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Abstract 

Background: The misestimation of surgical risk is a serious threat to the lives of patients when implementing surgical 
risk calculator. Improving the accuracy of postoperative risk prediction has received much attention and many meth‑
ods have been proposed to cope with this problem in the past decades. However, those linear approaches are inable 
to capture the non‑linear interactions between risk factors, which have been proved to play an important role in the 
complex physiology of the human body, and thus may attenuate the performance of surgical risk calculators.

Methods: In this paper, we presented a new surgical risk calculator based on a non‑linear ensemble algorithm 
named Gradient Boosting Decision Tree (GBDT) model, and explored the corresponding pipeline to support it. In 
order to improve the practicability of our approach, we designed three different modes to deal with different data 
situations. Meanwhile, considering that one of the obstacles to clinical acceptance of surgical risk calculators was that 
the model was too complex to be used in practice, we reduced the number of input risk factors according to the 
importance of them in GBDT. In addition, we also built some baseline models and similar models to compare with our 
approach.

Results: The data we used was three‑year clinical data from Surgical Outcome Monitoring and Improvement 
Program (SOMIP) launched by the Hospital Authority of Hong Kong. In all experiments our approach shows excel‑
lent performance, among which the best result of area under curve (AUC), Hosmer–Lemeshow test ( HLĉ ) and brier 
score (BS) can reach 0.902, 7.398 and 0.047 respectively. After feature reduction, the best result of AUC, HLĉ and BS of 
our approach can still be maintained at 0.894, 7.638 and 0.060, respectively. In addition, we also performed multiple 
groups of comparative experiments. The results show that our approach has a stable advantage in each evaluation 
indicator.
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Background
In 2008, the United States Department of Health and 
Human Services (HSS) reviewed the medical records 
of hospital inpatients, and pointed out in the investiga-
tion report that 180,000 people died from medical errors 
in medical insurance patients alone [1]. In 2013, deaths 
caused by medical errors have become the third leading 
cause of death in the United States [2]. Among them, sur-
gery, as one of the most important treatment methods 
in modern healthcare, accounts for a large proportion 
of deaths due to medical errors caused by misestimation 
of surgical risks. According to statistics, more than 234 
million operations are performed every year around the 
world, but unfortunately, as many as 3% of these opera-
tions will bring bad results and cause 1 million deaths 
[3]. What is even more regrettable is that nearly half of 
them can be avoided or prevented [4]. Therefore, how 
to improve the accuracy of surgical risk prediction and 
reduce the number of surgical errors has become one of 
the urgent tasks of the current medical domain.

Surgical risk prediction is an important part of the 
clinical decision support system [5], which is of great 
significance for controlling surgical medical errors and 
ensuring the life safety of patients. An accurate surgical 
risk prediction system can not only help surgeons pro-
vide patients with better surgical options [6], better peri-
operative management [7], and potential opportunities to 
improve outcomes [8], but also help to minimize medical 
costs [7] and allocate medical resources reasonably [9].

However, establishing an accurate system to predict 
the risk of postoperative death remains an ongoing chal-
lenge [10]. Surgical risk calculator, as an important tool 
for doctors and patients to make joint decision on treat-
ment options [11], is a core idea to deal with it [12]. An 
ideal surgical risk calculator should be one that is simple, 
objective, reproducible, accurate [9], and learns knowl-
edge from patient data by using a series of empirical risk 
models to provide patients with surgical risk prediction 
results in a specific time period [13]. The results not only 
strengthen the communication between doctors and 
patients to help patients’ informed consent [14], but also 
provide doctors with better decision-making suggestions 
with patients’ specific information [15].

The research on methods of predicting and evaluat-
ing surgical risks has been going on since the 1960s. In 

1963, the American Society of Anaesthesiologists (ASA) 
grade was proposed [16] and widely used and developed, 
which is simple to use but too subjective [10]. Gold-
man et al. [17] used 9 preoperative variables to develop 
a cardiac risk index in 1977, and was revised by Lee et al. 
[18] in 1999 to reduce the number of variables to 6. In 
1981, the Acute Physiology and Chronic Health Evalu-
ation (APACHE) scoring system [19] was proposed to 
assess the severity of the disease and predict mortality by 
using data obtained within 24 hours after admission to 
the ICU. After that, APACHE was updated and revised 
three times [20–22], which improves the accuracy of pre-
diction but increase the burden of data collection [23], 
making it too complex to be considered suitable for gen-
eral surgery [10]. The Charlson index [24] proposed in 
1987 can predict the morbidity and mortality of patients 
in multiple different surgical cohorts by using preopera-
tive factors, but it lacks subjectivity in the evaluation of 
patient comorbidities [9]. POSSUM (Physiological and 
Operative Severity Score for the enUmeration of Mortal-
ity and morbidity), a physiological and surgical severity 
scoring system proposed by Copeland et al. [25] in 1991, 
integrated preoperative, intraoperative, and postopera-
tive factors (12 physiological indicators and 6 surgical 
measures) to improve the completeness of predictions. 
Prytherch et  al. believed that POSSUM has too high a 
prediction of the probability of low-risk patients dying 
within 30 days after surgery. Instead, they used the same 
variables to conduct linear analysis of the original POS-
SUM equation and proposed P-POSSUM (Portsmouth-
POSSUM) [26], which has been shown to have a more 
accurate mortality prediction [27]. However, some stud-
ies reported that the accuracy of P-POSSUM fluctu-
ates greatly [28]. In 2003, Prytherch et al. [29] proposed 
the Biochemistry and Haematology Outcome Model 
(BHOM), using fewer objective variables to predict post-
operative mortality. In 2008, the Hospital Authority of 
Hong Kong launched a Surgical Outcome Monitoring 
and Improvement Program (SOMIP), which estimates 
the survival risk of patients through statistical adjust-
ments to different preoperative factors [30], to annually 
audit the surgical performance of all public hospitals in 
the territory [31].

In 2013, the American College of Surgeons National 
Surgical Quality Improvement Program (ACS-NSQIP) 

Conclusions: The experimental results demonstrate that NL‑SRC can not only improve the accuracy of predicting the 
surgical risk of patients, but also effectively capture important risk factors and their interactions. Meanwhile, it also has 
excellent performance on the mixed data from multiple surgical fields.
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developed the first universal risk calculator in the United 
States [32] for improving the quality of surgical pro-
cedures and predicting surgical risk. NSQIP collected 
high-quality, standardized data from more than 1.4 mil-
lion operations performed in about 500 hospitals in 
the US [33], and then used logistic regression model to 
quantify and predict the surgical risk of patients within 
30 days [9]. Meanwhile, the database it used is constantly 
updated [15]. Although NSQIP is supported by a large 
and extensive database, its effectiveness in other surgi-
cal specialties has not been definitively verified, because 
it is derived from a specific risk calculator designed for 
patients undergoing colorectal surgery [32]. The risk cal-
culators develope on this data set also included the Surgi-
cal Risk Preoperative Assessment System (SUPPAS) [34], 
which provided 8 aspects of preoperative risk prediction 
of adverse postoperative outcomes within 30 days. ACS-
NSQIP exerted great influence since it was proposed and 
has been applied in many research fields [12, 35, 36]. As 
the research continues, more and more disease-specific 
risk assessment models or systems were developed and 
made great contribution, such as in the study of aneurys-
mal subarachnoid haemorrhage [37], radical cystectomy 
[38] and prostate biopsy [39]. At the same time, many 
portable simple risk calculators based on mobile devices 
have been developed [40] as well.

