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Abstract 

Background: Accurately segment the tumor region of MRI images is important for brain tumor diagnosis and 
radiotherapy planning. At present, manual segmentation is wildly adopted in clinical and there is a strong need for an 
automatic and objective system to alleviate the workload of radiologists.

Methods: We propose a parallel multi-scale feature fusing architecture to generate rich feature representation for 
accurate brain tumor segmentation. It comprises two parts: (1) Feature Extraction Network (FEN) for brain tumor 
feature extraction at different levels and (2) Multi-scale Feature Fusing Network (MSFFN) for merge all different scale 
features in a parallel manner. In addition, we use two hybrid loss functions to optimize the proposed network for the 
class imbalance issue.

Results: We validate our method on BRATS 2015, with 0.86, 0.73 and 0.61 in Dice for the three tumor regions (com-
plete, core and enhancing), and the model parameter size is only 6.3 MB. Without any post-processing operations, 
our method still outperforms published state-of-the-arts methods on the segmentation results of complete tumor 
regions and obtains competitive performance in another two regions.

Conclusions: The proposed parallel structure can effectively fuse multi-level features to generate rich feature repre-
sentation for high-resolution results. Moreover, the hybrid loss functions can alleviate the class imbalance issue and 
guide the training process. The proposed method can be used in other medical segmentation tasks.
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Background
Accurately segment the tumor region of MRI images is a 
key step in radiation therapy for brain cancer [1]. Brain 
tumors are the result of uncontrolled proliferation of can-
cer cells in the brain. In general, tumor shapes and loca-
tions in the brain are different from patient to patient 

[2], making it hard to annotate tumor areas for clinical 
purposes or radiotherapy planning. At present, manual 
segmentation is wildly adopted in clinical, but its accu-
racy and reliability depend on the slice reading ability of 
radiologists. Therefore, there is a strong need for an auto-
matic and objective system to alleviate such demanding.

In recent decades, researchers have proposed many 
automatic methods to segment brain tumors, includ-
ing discriminative and generative approaches [1]. The 
generative approaches depend on the specific domain 
knowledge, such as the appearance characteristics of 
tumor areas and its surrounding areas. In general, prior 
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knowledge of the target tumor region is difficult to code. 
Compared with the image signal or expected shape of 
normal tissues, the existing generative methods model 
tumors as outliers [3–5]. Tumors may appear with dif-
ferent sizes and complex shapes, so aligning a brain with 
tumors onto a template can be challenging. To get a bet-
ter segmentation performance, researchers have pro-
posed different methods for segmenting brain images 
with tumors and registering these images to a template 
computed from normal brains [6–8]. Unlike generative 
approaches, the discriminative approaches use little prior 
domain knowledge and their implementation depends on 
the engineered or hand-crafted features.

At present, convolutional neural network is the most 
popular discriminative approach for multimodal brain 
image segmentation [9–14]. For example, Havaei et  al. 
[13] present a patch-wise CNN architecture with a two-
pathway structure to segment brain tumors, which use 
local and global contextual features. Zhao and Jia [14] 
design a patch-based model with three-pathway streams. 
They show higher accuracy and robustness compared 
with traditional CNNs. Zhao et al. [11] propose a patch-
based model and achieve the best results in BRATS 2015. 
However, the main issue of patch-based methods is that 
the training process of the model are inefficient [15] and 
does not take into account the effect of the whole image 
[16]. Currently, U-net is widely applied for medical image 
segmentation, and researchers propose many networks 
extending the architecture, such as 3D U-net [17] and 
V-net [18]. Although 3D input data provide more seman-
tic information, there are large parameters in 3D CNN, 
so more memory and computing resources are needed.

Despite the great progress achieved by the aforemen-
tioned studies, automated brain segmentation remains 
a challenging task for the following factors. First, brain 
tumors vary in size and shape, so a rich feature repre-
sentation with a high-resolution level is needed for the 
precise segmentation of tumor sub-regions. Specifically, 
effective feature extraction and feature fusion is the key 
to achieving good performance. Second, the severe class 
imbalance is another factor that will harm the training 
process and impact on performing segmentation. When 
the methods based on deep learning optimize with cross-
entropy loss or Dice loss, non-tumor regions will domi-
nate the optimization process of the neural network.

