 
use of several optimization methods. To make up for 
its defect, the PSO optimization algorithm employed 
is extensive and expected to enhance prediction result 
accuracy, reduce errors incurred during experimentation 
owing to flawed model design, and hinder the final deter-
mination of ECG. The experiments manifest that the PSO 
optimized BPNN intelligent model indicating greater 
accuracy and better classification results than that of the 
conventional BPNN model.

Above all, to analyze the reason for a long time, PCA 
was adopted to minimize the feature dimension to 
re-evaluate the performance of the BPNN and PSO-
BPNN model. The results show that the PCA algorithm 
can effectively extract the key feature dimensions and 
minimize the complexity of modeling. The BPNN and 
PSO-BPNN intelligent classification model spent less 
classification time but with higher accuracy. The PSO-
BPNN intelligent classification model shows better 
effects compared with the BPNN model when identi-
fying the five types of ECG. In conclusion, the PSO-
BPNN intelligent classification model will be a suitable 
method to recognize ECG and provide a tool for the 
diagnosis of heart disease.
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