The risk calculators above are based on linear models 
with logistic regression as the core, and some research-
ers have tried to add non-linear models in them. In order 
to effectively explain the non-linear correlation between 
physiological factors and results, Johnson et al. [41] used 
a heuristic algorithm to select the minimal set of vari-
ables, called the Oxford Acute Severity of Illness Score 
(OASIS), to assess the severity of the patient’s condition. 
Savin et al. [42] identified the risk factors of Healthcare-
Associated Ventriculitis and Meningitis (HAVM) by tak-
ing the intersection of the variables screened by 5 linear 
and non-linear methods. Unfortunately, these two works 
only use non-linear methods in feature selection, but not 
in risk prediction.

Although all the models or systems mentioned above 
make outstanding contribution, they have one common 
limitation: the risk prediction model is linear. Despite the 
traditional methods based on linear models are simple in 
form, intuitive in the correlation between/among factors 
and easy to be explained by non-experts [41], there are 
also many disadvantages. Firstly, it requires variables to 
have some degree of correlations, and often require sub-
jective modeling decisions (e.g., which interaction items 
to include) [41]. Secondly, its sensitivity to data noise and 
multicollinearity may lead to misleading conclusions [43]. 
Thirdly, the learning ability of linear models is limited 
[44], so that most of the existing methods have already 

encountered the performance bottleneck and difficult to 
further improve the prediction accuracy [45]. Finally and 
most importantly, it is hardly for linear models to learn 
the high-dimensional non-linear correlations between/
among risk factors, which play more important roles in 
the complex physiological process of the human body 
[46]. At present, many studies have proved that the inter-
actions between/among factors can importantly affect 
the occurrence, development and prognosis of complex 
diseases [47–51], which is likely to be in a non-linear way 
rather than simply adding up [41]. Even though some 
linear methods can deal with non-linear interactions by 
adding high-dimensional cross product terms [52–54], 
the specification of the order of cross product terms and 
the relevant interpretation may be the practical difficulty 
for building the surgical risk calculator [55, 56]. There-
fore, predicting surgical risk based on a linear model does 
not conform to the fact that non-linear interactions dom-
inate in the actual physiological process, and it will lead 
to more serious performance bottleneck.

In this paper, we presented a non-linear surgical risk 
calculator (NL-SRC) for mixed data from multiple sur-
gical fields, in which the Gradient Boosting Decision 
Tree (GBDT) model is used to obtain accurate post-
operative risk prediction by capturing the non-linear 
interactions between/among risk factors. To the best of 
our knowledge, this study is the first one to apply it as 
a core prediction model for surgical risk. Therefore, the 
first innovation of this paper is to try to use a non-linear 
ensemble model to break through the performance bot-
tleneck of existing methods. However, it is difficult to 
achieve good results by simply using GBDT to predict 
the surgical risk on real surgical clinical data, because 
some characteristics of the data will make GBDT under-
fit and learn wrong knowledge, and thus lead to wrong 
conclusions. These characteristics mainly include: (1) 
mixed data types; (2) uneven quality of data from dif-
ferent hospitals and duplicate records and (3) missing 
values. Therefore, the second innovation of this paper is 
to design an applicable pipeline to cope with such chal-
lenges when constructing the risk calculator. We made 
many attempts and exploration on data preprocessing 
and missing value filling methods. Specifically, for char-
acteristic 1 and 2, we tried a variety of different risk fac-
tor combination strategies and data encoding methods, 
and finally determined a data preprocessing process 
suitable for GBDT that gives priority to categorical fea-
tures and performs global encoding; for characteristic 3, 
we tried many missing value filling methods, and finally 
chose the filling method similar to the missing value 
processing in XGBoost. In addition, considering that a 
surgical risk calculator must be practice-oriented, we 
also try to enhance the practicality of our approach by 



Page 4 of 19Liu et al. BMC Med Inform Decis Mak  2021, 21(Suppl 2):88

two ways. One is that we designed three different train-
ing modes to ensure users can flexibly choose the way to 
use our approach according to their own sample size, and 
the other one is that we screened out the important risk 
factors based on the feature importance of tree-model to 
reduce the complexity of GBDT and improve the practi-
cability of our approach. In order to prove the superior-
ity of our approach compared with baseline models and 
similar models, we also built multiple traditional mod-
els (logit, Support Vector Machines, Classification and 
Regression Tree) and similar ensemble models (Random 
Forest, XGBoost) for comparative experiments, among 
which the logit model is the most widely used baseline 
model in previous studies for surgical risk prediction [32, 
41, 57–60]. Experiments conducted on the three years 
(2010–2012) of real clinical data of SOMIP show that 
NL-SRC performs well in each training mode and out-
performs all other models. In addition, considering that 
one of the obstacles to clinical acceptance of surgical risk 
calculators is that models are too complex to be used in 
practice [61], we reduced the number of input risk factors 
according to the importance of them in GBDT. Subse-
quent experiments prove that our approach still obtains 
good results even after removing most of the risk factors. 
The results demonstrate that our approach has advan-
tages in all aspects. Finally, we also analyzed the selected 
risk factors and the interactions between/among them, 
whose results prove that our approach is reasonable.

Methods
Ensemble learning is a kind of algorithm that builds mul-
tiple base learners and combines the outcomes of them 
to perform learning tasks, which can be divided into the 
“bagging” algorithms (such as Random Forest) and the 
“boosting” algorithms (such as GBDT [62]). The boosting 
algorithm combines weak learners by performing multi-
ple iterations on the same data set to jointly build a strong 
learner [63]. As the representative algorithm of them, 
GBDT takes the regression tree model of Classification 
and Regression Tree (CART) [64] as the base learner, 
uses negative gradient as the approximate method of the 
steepest descent algorithm to optimize the loss func-
tion and fit the base learner, and finally integrates the 
trees with Gradient Boosting Machine (GBM) to build 
the model. Some works have pointed out that tree-based 
machine learning algorithms are effective methods to 
study surgical risk factors [42], and boosting-based meth-
ods have been applied in clinical medical research and 
have achieved excellent results [42, 65].

In this part, we will first brief the regression tree of 
CART, and then introduce the GBDT algorithm based 
on the restatement of the problem of surgical risk predic-
tion. After that, how to calculate the feature importance 

in tree models will be explained, and finally the main 
parts of the pipeline of our approach will be introduced.

The regression tree of CART 
Decision tree is a classic and widely used machine learn-
ing model, which represents a mapping between object 
properties and object values. In general, a decision tree 
contains a root node, several internal nodes, and several 
leaf nodes. The root node contains the entire samples. 
Each leaf node represents a decision result that contains 
samples of the same category. With the exception of leaf 
nodes, the samples contained in each other node will be 
divided into their respective child nodes according to the 
corresponding partition rules, thereby forming a com-
plete decision-making judgment path from root node 
to leaf nodes. The key of decision tree is how to choose 
the optimal split attribute. As the partition process pro-
gresses, we want the “purity” of the samples contained in 
branch nodes keep increasing, that is, to be in the same 
category as possible.