We do not apply complex pre-processing or any post-
processing steps, but focus on designing a simple net-
work structure which can perform effective feature 
extraction and feature fusion for rich feature representa-
tion. Inspired by the design philosophy of Hypercolumn 
[19], we extend the pixel-wise prediction task and design 
a simple parallel convolutional neural network, which 
can split the whole brain into different sub-regions. For 

the severe class imbalance issue, we design two hybrid 
loss functions, which include recall loss, combined Dice 
loss, and cross-entropy loss. Our method test on BRATS 
2015 and achieve promising results in labeling different 
sub-regions of the tumor.

In this paper, the contributions are three aspects:

1. We propose a simple parallel Convolutional Archi-
tecture (the size of parameters is only 6.3  MB) that 
extracts different-level features and parallel fusing 
those features for rich feature representation.

2. We design two hybrid loss functions to alleviate the 
severe class imbalance issue, which can effectively 
guide the training process.

3. Without any post-processing operations, our method 
still outperforms published state-of-the-arts meth-
ods on the segmentation results of complete tumor 
regions and obtains competitive performance in 
another two regions.

Methods
Datasets and pre‑processing
There are two data sets in BRATS 2015, one for testing 
and the other for training. For the training dataset, it 
comprises 274 cases (low grade tumors: 54, high grade 
tumors: 220), all of which are annotated at the pixel level. 
For the testing dataset, it contains 110 cases without 
ground truth (the number of low and high grade tumors 
is not disclosed). Each case comprised 4 MRI sequences: 
T2, T1-contrast, T1, and FLAIR. The dimensions of each 
sequence are 240 × 240 × 155. All sequences of the same 
case had been co-registered. The manual segmenta-
tions of each case are labeled with 5 different numbers: 
enhancing tumor: 4, non-enhancing tumor: 3, edema: 2, 
necrosis: 1, and 0 for everything else.

Figure 1 shows four slices from different cases and its 
corresponding ground truth. We evaluate all the pre-
dictions results for the test set via an online system. It 
requires evaluating three different tumor regions: com-
plete tumor (labels 4 + 3 + 2 + 1), tumor core (labels 
4 + 3 + 1) and enhancing tumor (label 4). We crop each 
case into a volume of 176 × 176 × 155, removing the bor-
der area while keeping the entire area of the brain. After 
that, we normalize the brain MRI images to have unit 
variance and zero-mean.

The proposed network architecture
We propose a parallel CNN architecture that differs 
from U-net used in medical image. As shown in Fig.  2, 
the proposed architecture comprises two parts: the Fea-
ture Extraction Network (FEN) and the Multi-scale Fea-
ture Fusing Network (MSFFN). The feature extract part 
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comprises twelve convolution layers for getting multi-
level features and four max-pooling layers for enlarging 
the receptive field of the whole network. In the feature 
fusing part, multi-level feature generated by the extrac-
tion part is up-scaled to the original size (176 × 176), and 
then parallel fed into the feature fusing block. We intro-
duce more details about the two networks in the follow-
ing subsections.

Feature extraction network
The multi-scale feature representation is of crucial 
importance for the medical segmentation task, especially 
when the target region with different sizes. In general, 
the performances are not superior when tumor tissues 
with small size or complex topology. In a convolutional 
neural network, the feature maps get from deeper con-
volution layers contain more semantic information, but 
the feature maps with high-resolution contain more spa-
tial details. Moreover, the detail information for small 

segmentation targets will be lost in the deeper layers and 
can only obtain the fine details in the early layers.

As shown in Fig. 3, FEN is divided into five stages. Each 
stage in the network uses two convolution units to extract 
multi-level semantic information for MSFFN, except the 
first stage, which uses four convolution units. Each unit 
includes a convolution layer (stride: 1, kernel: 3 × 3), a BN 
layer, and an activation layer (ReLU). At the end of each 
stage (except for the last one), there are a max-pooling 
layer (stride: 2, kernel size: 2 × 2) and a dropout layer.