CART is a classic decision tree algorithm proposed 
by Breiman et.al [64] in 1984, two models, classification 
tree and regression tree, were designed for classification 
problems and regression problems, respectively. Since 
the base learner used by GBDT is the regression tree, we 
only introduced the basic principle of it here. Regression 
tree usually uses least squares deviation (LSD) or least 
absolute deviation (LAD) as the loss function. Here, we 
take LSD as an example to brief.

For a given data set { xi , yi}N1  , where xi is the i-th input 
data and yi is the corresponding label, that is, whether 
the patient died within 30 days after the surgury (death 
is 1, otherwise 0). As a recursive binary tree algorithm, 
regression tree partitions the data space into multiple 
subspaces (hereinafter referred to as “units”). Therefore, 
we assume that an initial regression tree model h(x) par-
titions the data space into M units, denoted as { Rm}N1  , the 
loss function on the m-th unit can be written as:

We hope to find an optimal mapping function h∗(x) 
that minimizes Eq.  1. It is easy to know that when 
h(xi | xi ∈ Rm) is equal to the mean of the actual values 
of all samples in Rm can achieve the target [64], that is, 
h(xi | xi ∈ Rm) = Cm = AVE(yi | xi ∈ Rm) . Then Eq.  1 
can be rewritten as Lm =

∑

xi∈Rm
(yi − Cm)

2.
After determining the basic form of the loss function, 

we can choose the optimal partition strategy for regres-
sion tree with the goal of minimizing it. Assuming that 
we take the risk factor v as the split attribute and a certain 
value s of it as the split point to split the original data set, 
two units and the mean values of them can be obtained:

(1)Lm =
∑

xi∈Rm

(yi − (h(xi))
2.
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Therefore, we traverse all risk factors and all the values 
of each risk factor to achieve the optimal partition of the 
sample set at this depth by finding out the combination 
(v, s) that minimizes the loss function, namely:

Suppose the optimal split combination obtained accord-
ing to Eq. 2 is (v∗, s∗) , the corresponding unit output value 
can be calculated as C∗

m = 1
Nm

∑

xi∈Rm(v∗,s∗)
yi,m = 1, 2 . 

The optimal regression tree mapping function can be 
obtained by repeating the above process on the sub-
units until the stop condition is satisfied, which is 
h∗(x) =

∑M
m=1 C

∗
m · I(x ∈ Rm).

Although decision tree algorithm has some advantages, 
its application range and effect are limited by its strong 
subjectivity and difficulty in solving the problems with 
large data volume or high complexity. Therefore, the 
ensemble algorithms based on decision tree was pro-
posed and widely used. Ensemble learning algorithms 
are useful tools for performing multiple prediction tasks 
and can provide greater accuracy than traditional single 
machine learning models consistently [66].

Gradient boosting decision tree algorithm
GBDT builds a new CART regression tree in each round 
of iteration and uses the negative gradient of the loss 
function to approximate the residual of the results in last 
iteration, and then fits the new tree built in this iteration 
by minimizing its loss function [44]. With the increase 
of the number of iterations, the residual generated in the 
training process will continuously decrease, the result 
thereby continuously approaching the true value.

Problem restatement based on gradient boosting
The purpose of machine learning is to maximize the 
reconstruction of unknown mapping relationships from 
data to results. To explain how GBM works clearly, we 
will start with a simple example [67]. Given a set of inde-
pendent data X , assuming that H0 is a model based on 
a decision tree that needs to be improved, and Y  is the 
corresponding label, it is easy to get Y = H0(X)+ error0 . 
We further fit a new decision tree model H1 to predict 
error0 by error0 = H1(X)+ error1 . Similarly, in each 
of the next steps, we predict the error of the last step in 
the same way, namely error2 = H2(X)+ error1, · · · · · · . 

R1(v, s) = {x | xv ≤ s}, R2(v, s) = {x | xv > s},

C1 = AVE(yi | xi ∈ R1(v, s)), C2 = AVE(yi | xi ∈ R2(v, s)).

(2)

min
v,s



min
C1

�

xi∈R1(v,s)

(yi − C1)
2 +min

C2

�

xi∈R2(v,s)

(yi − C2)
2



.

When the stop condition is satisfied, we combine all the 
obtained models:

Generally, the performance of Eq.  3 will be better than 
the initial H0 , because the residual of each step is paid 
attention to and fitted.

The above example is a simple explanation of the basic 
idea of GBM, and then we will give a specific introduc-
tion in theory. Using the same symbolic representation 
as before and suppose the optimal mapping function is 
f ∗(x) . Given the loss function �(y, f (x)) , our target can 
be expressed as:

Equation 4 can be rewritten into the form of expectation 
estimation [63]:

To make Eq. 5 tractable, we can restrict the search space 
of the mapping function to search optimal parameters 
[66] by f ∗(x) = f ∗(x, θ∗) . Rewrite Eq. 5 :

Adopt the addition model to combine base learners, 
given T iteration steps, the estimation of parameters can 
be written as θ∗ =

∑T
j=1 θ

∗
j  . The loss function on the 

given data set can be written as:

Assume that the function of the newly built base learner 
in each iteration can be expressed as h(x, θ) in the para-
metric form, according to the additive ensemble princi-
ple, the collapsed result of the previous t iterations can be 
expressed as:

where wj and θ j are the weight and parameters of the base 
learner in the j-th iteration, respectively. According to 
the forward distribution algorithm of a tree, Eq. 8 can be 

(3)Y = errorI +

I
∑

i=1

Hi(X).

(4)f ∗(x) = arg min
f (x)

�(y, f (x)).

(5)f ∗(x) = arg min
f (x)

Ex(Ey(�(y, f (x))) | x).

(6)θ
∗ = arg min

f (x)
Ex(Ey(�(y, f (x, θ))) | x).

(7)L(y, θ∗) =

N
∑

i=1

�(yi, f (xi, θ
∗)).

(8)ft(x, θ t) =

t
∑

j=1

N
∑

i=1

wjh(xi, θ j).
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rewritten as ft(x, θ t) = ft−1(x, θ t−1)+ wth(x, θ t) , thus 
minimizing the loss function can be equivalent to:

When the loss function is a function that is easy to obtain 
residual, the gradient descent algorithm can be used for 
fast and simple optimization. In practice, however, some 
specific or custom loss functions are difficult to make it. 
At this time, the negative gradient of loss function for 
each iteration can be regarded as an approximation of 
the residual of last iteration, and take minimizing it as the 
optimization target for the current iteration [66]. Then, 
integrate the outcomes of the base learners built before 
to achieve the effect of gradient boosting [63].

Using the same symbolic representation as before, 
according to Eqs. 6 and 7, the gradient of the loss func-
tion in the t-th iteration is:

In this case, the least-squares minimization can be used 
to replace the potentially very hard optimization task 
[66]. According to Eqs. 9 and 10, the optimization target 
for each iteration can be:

The process of GBDT
Building GBDT model is an iterative process. Combin-
ing the aforementioned CART regression tree and GBM, 
using the same symbolic representation as before, the 
main steps are as follows: 

Step 1 Initialize the model 
f0(x) = arg min

ρ

∑N
i=1�(yi, ρ) . In practice, without 

loss of generality, the mean value of {yi}N1  can be used 
instead of ρ , that is, f0(x) = ȳ.

Step 2 Calculate the gradient of initial loss function at 
each data, 
G1(xi) =

[

∂�(y,f1(xi))
∂f1(xi)

]

f1(xi)=f0(xi)
, i = 1, 2, . . . ,N .

Step 3 Use the negative gradient as the label to fit the 
base learner built in first iteration, 
θ1 = arg min

θ ,ρ

∑N
i=1[−G1(xi)+ βh(xi, θ)]

2 . When 

the base learner is the CART regression tree model, 
the fitting result can be recorded as 
{Rm,1}

M
1 = M − terminal node tree({xi,G1(xi)}

N
1 )  , 

(9)

(wt , θ t) = arg min
w,θ

N
∑

i=1

�(yi, ft−1(xi, θ t−1))+ wh(xi, θ).

(10)Gt(x) = Ey

[

∂�(y, f (x))

∂f (x)

]

f (x)=ft−1(x)

.

(wt , θ t) = arg min
w,θ

N
∑

i=1

[−Gt(xi)+ wh(xi, θ)]
2.

that is, which samples are contained in each leaf node 
of the first tree.

Step 4 With the target of minimizing the loss function 
of first iteration, find the optimal gradient descent 
step size, 
w1 = arg min

w

∑N
i=1�(yi, f0(xi)+ wh(xi, θ1)).

Step 5 Update the model f1(x) = f0(x)+ w1h(x, θ1) . 
Considering that the base learner is the CART 
regression tree model, it can be rewritten as 
f1(x) = f0(x)+

∑M
m=1 Cm,1 · I(x ∈ Rm,1) , where 

Cm,1 = AVE(−G1(xi) | xi ∈ Rm,1).
Step 6 Repeat Step 2 to Step 5 until the stop condition is 

satisfied, and then output the final results.

In Summary, the pseudocode of GBDT algorithm is 
shown in Fig. 1.

Feature importance
It should be noted that although “gini value” is not used 
in partitioning non-leaf nodes in the CART regression 
tree, we still use the gain of it to evaluate the importance 
of features, because it is more intuitive and easier to cal-
culate than the change of loss function. Specifically, the 
importance of a given attribute is evaluated by calculat-
ing its reduction in gini values before and after partition 
of all non-leaf nodes. The more the reduction is, the more 
important the attribute is. Adding up the importance of 
this attribute in all trees can obtain its importance in the 
GBDT model.

In formula form, given a non-leaf node k, its gini value 
Ginik = 1−

∑I
i=1 p

2
k,i , where pk ,i represents the propor-

tion of class i samples in node k, i = 1, 2, . . . , I . Ginik rep-
resents the probability that two samples are randomly 
selected from k with different category labels. Therefore, 
the smaller Ginik is, the higher the purity of k is.

Assume that node k is split by attribute c, and Ginikl 
and Ginikr represent the gini values of the left and 
right child nodes after splitting, respectively. Then the 
importance of attribute c at node k can be obtained as 
Vc,k = Ginik − Ginikl − Ginikr . If node k is not split by 
attribute c, Vc,k = 0 . Thus, the importance of attribute c 
in the whole tree can be calculated by Vc =

∑K
k=1 Vc,k , 

where K is the number of non-leaf nodes in the tree. 
Then, summing Vc of each tree can obtain overall feature 
importance of attribute c in the whole GBDT model.

Approach of this paper
In this paper, we presented a new surgical risk calcula-
tor based on GBDT named NL-SRC, trying to accurately 
predict the surgical risk of patients by capturing the non-
linear interactions between/among various risk factors. 
At the same time, in order to accomplish the task well, we 
also explored the corresponding pipeline for supporting 
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it. In this part, we will introduce these contents from the 
following main aspects: (1) data preprocessing, (2) miss-
ing value filling, (3) parameter adjustment, (4) training 
mode design, and for simplifying the model by (5) feature 
dimension reduction. It is worth noting that although 
these contents are introduced separately in order to 
make them clear and organized, in practice they are 

interrelated and interacted with each other, which was be 
comprehensively considered in our study of the pipeline.

Data preprocessing
Generally, the real clinical data collected from hospitals 
is a mixture of numerical data and categorical data, and 
there are often repeated records of different data types 

Fig. 1 The pseudocode of GBDT algorithm
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for the same risk factor. For example, a patient’s white 
blood cell count (WBC) could have both a numerical 
record of “ 27× 109/L ” and a categorical record of “H” 
(High), where the former is the quantitative value actu-
ally measured, and the latter is the qualitative evaluation 
made by doctors or experts based on their own knowl-
edge. In addition, there will also be some irrelevant 
document records (such as admission information and 
hospital information). Therefore, the clinical data should 
be preprocessed first.

We first deleted the factors that were extraneous or 
had the same value in all patients. Then, for the risk fac-
tors with duplicate records, we tried three different data 
combination schemes: all variables, numerical variables 
mainly and categorical variables mainly. Among them, 
the best effect was to give priority to categorical varia-
bles. Therefore, we retained the qualitative form in dupli-
cate records and deleted redundant data. After that, we 
coded the factors of category type, mainly following three 
principles: 

1 Each value of a factor should be coded. For exam-
ple, if factor A had four values (A1, A2, A3, A4) , they 
would be coded as (1, 2, 3, 4);

2 For factors whose values represented the degree of 
severity, coded them in order from low to high. For 
example, there were three values of urea level: nor-
mal (N), high (H) and very high (V), so we coded N as 
1, H as 2 and V as 3;

3 For cases where the same value had the same mean-
ing in different factors, coded them in the same cod-
ing order, such as all factors that responded with Yes 
and No.

Missing values filling
For missing values, we tried some methods to fill them, 
such as mean/mode/median value, interpolation, KNN 
(K-Nearest Neighbor)-based algorithm and MissForest 
algorithm, but all with little success. Finally we referred 
to the missing value treatment method in [68]. The sam-
ples that were not missing on the given risk factor were 
used to find out the split point, then we put the samples 
with missing into two child nodes and calculated the 
gains respectively, the direction with larger gain would be 
selected to split them.

Parameters adjustment
The method of parameter adjustment we used was multi-
level grid search: 

Step 1 Set a value range for each parameter;

Step 2 Selected a small number of parameters and put 
them into a set. For a given parameter in the set, tra-
versed all the values of it under the condition that 
other parameters in the set were fixed. Then selected 
the value with the best result for the given parameter;

Step 3 Repeated Step 2 for each parameter in that set 
until all parameters obtained their own optimal 
value;

Step 4 Emptied the set and selected some new param-
eters to put in, then repeated Step 2 and Step 3, note 
that the same parameter couldn’t be selected in twice;

Step 5 Repeated Step 2, Step 3 and Step 4 until all 
parameters were optimized.

Training modes design
In order to improve the practicability of our approach, we 
set up three modes to train the model, making users can 
flexibly adjust the way to use according to their own data 
conditions: (1) the cross-validation mode was suitable 
for the case with a small amount of data; (2) 2:1 mode, 
that is, the training set and the test set were divided at a 
ratio of 2:1, which was suitable for general situations; (3) 
1:2 mode, that is, the training set and the test set were 
divided at a ratio of 1:2, which was suitable for situations 
where the amount of data was large and could be flexibly 
allocated and combined.