Multi‑scale feature fusing network
There are many ways to fuse multi-scale features for 
semantic segmentation. The first way is merging multiple 
top features with different scales output by the backbone 
network and then forming new feature maps with more 
information, such as DeepLab [20] and PSPNet [21]. The 
other way is gradually fusing multi-level features from 
top layers to bottom layers, such as U-net [22], SegNet 

Fig. 1 Examples of the BRATS 2015 training set (best view in color), showing two HGG cases in the first two rows and two LGG cases in the last two 
rows. Each row represents (from left to right): T1c, T1, FLAIR, T2 and ground truth. Pixels labeled in black are background in the last column. Each of 
the other colors represents a tumor region: necrosis (blue), edema (green), non-enhancing (white) and enhancing (red)
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[23] and RefineNet [24]. This feature fusion mechanism 
is widely used, especially in medical images, but its 
working mechanism is not clear. Furthermore, Zhang 
[25] point out that current U-net architectures have an 

ineffective feature fusion problem and proposed a frame-
work named ExFuse [25].

As seen in Fig. 3, all feature maps extracted from dif-
ferent convolution units in FEN can be fed into MSFFN. 

Fig. 2 The architecture of the proposed model (best view in color). Each block in Feature Extraction Network represents feature maps with different 
size (from left to right): 256*256, 128*128, 64*64, 32*32 and 16*16. In the multi-scale feature fusion network, the multi-scale feature maps are first 
up-sampled to the same size (176 × 176), and then fused

Fig. 3 The architecture of feature extraction network (best view in color)
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Our feature fusing network is inspired by the philoso-
phy of Hypercolumn descriptors [19]. In general, the 
coarse high-level features representation contains more 
semantic information, while low-level ones carry more 
detail information important to segment small objects. 
To reduce computation time and memory cost, we only 
chose the feature maps generated by a convolution layer 
at the end of each stage in FEN except for the first stage. 
The reason we take all the feature maps in the first stage 
is that those low-level but high-resolution features have a 
more powerful representation in detail information.

Figure  4 shows an overview of our proposed feature 
fusing network. It employs a parallel branching structure 
to concatenate multi-scale feature maps. Since MSFFN 
takes feature maps with different scales in FEN as input, 
we apply the up-sampling operation to the low- resolu-
tion semantic feature maps to generate feature maps 
with the size like original images (176 × 176) via bilinear 
interpolation. The reason we use bilinear interpolation 
is that it can reduce the model parameters and facilitate 
the gradient propagation to the deep convolutional layer, 
to realize the effective training of the whole network. 
The next step is to concatenate features of the equivalent 

size together. The concatenated features then go through 
the feature fusing block that aims to efficiently integrate 
multi-level features, which is expected to narrow the gap 
between the different features and make full use of those 
features. In particular, this component includes three 
convolution units, each composed of a convolution layer 
(stride: 1, kernel: 3 × 3), a BN layer and an activation layer 
(ReLU). There is a dropout layer after the feature fusing 
block. Finally, a Softmax layer receives feature maps gen-
erated by the feature fusion block to make the prediction.

Loss function and class imbalance
Class imbalance is very common and has attracted much 
attention in recent years [26]. For BRATS 2015, the pix-
els of different regions are extremely unbalanced. The 
network training on such datasets, with low recall and 
high accuracy prediction, is biased towards background 
areas in medical applications [27, 28, 30, 31, 33–35]. 
Therefore, some researchers propose algorithm-level 
approaches to solve this issue [17, 18, 22, 27–34], such 
as weighted cross-entropy loss function. Dice loss [18], 
generalized Dice loss [31], asymmetric similarity loss 
[28], hybrid loss with cross-entropy and Dice loss [33] 

Fig. 4 The architecture of Multi-scale Feature Fusing Network (best view in color). 16×, 8×, 4×, and 2× represent the up sampling factors for 
feature maps of sizes 16 * 16, 32 * 32, 64 * 64, and 128 * 128, respectively. The Feature Fusing Block includes three convolution units, each composed 
of a convolution layer, a BN layer and an activation layer
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and combo loss [30]. For the class imbalance, we propose 
two hybrid loss functions comprising contributions from 
different losses, including recall loss, combined Dice 
loss and cross-entropy loss. Let G be ground truth (with 
size 176 × 176 × 5), P be the predicted results (with size 
176 × 176 × 5).

Cross‑entropy loss
We can write the cross-entropy loss for a multi-class task 
as:

where gi,k ∈ {0, 1} and pi,k∈[01] denote the manual anno-
tation and the predictions of the Softmax at each pixel i 
for class k, N represents the number of pixels.

Dice loss
There are many criteria for evaluating image segmenta-
tion algorithms, among which Dice similarity coefficient 
(DSC) is the most widely applied. Milletari et al. [18] pro-
pose a differentiable version of it to optimize the model. 
The Dice loss for each subclass can be expressed as:

where N, gi,k and pi,k are the same as in Formula 1. So we 
can write the Dice loss for enhance region as:

The Dice loss for background region is as below:

The Dice loss for complete region can be written as:

where pi,com = pi,4 + pi,3 + pi,1 + pi,2 and 
gi,com = gi,4 + gi,3 + gi,1 + gi,2 denote the predicted val-
ues and manual segmentation label for complete region, 
respectively.

The Dice loss for tumor core region can be written as:

(1)Lce_loss = −
1

N

N∑

i=1

K−1∑

k=0

gi,k logpi,k

(2)DLk = 1−
2
∑N

i=1 pi,kgi,k∑N
i=1 pi,k +

∑N
i=1 gi,k

(3)DLenh_loss = 1−
2
∑N

i=1 pi,4gi,4∑N
i=1 pi,4 +

∑N
i=1 gi,4

(4)DLbg_loss = 1−
2
∑N

i=1 pi,0gi,0∑N
i=1 pi,0 +

∑N
i=1 gi,0

(5)DLcom_loss = 1−
2
∑N

i=1 pi,comgi,com∑N
i=1 pi,com +

∑N
i=1 gi,com

(6)DLcore_loss = 1−
2
∑N

i=1 pi,coregi,core∑N
i=1 pi,core +

∑N
i=1 gi,core

where pi,core = pi,4 + pi,3 + pi,1 and 
gi,core = gi,4 + gi,3 + gi,1 denote the predicted values 
and manual segmentation label for tumor core region, 
respectively.

The combined Dice loss can be defined as:

The sliced Dice loss can be defined as:

Recall loss
Although model trained with unbalanced data may 
make high accuracy predictions, the target area may be 
partially detected or missing, which is very harmful in 
medical applications. Sensitivity, therefore, can be used 
to address the imbalance issues, shifting emphasis to 
the minority.

Sensitivity is one of the highly regarded character-
istics when evaluating the performance of image seg-
mentation algorithms. The recall loss for each subclass 
is as below:

where N, gi,k and pi,k are the same as in Formula 1. So we 
can write the recall loss for enhance region as:

The recall loss for complete region is as below:

where pi,com = pi,4 + pi,3 + pi,1 + pi,2 and 
gi,com = gi,4 + gi,3 + gi,1 + gi,2 denote the predicted val-
ues and manual segmentation label for complete region, 
respectively.

The recall loss for tumor core region is as below:

where pi,core = pi,4 + pi,3 + pi,1 and 
gi,core = gi,4 + gi,3 + gi,1 denote the predicted values and 
manual segmentation label for tumor core categories, 
respectively.

(7)

DLcombined_loss = DLbg_loss + DLcom_loss

+ DLcore_loss + DLenh_loss

(8)DLsliced_loss = DL0 + DL1 + DL2 + DL3 + DL4

(9)RLk = 1−

∑N
i=1 pi,kgi,k∑N
i=1 gi,k

(10)RLenh_loss = 1−

∑N
i=1 pi,4gi,4∑N
i=1 gi,4

(11)RLcom_loss = 1−

∑N
i=1 pi,comgi,com∑N

i=1 gi,com

(12)RLcore_loss = 1−
2
∑N

i=1 pi,coregi,core∑N
i=1 gi,core
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Hybrid loss
We design two hybrid loss functions, which include recall 
loss, combined Dice loss and cross-entropy loss, to better 
balance recall and precision. The first one named HL1 can 
be written as:

where δ, α, β and γ are weights of different loss.
The second one named HL2 can be written:

where δ, α, β and γ are weights of different loss.

Results
Evaluation metrics
In this study, the online system provided by the Brats 
challenge is used to evaluate our results. It evaluates the 
results from sensitivity, PPV (positive predictive value) 
and DSC for the three tumor regions (complete, core, and 
enhancing).

DSC is applied to measure the intersection between the 
regions predicted by the model and the regions segmented 
by the human. A higher DSC value means a better perfor-
mance. The DSC is defined:

where P denotes the predicted segmentation, and G is the 
manual segmentation.