The first two modes are common and easy to under-
stand, and here we will explain the reason for setting 
training mode 3. In the field of medical risk prediction 
research, three widely recognized evaluation indicators 
are generally used to comprehensively evaluate the per-
formance of a surgical risk calculator: area under curve 
(AUC), Hosmer–Lemeshow test ( HLĉ ) and brier score 
(BS) [13], where AUC is used to measure the discrimina-
tion power of the model, and the remaining two are used 
to measure the degree of calibration. AUC is one of the 
most common evaluation indicators in various studies, so 
we will not introduce it in this paper. BS, which examines 
the overall deviation between the predicted values and 
the labels from the perspective of the mean, is calculated 
as BS = 1

N

∑N
n=1(En −On)

2 , where N is the number of 
samples, En and On are the predicted value and the label 
value of the sample n, respectively. On this basis, there 
are two main reasons for continuing to use HLĉ for evalu-
ation: on the one hand, HLĉ can test the significance of 
this deviation; on the other hand, its sensitivity to the 
number of samples can help people understand whether 
the true performance of a method is robust. This is some-
thing that the indicators such as AUC and BS, which 
are relatively stable under different sample sizes, do not 
possess.
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Different from taking the mean, HLĉ examines the cali-
bration of a method by grouping and accumulating the 
deviations of each group. After obtaining the predicted 
values in the probabilistic form of the model, all pre-
dicted values will be ranked in the order from small to 
large and divided into 10 groups of equal quantity. Mean-
while, the corresponding label values will also be put into 
10 groups. Then, HLĉ can be calculated by the following 
formula:

where G is is the number of groups, Og , Eg , Ng , πg are 
the sum of label values, the sum of predicted values, the 
number of samples and the mean of predicted values in 
group g, respectively.
HLĉ reflects the degree of deviation of the predicted 

values from the label values, so the smaller the HLĉ , the 
higher the fitting degree of the two, and the better the 
performance of the model. From Eq. 11, it is not difficult 
to find that HLĉ accumulates the deviation between the 
predicted value of each sample and its label. Since prob-
ability prediction methods rarely get results such as 0 
and 1, this deviation is common and will accumulate as 
the sample size increases, thereby resulting in poor HLĉ 
performance. This characteristic makes HLĉ an indicator 
that is very sensitive to the number of samples, generally 
the larger the number of samples included, the worse the 
performance of HLĉ.

Therefore, in conclusion, a surgical risk calculator 
that can maintain excellent HLĉ performance even with 
a large sample size can be considered truly accurate and 
effective. That’s why we set training mode 3 to evaluate 
the real performance and robustness of our approach.

Feature dimension reduction
Considering that a risk prediction system collecting large 
amounts of physiological data was not only difficult to 
use in practice [41], but also reduced the willingness of 
doctors to use it [61], so we calculated the feature impor-
tance of each risk factor in NL-SRC and ranked them in 
terms of importance from high to low. How to calculate 
the feature importance of risk factors has been explained 
in the part of Feature Importance. Then, we took the top-
15 factors to construct new input data and repeated the 
same training and testing process on it with the same 
parameters as we did on the original data.

Results and discussion
The data we used were three-year (2010, 2011, 2012) 
clinical data from SOMIP [31] launched by the Hospi-
tal Authority of Hong Kong, including more than 15,000 

(11)HLĉ =

G
∑

g=1

(Og − Eg )
2

Ngπg (1− πg )
,

cases, 116 risk factors and survival of them within 30 
days after surgery. The names and brief information of 
some risk factors are listed in the tables in the section 
“Appendix”. We don’t list all of them due to limited space, 
more detailed information can be found in the official 
reports of SOMIP [69–71]. Our input data was a matrix 
of cases and risk factors, where each row represented a 
case requiring surgery, and each column represented a 
risk factor, such as age, smoking status and so on. The 
label reflects to the survival status of each patient within 
30 days after the surgery, the death is recorded as 1, oth-
erwise as 0. It is important to note that SOMIP is not a 
data set for patients with a specific disease but a highly 
comprehensive surgical data set, which includes all Hos-
pital Authority patients undergoing major/ultra-major 
procedures in general surgery, urology, plastic surgery 
and so on [72].

Our experiments were performed in Python3.7 using 
LightGBM package of Microsoft, and the data we used 
has been desensitized to delete any data features that 
might reproduce the patient’s personal information, and 
does not involve human genetic resource data.

Results of our approach
We first preprocessed and coded the original data using 
the steps described before, and finally got 66 risk fac-
tors with mixed data types. We studied the results of our 
approach under the three different training modes preset. 
Specifically, (1) we used 6-fold and 10-fold cross-valida-
tion to perform training mode 1, (2) the data of the previ-
ous two years was used as the training set and the rest as 
the test set to perform training mode 2, (3) the first one 
year of data was used as the training set and the rest as 
the test set to perform training mode 3. In addition to our 
approach, we also built five other models for compara-
tive experiments under the three modes. Among them, 
the logit model is the most widely used model for surgical 
risk prediction [32, 41, 57–60], so we regarded it as the 
most important baseline model to compare and put more 
attention on its results. Support Vector Machines (SVM) 
and CART are classic models that are often used in many 
research fields, and we used them as baseline models to 
explore the information of baseline values of the evalua-
tion indicators. The remaining two models, Random For-
est (RF) and XGBoost, just like the core model GBDT of 
our approach, are ensemble algorithms based on the tree 
model, so we use them as representatives of similar mod-
els to test whether our approach is superior. With the 
bold ones being the best under each evaluation indicator 
respectively, Table  1 shows the results of our approach 
and three baseline models when using all 66 risk factors, 
and the results of similar models are shown in Table 2. It 
is worth noting that we have adjusted the parameters of 
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all the models we used to ensure that they can achieve 
their best performance.

In evaluating the performance of models, AUC is used 
to assess the discrimination power of the model and 
the higher AUC value indicates better performance; BS 
and HLĉ are employed to measure the calibration of the 
prediction, or called as the goodness of fit, and smaller 
values suggest better prediction. The p-value of HLĉ is 
used to judge whether deviation between predicted val-
ues and obvserved ones is significant or not. Therefore, 
the p-value larger than 0.05 indicates that the model 

prediction is acceptable and the greater p-value suggests 
better calibration.

From Table  1, it could be observed that the optimal 
results (the parts are in bold in Table 1) are all obtained 
by our approach: the best AUC is obtained under mode 
2, which is 0.902; the best BS is obtained under mode 3, 
which is 0.047; the best HLĉ and the corresponding best 
P-value are obtained under mode 1 with 10-fold cross-
validation, which are 7.398 and 0.494, respectively. In 
contrast, the best results of the logit model on the four 
evaluation indicators are 0.890, 0.059, 12.427 and 0.133, 