PPV is applied to measure the overlap percentage 
between the regions predicted by the model and the 
regions segmented by the human to the predicted regions, 
and can be defined with the following Eq. (16):

(13)

HLce__rl_loss = αLce_loss + βRLcom_loss

+ γRLcore_loss + δRLenh_loss

(14)

HLcb__rl_loss = αDLcombined_loss + βRLcom_loss

+ γRLcore_loss + δRLenh_loss

(15)DSC(P,G) =
2|P ∩ G|

|P| + |G|

(16)PPV (P,G) =
|P ∩ G|

|P|

Sensitivity is applied to measure the overlap percent-
age between the regions predicted by the model and the 
regions segmented by the human to the manual segmen-
tation regions. It is defined as Eq. (17):

Implementation details
We build our network in Keras (TensorFlow as back-
end). Our model is trained with Adam optimizer on two 
NVIDIA GPUs (GTX 1080Ti). The batch size is 40. Dur-
ing the training, we use Cyclical learning rates [36] to 
adjust the learning rate. In each cycle, the learning rates 
are set to 0.000001, 0.001 for minimum and maximum 
learning rates. For data augmentation, we adopt flip and 
rotation from the training set to ease the over-fitting 
issue.

Evaluating the effectiveness of the proposed model
We adopt U-net as our baseline. For fairly comparing and 
avoid the improvement is because of more parameters 
of our proposed model, we change the number of filter 
channels to be 32, 64, 128, 256 and 512 for each stage in 
U-net. The capacity of our proposed model (the size of 
parameters: 6.3  MB) is smaller than that of U-net (the 
size of parameters: 30.3 MB). Also, we note that the neu-
ral network trained on different loss functions exhibits 
different segmentation performance, so we design three 
groups of experiments to test our proposed model.

As shown in Table 1, each group is optimized with dif-
ferent loss functions. For group one (first two rows), the 
cross-entropy loss is used to optimize both U-net and the 
proposed model. The Dice score of U-net for the three 
tumor regions (complete, core and enhancing) are 0.84, 
0.66 and 0.58. Our proposed model achieves with Dice 
score of 0.85, 0.67, and 0.59. It is obvious that the pro-
posed model is superior to U-net in all tumor categories. 
For the second group (two rows in the middle), sliced 

(17)Sensitivity(P,G) =
|P ∩ G|

|G|
.

Table 1 Performance comparison between our proposed model and U-net

Each group was optimized with different loss functions

Method Loss function DSC PPV Sensitivity

Complete Core Enh Complete Core Enh Complete Core Enh

U-net Cross entropy loss 0.84 0.66 0.58 0.87 0.80 0.60 0.84 0.61 0.61

proposed 0.85 0.67 0.59 0.87 0.83 0.60 0.85 0.62 0.64

U-net Sliced Dice loss 0.83 0.64 0.56 0.87 0.82 0.63 0.82 0.60 0.57

Proposed 0.84 0.66 0.56 0.86 0.83 0.56 0.85 0.62 0.54

U-net Combined Dice loss 0.83 0.65 0.55 0.87 0.83 0.65 0.83 0.59 0.54

proposed 0.85 0.69 0.59 0.86 0.82 0.64 0.87 0.65 0.60



Page 8 of 13Huang et al. BMC Med Inform Decis Mak  2021, 21(Suppl 2):63

Dice loss is used to guide the optimization process. Our 
model outperforms U-net in two categories (core and 
complete) and gets comparable performance in enhanc-
ing category. In the last group (the last two rows), both 
U-net and our proposed model are optimized with com-
bined Dice loss. Our proposed model yields better DSC 
scores (0.85, 0.69, 0.59) for all tumor categories. The pro-
posed model also gets higher sensitivity scores and com-
petitive PPV results in all tumor regions. From the above 
results, our proposed method has high efficiency in the 
experiments and boosts the performance for its effective 
feature extraction and feature fusion strategy.