Table 1 Results of baseline models with all risk factors

Models AUC BS HLĉ P‑value

Training mode 1 (10‑fold cross validation) NL‑SRC 0.899 0.062 7.398 0.494

logit 0.884 0.065 14.196 0.077

CART 0.842 0.071 24.850 0.002

SVM 0.866 0.065 27.490 <0.001

Training mode 1 (6‑fold cross validation) NL‑SRC 0.897 0.062 8.798 0.360

logit 0.883 0.065 13.879 0.085

CART 0.826 0.070 16.848 0.031

SVM 0.865 0.064 26.793 <0.001

Training mode 2 NL‑SRC 0.902 0.058 8.391 0.396

logit 0.890 0.059 12.427 0.133

CART 0.853 0.065 11.321 0.184

SVM 0.873 0.059 10.363 0.240

Training mode 3 NL‑SRC 0.872 0.047 15.232 0.055

logit 0.875 0.066 90.989 <0.001

CART 0.781 0.077 12.146 0.145

SVM 0.851 0.068 95.817 <0.001

Table 2 Results of similar models with all risk factors

Models AUC BS HLĉ P‑value

Training mode 1 (10‑fold cross validation) NL‑SRC 0.899 0.062 7.398 0.494

logit 0.884 0.065 14.196 0.077

RF 0.885 0.064 10.426 0.236

XGBoost 0.895 0.062 13.026 0.111

Training mode 1 (6‑fold cross validation) NL‑SRC 0.897 0.062 8.798 0.360

logit 0.883 0.065 13.879 0.085

RF 0.885 0.064 12.818 0.118

XGBoost 0.896 0.063 10.968 0.204

Training mode 2 NL‑SRC 0.902 0.058 8.391 0.396

logit 0.890 0.059 12.427 0.133

RF 0.892 0.058 14.226 0.058

XGBoost 0.900 0.056 9.439 0.306

Training mode 3 NL‑SRC 0.872 0.047 15.232 0.055

logit 0.875 0.066 90.989 <0.001

RF 0.879 0.067 11.522 0.174

XGBoost 0.886 0.067 27.285 <0.001
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respectively. Apparently, our approach is better than the 
logit model overall. Meanwhile, even if we separately 
focus on the results in each mode in Table 1, it is not dif-
ficult to see that our approach is still better. In both mode 
1 and mode 2, NL-SRC outperforms the logit model on 
all four evaluation indicators, especially in the aspect of 
calibration degree with significant advantages, which 
are 7.398 versus 14.196 and 8.798 versus 13.879, respec-
tively. In mode 3, although the AUC of NL-SRC is slightly 
worse, the performance of HLĉ is far better than the logit 
model (15.232 vs 90.989). In addition, we can see that as 
the number of samples included in the test set increases 
(1530, 2550, 5213, 10280), the HLĉ of NL-SRC and the 
HLĉ of the logit model rise from 7.398 to 15.232 and from 
14.196 to 90.989, respectively. The downward trend con-
firms the characteristics of HLĉ what we said before and 
reflects the need of different modes for investigation.

As for SVM and CART, although they are very classic 
algorithms, they have not been widely used in surgical 
risk prediction, mainly because their effects in this field 
are relatively limited, which is consistent with the con-
tents shown in Table 1. Their best AUC is only 0.873, and 
BS also tends to be higher. Despite in some cases they 
can show better HLĉ than the logit model (for example, 
in mode 2), they are still generally inferior and therefore 
not as good as our approach. However, if we focus on the 
results of CART, it is easy to find that although its AUCs 
are not so high, HLĉ s almost always maintain a passable 
performance (10-fold: 24.850, 6-fold: 16.848, mode 2: 
11.321, mode 3: 12.146), even better than the traditional 
logit model in some cases (for example, in mode 2 and 
mode 3). We think that this implies the potential of tree 
models in the field of surgical risk prediction, and the 
key to stimulating this potential lies in how to improve 
its prediction accuracy through some methods. This is 
exactly what the original intention of ensemble idea was 
proposed for, and the results in Table  2 also prove this 
point.

Table  2 shows the experimental results of the logit 
model and three ensemble models (our approach, RF 
and XGBoost). It is easy to see that the four evaluation 
indicators of the tree models using the ensemble idea are 
almost better than the logit model in each mode. This not 
only proves that the non-linear approaches have more 
advantages in surgical risk prediction, but also illustrates 
that simplistic models are difficult to solve practical prob-
lems in complex systems such as the human physiological 
environment. The best results of RF (AUC: 0.892, HLĉ : 
10.426, BS: 0.058, P-value: 0.236) and the best results of 
XGBoost (AUC: 0.900, HLĉ : 9.439, BS: 0.056, P-value: 
0.306) are all worse than the best results of our approach 
(AUC: 0.902, HLĉ : 8.391, BS: 0.047, P-value: 0.396). If we 
pay attention to the results in each mode separately, we 

can find that our approach is only slightly inferior to RF 
in mode 3 (AUC: 0.872 vs 0.879, HLĉ : 15.232 vs 11.522), 
and overall is better than the above two models in other 
cases. This proves that our approach also has some 
advantages in similar models. We think that the reasons 
for this situation may be that the performance of RF on 
regression problems is relatively limited, and the node 
splitting method of XGBoost limits its ability to capture 
abundant non-linear interactions.

In order to make approaches more practical, we cal-
culated the feature importance of all risk factors and 
selected the top-15 to construct new data sets for fur-
ther study. It is worth noting that, except for SVM, we 
did not adopt a unified top-15 risk factors, but let each 
model choose important factors for itself. Specifically, 
the logit model selected factors by the absolute value of 
the weight of each factor, and CART, RF, XGB and our 
approach used the feature importance to select. Because 
it is difficult for SVM to judge the importance of features 
through the model itself, we used the top-15 risk factors 
selected by our approach as its input features. Figure  2 
shows the top-15 most important risk factors selected by 
our approach under mode 2. The Y-axis in Fig. 2 repre-
sents the names of the selected factors, the X-axis rep-
resents the feature importance of them, and the number 
following each histogram is the specific value of the 
feature importance of each factor. The larger the value, 
the more important the factor. The calculation method 
of these values has been introduced in the part Fea-
ture importance of Methods, that is, one factor’s feature 
importance equals to the total reduction of gini values 
caused by the nodes that use the it to implement splitting 
in the model. Then, similarly, we examined the perfor-
mance of our approach and the above five models in the 
three modes on the new data sets. Tables 3 and 4 show 
the results of baseline models and the results of similar 
models, respectively.

In Table 3, the global optimal results (the parts are in 
bold in Table 3) are all obtained by NL-SRC under mode 
2, and the AUC, BS, HLĉ , and P-values are 0.894, 0.060, 
7.638 and 0.470, respectively. Correspondingly, the best 
results of the logit model are 0.867, 0.065, 13.561, 0.094 
respectively, which is obviously not as good as our 
approach. And in this batch of experiments, the logit 
model underperforms on the all four evaluation indica-
tors under each mode, and the advantages of NL-SRC in 
the calibration degree are still very strong. In addition, it 
can be seen that the increase in the number of samples in 
the test set still leads to a certain degree of decline in the 
performance of HLĉ , where the HLĉ of NL-SRC and the 
HLĉ of the logit model rise from 8.082 to 17.062 and from 
13.561 to 75.033 respectively. Therefore, it is very neces-
sary to use a large sample volume to test the true effect 
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of a surgical risk calculator. On the other hand, it can 
be found that the results in Table  3 are generally worse 
than the results in Table 1, we believe that there should 
be a strong relationship between the reason for that and 
the high comprehensiveness of the SOMIP data set. As 
we mentioned before, this data set contains surgical data 
from many different surgical fields, and the same risk fac-
tor may vary in significance from surgery to surgery. One 
risk factor will play a key role in some specific types of 
surgery, in aggregate it may not so important. Therefore, 
in this data set, each risk factor more or less contributes 

to the final results, and deleting some of them will inevi-
tably have some negative impact. That’s why the results 
in Table 3 decline compared to Table 1. Nevertheless, the 
results are still better than the logit model in all aspects.

As for SVM and CART, the feature dimension reduc-
tion also has a significant negative impact on their 
results. The performance of the four evaluation indica-
tors has consistently declined, especially the HLĉ level of 
SVM, which even rise to 97.202 at the worst. The conclu-
sions drawn under such performance will be difficult to 
persuade. In general, their performance is inferior to the 

Fig. 2 Top‑15 most important risk factors and their feature importance

Table 3 Results of baseline models with top‑15 risk factors

Models AUC BS HL ˆvarvecc P‑value

Training mode 1 (10‑fold cross validation) NL‑SRC 0.892 0.063 8.082 0.426

logit 0.864 0.068 13.561 0.094

CART 0.841 0.069 25.614 0.001

SVM 0.818 0.069 64.247 <0.001

Training mode 1 (6‑fold cross validation) NL‑SRC 0.890 0.064 9.753 0.283

logit 0.867 0.068 14.603 0.067

CART 0.825 0.071 20.643 0.008

SVM 0.820 0.071 55.271 <0.001

Training mode 2 NL‑SRC 0.894 0.060 7.638 0.470

logit 0.861 0.065 31.460 <0.001

CART 0.856 0.064 16.088 0.041

SVM 0.827 0.072 97.202 <0.001

Training mode 3 NL‑SRC 0.869 0.066 17.062 0.030

logit 0.863 0.067 75.033 <0.001

CART 0.745 0.079 14.266 0.075

SVM 0.856 0.071 72.822 <0.001
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logit model and therefore not as good as our approach. 
In contrast, the results of our approach are more stable, 
with the same decline but smaller magnitude, and still 
provide compelling information for doctors and patients. 
In addition, like the results in Table 1, CART still main-
tains a relatively stable and passable HLĉ performance 
(10-fold: 25.614, 6-fold: 20.643, mode 2: 16.088, mode 3: 
14.266), and still surpasses the traditional logit model in 
mode 2 and mode 3 (16.088 vs 31.460, 14.266 vs 75.033). 
This once again proves the potential of tree models in the 
research of surgical risk prediction.

Table  4 shows the experimental results of the logit 
model, RF, XGBoost and our approach under top-15 
risk factors. The best performance also comes from the 
results of our approach under mode 2, which is better 
than other models in all four evaluation indicators, and 
still maintains a clear advantage in HLĉ performance, 
especially in mode 3 which represents a large sample size 
(17.062 vs 75.033/41.323/67.251). This shows that our 
approach has higher superiority in similar models. At the 
same time, even though the input features are reduced by 
more than 70%, our approach still holds a certain degree 
of stability, and the magnitude of decline is significantly 
smaller than the other three models, which proves that 
our approach not only has a truly excellent ability to 
predict surgical risk, but also has strong robustness. On 
the other hand, even when the input features are greatly 
reduced and the overall effect of each model has declined 
to a certain extent, from Table  4 we can still draw the 
conclusion similar to it in Table 2, that is, the results of 
the three ensemble models are almost still better than the 
logit model in each mode. This further demonstrates our 

idea: simplistic models are difficult to solve the practical 
problems of complex human physiological systems, and 
the performance of non-linear models will be better than 
linear models to a certain extent.

Analysis of selected risk factors
After comparing with the important risk factors listed in 
the reports of SOMIP [69–71], we found that the factors 
we selected under mode 2, which are shown in Fig. 2, had 
a high degree of overlap with them. In our top-15, only 
two factors, max complexity score and base exceed level, 
are important in our research but not in the previous 
reports.

However, some research have shown that the two fac-
tors are closely related to the postoperative survival of 
patients. Max complexity score is the maximum of all 
the scores given by multiple experts for the complex-
ity of a given surgery. Surgery of different complexity 
brings different degrees of postoperative risk. For exam-
ple, although Whipple operation and appendectomy both 
represent gastrointestinal operations, the postoperative 
mortality rate of former is significantly higher than lat-
ter [73]. Calvete et al. [74] studied severe trauma patients 
who received surgical treatment in the ICU, and found 
that base exceed level has significant differences between 
survivors and non-survivors. Therefore, although the risk 
factors we selected differ somewhat from the reports of 
SOMIP, there is no doubt that they all play an important 
role in postoperative risk estimation.

On the other hand, except magnitude revised, which 
is a summary of the severity adjusted for each individual 
patient, the overlap between the risk factors we selected 

Table 4 Results of similar models with top‑15 risk factors

Models AUC BS HL ˆvarvecc P‑value

Training mode 1 (10‑fold cross validation) NL‑SRC 0.892 0.063 8.082 0.426

logit 0.864 0.068 13.561 0.094

RF 0.881 0.066 12.281 0.139

XGBoost 0.887 0.064 12.358 0.136

Training mode 1 (6‑fold cross validation) NL‑SRC 0.890 0.064 9.753 0.283

logit 0.867 0.068 14.603 0.067

RF 0.882 0.066 13.372 0.100

XGBoost 0.885 0.065 11.726 0.164

Training mode 2 NL‑SRC 0.894 0.060 7.638 0.470

logit 0.861 0.065 31.460 <0.001

RF 0.886 0.061 14.022 0.081

XGBoost 0.882 0.061 9.740 0.284

Training mode 3 NL‑SRC 0.869 0.066 17.062 0.030

logit 0.863 0.067 75.033 <0.001

RF 0.864 0.069 41.323 <0.001

XGBoost 0.874 0.069 67.251 <0.001
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and those listed in the reports also shows correlation 
with surgical risk. Age, dyspnea and functional health 
status are the important causes of bad surgical results 
in elderly patients with hip fractures [75]; WBC is asso-
ciated with the occurrence of urosepsis which can easily 
develop into septic shock and lead to death during intra- 
and post-operative period [76]; urea level is related to the 
mortality of obturator hernia surgery [77]; Alshayeb et al. 
[78] reported that there is a strong association between 
the rate of correction of hypernatremia (high blood 
sodium level) and outcome; Gupta et  al. [79] believed 
that ASA status is an independent predictor of surgical 
risk for multiple surgical sub-specialties; the multivariate 
analysis of [47] determined that hypoproteinemia (low 
serum albumin level) is an independent influencing fac-
tor for the risk of emergency surgery in elderly patients; 
Hu et al. [48] studied 716 patients with gastric cancer and 
found that lymph node metastasis (the most common 
way to metastasize of disseminated cancer) is associated 
with postoperative mortality; hypertension (high pulse 
level) is one of the causes of stroke after cardiac surgery 
[49], which is significantly related to postoperative mor-
tality [80]; Brauer et.al [81] believed that paying attention 
to neurological complications (neurological status) is of 
great significance for improving the outcome of patients 
with acute stroke and reducing medical costs; anaplas-
tic lymphoma kinase (ALK) is a very important and key 
driver gene in non-small cell lung cancer [82], and can-
cers caused by activation of ALK by fusion with other 
genes are generally highly susceptible to targeted therapy 
[83], so it has an important impact on the prognosis of 
treatment.