Additionally, the corresponding qualitative compari-
son is shown in Fig.  5. It is obvious that the segmenta-
tion results generated by our proposed model are more 
consistent with the manual annotation in most cases. 
With ground truth as a reference, our proposed method 
generates more accurate results than U-net, especially 
for the border of the tumor. For the last group (the last 
two columns), we note that both U-net and our proposed 
model cannot distinguish between necrosis region (blue) 
and non-enhancing region (white) because of the com-
bined Dice loss function, which is designed for the three 
different tumor regions required by the online evaluation 
system. Moreover, it is noted that the output behavior of 
the segmentation network is changed by different loss 
functions.

Evaluating the effectiveness of hybrid loss function
The proposed model is used to verify the segmentation 
effect of two hybrid loss functions. For the convenience 
of comparison, we divide those experiments into two 
groups. First, we compare the cross-entropy loss with 
the first hybrid loss (HL1). Second, we compare the com-
bined Dice loss with the second hybrid loss (HL2).

For the first hybrid loss function (HL1), we set α = 20, 
β = 0.5, γ = 1 and δ = 0.5 as they provided the best 
results. As seen in Table 2 (the first two rows), we note 
that the model trained with first hybrid loss (HL1) per-
forms better than the one trained with cross-entropy for 
all tumor categories. For tumor core category, the first 
hybrid loss significantly increases the Dice score by 4%. 
The recall loss in the first hybrid loss helps the network 
to achieve a better result, which can be seen from the 
comparison that sensitivity significantly increase at the 
expense of a decrease in precision, while maintaining the 
Dice score unchanged or increased.

We also test the performance of the second hybrid loss 
(HL2) against the combined Dice loss function (the last 
two rows). For the second hybrid loss function (HL2), 
we set α = 1, β = 0.1, γ = 1.3 and δ = 0.5 as they pro-
vided the best results. The model trained with HL2 out-
performs the one trained with combined Dice loss in the 

tumor core and enhancing region and achieves compa-
rable performance on complete region. For tumor core 
category, the second hybrid loss also increases the Dice 
score by 2%. Similarly, sensitivity and PPV in the second 
group are consistent with the first group, with a signifi-
cant increase in sensitivity at the expense of a decrease 
in PPV. Particularly, our proposed method trained with 
hybrid loss function obtain better sensitivity in all tumor 
regions, showing that the hybrid loss function can iden-
tify tumor areas from non-tumor areas. The above results 
reveal the effectiveness of the hybrid loss function and 
the potential to balance recall and precision.

Comparison to other published best methods
Our approach is not suitable for direct comparison with 
these methods proposed in the BRATS 2015. During that 
challenge, only 53 cases are used for testing, but now 
the online evaluation system provides 110 testing cases. 
Our proposed method is compared with two published 
best approaches. The first one is a patch-based method 
[11]. They train three different models for segmentation, 
each using patches selected from different views of MRI 
volume. They then apply the models to do the segmenta-
tion in axial, coronal and sagittal directions. Finally, the 
final result is fused from the three different segmentation 
results with a majority vote strategy. The second one is 
also a patch-based approach [9], including a 3D CNN 
(DeepMedic) and 3D CRF. This approach simultaneously 
processes multiple scale input images with two pathway 
architecture and can combine local and broader con-
text information. Their ensemble is built with three base 
models, applying an average strategy to aggregate differ-
ent segmentation results.

To allow a fair comparison, all segmentation results 
listed are obtained by a single model. As seen in Table 3, 
we have the following observations. First, all methods 
achieve a low segmentation performance in enhancing 
tumor region. This mainly contributes to the difficul-
ties incurred by the small size of the target region in the 
brain. Second, our proposed method outperforms both 
DeepMedic and DeepMedic with 3D CRF in compete 
tumor and tumor core region. Third, compared with 
FCNN with CRF proposed by Zhao et al., our method 
exhibits superior performance for all tumor catego-
ries. Fourth, our method is comparable or superior to 
FCNN with 3D CRF in compete tumor and tumor core 
region, except the enhancing tumor region. From the 
above comparison, we find that FCNN with 3D CRF 
significantly improves the segmentation performance 
in comparison of FCNN with CRF in all tumor regions, 
demonstrating 3D CRF is the key to the performance 
increase. We can conclude that the feature representa-
tions of our proposed method are more powerful than 
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FCNN designed by Zhao et  al. Compared with other 
published works, our performance is equal to or better 
than that of other methods, without any post-process-
ing operations. In most cases, the proposed method has 

high sensitivity, showing that it can effectively identify 
tumor areas from non-tumor areas.