Analysis of the interactions between/among risk factors
In order to examine whether our approach really cap-
tured the non-linear interactions between/among mul-
tiple risk factors, we randomly chose ten trees in the 

GBDT model trained with top-15 risk factors in mode 
2 and visualized them to analyze their correlations. 
Here we will take the 169th tree in the GBDT model 
obtained by our approach under top-15 risk factors as 
an example for analysis, and Fig. 3 shows the visualiza-
tion result of it. In Fig. 3, each box represents a node. 
The boxes that contain the information of the splitting 
attribute and splitting points represent the root node 
and the intermediate nodes, and the others who con-
tain the information of their own node serial numbers 
and node values are the leaf nodes. The node values, 
marked as “leaf value” in Fig. 3, is the regression results 
of this tree before sigmoid conversion, so it has both 
positive and negative values. The directed lines from 
the left nodes to the right nodes indicate the splitting 
direction of parent nodes, and the labels next to these 
lines represent the Boolean relationships between child 
nodes and splitting conditions, that is, if a sample meets 
the splitting condition of a parent node, then it will be 
divided into the child node pointed by the directed line 
with the label “Yes”, otherwise it will go to the child 
node pointed by the directed line with the label “No”. 
For example, if the “Max Complexity Score” of a sample 
belongs to the set [11, 13, 14, 17, 19, 22, 23, 27, 29, 30, 
31, 32, 33, 36, 40, 54], the coded value of “age” belongs 
to the set [2,5,9], and the coded value of “urea” is equal 
to 3, then it will be divided into Leaf 1 (that is, the leaf 
node with “leaf index” 1). This splitting process is actu-
ally the decision path at the top of Fig. 3.

It is worth noting that GBDT obtained the final result 
by adding the results of each tree through the principle 
of addition, so the result of each tree is incomplete from 
the overall point, just a fit to its residuals of last iteration. 
Therefore, although checking the interactions captured in 
each tree is reasonable, it is not possible to evaluate the 
effect of the entire model based on the result of a certain 
tree alone or to use only one tree for prediction.

Fig. 3 The visualization of the 169th tree with top‑15 risk factors under mode 2
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In Fig. 3, each decision path actually represents some 
certain non-linear interactions between/among all 
the splitting attributes involved. Just like the example 
of Leaf 1, in the process from the root node to Leaf 1, 
there must be some mutual influences between/among 
the splitting attributes involved in it (“Max Complex-
ity Score”, “age” and “urea”) around the splitting points. 
Therefore models can separate eligible samples from 
other samples by learning them. These mutual influ-
ences are actually the interactions between/among 
risk factors, which will be represented in a non-linear 
form in GBDT. Most of the interactions in Fig. 3 have 
some results of relevant research that can be used as 
supporting evidence. In general, age has a broad and 
important influence on surgical risk, on the other 
hand the more complicated the surgery is, the higher 
the risk is. Kongwibulwut et  al. [47] believed that the 
surgery for elderly patients often has greater surgical 
complexity, which constitutes a part of the common 
cause of death after surgery; Hu et al. [48] found both 
age and the square of age have an important impact on 
the prognosis of gastric cancer surgery, and reported 
that there is an interaction between the type of sur-
gery and the size of the tumor, where the latter is pro-
foundly associated to higher lymph node and distant 
metastasis rate [84]; Bucerius et  al. [80] and Arnan 
et al. [49] respectively reported the impact of age and 
increased postoperative blood urea nitrogen (BUN) on 
the risk of stroke after cardiac surgery, we think that 
preoperative BUN may also have potential influence 
on it although there is still no conclusion yet; Yoo et al. 
[85] and Formiga et al. [50] pointed out that WBC and 
BUN are common laboratory indicators of hypona-
tremia, which, together with age and hypertension, is 
an important risk factor for the prognosis of patients 
with heart failure [85]; Nasr et  al. [51] developed the 
Pediatric Risk Assessment score for non-cardiac sur-
gery with important parameters including but not lim-
ited to the age of the patient, the presence of cancers, 
the status of surgery and the presence of at least one 
comorbidity (such as neurological or hematological 
diseases), which has shown high accuracy in the inter-
nal validation in a large cohort [86].

The results of the above studies cover most of the 
interactions in Fig. 3, leaving a few that have not been 
supported by relevant research. The reason for its 
appearance may be that our knowledge is limited, or 
there is some potential connection but not clear yet, or 
simply because of the incompleteness of a single tree. 
Nevertheless and on the whole, our approach does 
capture the non-linear interactions between/among 
risk factors effectively.

Conclusions
In this paper, in view of the limitation of existing methods 
that cannot capture the non-linear interaction between/
among risk factors and have encountered the bottleneck 
of performance, we presented a non-linear surgical risk 
calculator (NL-SRC) that pioneered the combination of a 
non-linear ensemble model and surgical risk prediction, 
and creatively designed an applicable pipeline to give full 
play to the advantages of GBDT for the characteristics of 
clinical surgery data. In order to improve the practicality 
of our approach, we not only set up three different appli-
cation modes to ensure that users can flexibly adjust the 
way to apply according to their own data conditions, but 
also increase the willingness of medical staff to use it by 
reducing the feature dimensions and model complexity. 
Experiments conducted on real data demonstrate that 
our approach has excellent performance. In addition, we 
also constructed multiple baseline models (logit, SVM, 
CART) and similar models (RF, XGBoost) and conducted 
comparative experiments under the same pipeline. The 
results proves the superiority of our approach. Finally, we 
analyzed the importance of the selected risk factors and 
the ability of capturing the non-linear interactions, and 
the results without exception prove that our approach is 
effective.

Appendix
Some information of the dataset SOMIP
Due to limited space, here we only list the names and 
brief information of some risk factors in SOMIP. The 
following tables list the statistical information of some 
numerical data and the number of samples in each cat-
egory of some categorical data. The names ending in 
“_num” and ending in “_cat” represent numeric records 
and categorical records, respectively. More detailed 
information can be found in the official reports of 
SOMIP [69–71] (Tables 5, 6).

Table 5 Information of some numerical risk factors in SOMIP

Name Min. Max. Median Mean

Age 1 106 66 62.9

Alb_num 2 56 35 34.41

Alk_num 7 2173 75 93.37

Urea_num 0.1 69.9 5.6 7.479

Base_num ‑32 23.9 − 1.1 − 1.788

WBC_num 0.2 91.2 11.13 12.17

Pulse_num 10 985 88 89.21

PCO2_num 0.89 13.99 4.63 4.717

Sodium_num 104 167 137.1 137.1

Max complexity score 0 79 23 23.93
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Table 6 Information of some categorical risk factors in SOMIP

Name Categories Number of 
samples

ASA Status 1 2704

2 5828

3 5405

4 1278

5 84

Bloodloss 0 8548

1 5772

2 520

3 194

4 413

5 122

WBC_cat L 256

N 8220

H 6570

M 253

Alb_cat VL 1910

L 5618

N 3964

H 3419

M 388

Sepsis Yes 5323

No 9976

Disseminated cancer Yes 1236

No 14063

Sex Male 9337

Female 5962

Current smoker Smoker 3154

Ex‑smoker 2514

Non‑smoker 9352

Functional health status Totally dependent 424

Partially dependent 2033

Independent 12842

Dyspnea Dysponea At Re 2077

Moderate dyspnea 576

Mild dyspnoea 3248

No dyspnoea 9398

Magnitude revised Ultramajor III 1084

Ultramajor II 1680

Ultramajor I 2538

Ultramajor 4

Major III 2636

Major II 2995

Major I 4067

Major 295
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