We develop an ensemble comprising five models based 
on our proposed architectures trained with hybrid loss. 
Specifically, the BRATS 2015 dataset is split into two 

Fig. 5 Visualized comparison between our proposed method and U-net on BRATS 2015 validation set (best view in color). There are three groups 
of experiments to verify the effectiveness of our proposed model. The first column shows images generated by T1c, T2 and FLAIR with a merge 
operation. The second column shows the ground truth. The first group (the third and fourth column) shows the segmentation results generated by 
U-net and the proposed method with cross-entropy loss function. The second group (the fifth and sixth column) shows the segmentation results 
generated by U-net and the proposed method with sliced Dice loss function. The last group (the last two columns) shows the segmentation results 
generated by U-net and the proposed method with combined Dice loss function. Pixels labeled in black are background in the last five columns. 
Each of the other colors represents a tumor region: necrosis (blue), edema (green), non-enhancing (white) and enhancing (red)
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parts. There are 274 cases available. 20% of the data is 
for validation and 80% for training in each split. We train 
each model with different training sets and select the best 
weights on the validation loss. We can see from Tables 3 
and 4 that our ensemble model outperforms the single 
model in Dice score and achieves competitive results 
in the other two evaluation metrics (PPV, sensitivity). 
This implies that ensemble learning that aggregates dif-
ferent models improves segmentation performance. As 
shown in Table  4, we compare our ensemble to other 
ensemble methods. The result of our ensemble method 
is better than other ensemble methods on the complete 
tumor region, and it is comparable on other categories. 
Remarkably, our ensemble method obtains the best 

Dice similarity coefficient of 0.86 in the complete tumor 
region.

Discussion
Although remarkable improvements have made in past 
years, the deep learning based methods still have some 
challenges, such as good feature representations and 
effective training processes on the severe class imbalance 
dataset, which limit the performance and generalization 
ability. It is promising to design more powerful multi-
scale feature extraction and feature fusion techniques 
and construct an effective way to guide the training pro-
cess on an imbalanced dataset.

Table 2 Performance comparison of our proposed method with different loss function on the test set

Loss function DSC PPV Sensitivity

Complete Core Enh Complete Core Enh Complete Core Enh

cross entropy 0.85 0.67 0.59 0.87 0.83 0.60 0.85 0.62 0.64

HLce__rl_loss 0.85 0.71 0.60 0.83 0.76 0.57 0.89 0.73 0.68

combined Dice loss 0.85 0.69 0.59 0.86 0.82 0.64 0.87 0.65 0.60

HLcb__rl_loss 0.85 0.71 0.59 0.85 0.75 0.58 0.87 0.74 0.65

Table 3 Performance comparison of different single models on the test set

Method DSC PPV Sensitivity

Complete Core Enh Complete Core Enh Complete Core Enh

DeepMedic [12] 0.836 0.674 0.629 0.823 0.846 0.64 0.885 0.616 0.656

DeepMedic + CRF [12] 0.847 0.67 0.629 0.85 0.848 0.634 0.876 0.607 0.662

FCNN + CRF (axial) [13] 0.78 0.64 0.54 0.78 0.76 0.48 0.81 0.62 0.71

FCNN + CRF (coronal) [13] 0.77 0.66 0.56 0.73 0.73 0.52 0.86 0.67 0.67

FCNN + CRF (sagittal) [13] 0.76 0.63 0.47 0.75 0.71 0.38 0.80 0.63 0.75

FCNN + 3D CRF (axial) [13] 0.84 0.72 0.62 0.88 0.75 0.62 0.82 0.76 0.67

FCNN + 3D CRF(coronal) [13] 0.84 0.72 0.62 0.88 0.75 0.62 0.82 0.75 0.66

FCNN + 3D CRF (sagittal) [13] 0.82 0.72 0.60 0.88 0.75 0.59 0.81 0.76 0.67

Proposed + HLcb__rl_loss 0.85 0.71 0.59 0.85 0.75 0.58 0.87 0.74 0.65

Proposed + HLce__rl_loss 0.85 0.71 0.60 0.83 0.76 0.57 0.89 0.73 0.68

Table 4 Performance comparison of different ensemble models on the test set

Method DSC PPV Sensitivity

Complete Core Enh Complete Core Enh Complete Core Enh

DeepMedic (ensemble) [12] 0.845 0.667 0.633 0.833 0.861 0.632 0.889 0.599 0.673

DeepMedic + CRF (ensemble) [12] 0.849 0.667 0.634 0.853 0.861 0.634 0.877 0.600 0.674

FCNN + 3D CRF (fusing) [13] 0.84 0.73 0.62 0.89 0.76 0.63 0.82 0.76 0.67

Proposed + HLcb__rl_loss 0.86 0.73 0.61 0.86 0.76 0.60 0.88 0.76 0.65

Proposed + HLce__rl_loss 0.86 0.72 0.60 0.86 0.76 0.56 0.88 0.74 0.70
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The first challenging is that MRI images usually have a 
poor image quality, such as a low contrast between dif-
ferent tissue regions and tumor regions with high bound-
ary-uncertainty. Moreover, tumors have irregular shapes 
from case to case, which makes it hard to segment the 
different tumor regions. To the end, we propose a multi-
scale feature extraction and feature fusing mechanism 
for rich representative features. Although the capacity of 
our proposed model is smaller than that of the U-net, we 
still achieve better segmentation results. We attribute the 
performance boost to the advantage of the multi-scale 
feature extraction and feature fusing mechanism, show-
ing its ability to capture more representative features.

Capturing more representative features is the key to 
more accurate segmentation. Although 2D CNN with 
different directions (axial, coronal, and sagittal) or 3D 
CNN could be beneficial for a rich feature representation, 
which increases the computational costs and memory 
loads. The information captured by each convolutional 
layer in the feature extraction network is useful in feature 
representation and should use as much as possible. For 
example, shallow feature maps from early convolutional 
layers have detail information but poor semantic infor-
mation, which may benefit object segmentation perfor-
mance, especially for small objects. This is the reason we 
take all the feature maps from early convolutional layers. 
The results in Fig.  5 also suggest that features from the 
early convolutional layers are more beneficial for preserv-
ing fine details of the tumor regions.

The core idea of our feature fusion mechanism is that 
there is a complementary relationship between differ-
ent-level features. To fuse features more effectively, we 
concatenate features maps and fuse the different-level 
features in a parallel way, which is expected to take full 
advantage of these features and generate rich feature 
representation in both detail and semantic information. 
Compared with U-net, the proposed model achieves 
better performance for the three tumor regions. We 
believe such a mechanism benefits the feature fusing 
processes and is the main reason for the performance 
gain. Moreover, the multi-scale feature maps are up-
sampled and fed into the fusing block, so when train-
ing the network, the gradient is easier to spread to the 
deeper convolution layer, which is conducive to the 
learning of the whole network. Hence, more multi-scale 
features can be extracted from the feature extraction 
network. On the other hand, the direct up sampling 
feature maps will cause more GPU memory cost, so the 
GPU inference speed of our model is a little slower than 
of u-net, but its impact on performance is limited and 
does not affect the application.

Another challenge is class imbalance. We confront 
such optimization issues during the training, so finding 

an effective way to guide the training process is needed. 
Seen from Table  2, the two hybrid loss functions alle-
viate the class imbalance issue, especially for the core 
tumor region. In particular, the proposed method 
trained with hybrid loss function achieves superior 
sensitivity values in all tumor regions, suggesting that 
the hybrid loss function can identify tumor areas from 
non-tumor areas and reveal the potential to control 
balance precision and recall.

Although the compared methods achieve better per-
formance in enhancing tumor region, the improvement 
is because of using 3D patches or using 3D CRF. Com-
pared with 2D FCNN model proposed by Zhao et  al., 
our method exhibits superior performance (0.59 vs. 
0.54) in enhancing tumor region, suggesting its ability 
to capture more representative features than FCNNs. 
This implies that there is potential room for combining 
3D CRF to improve the performance for future studies.

Conclusions
We design a simple parallel CNN to segment brain 
tumor of MRI images. The parallel structure in the net-
work can effectively fuse multi-level features to form 
rich feature representation generate high-resolution 
results. For the class imbalance issue, we design two 
hybrid loss functions to guide the training process, 
which can control the balance precision and recall. 
Experimental results achieve promising performance 
without any post-processing operations, showing the 
effectiveness of our model and the hybrid loss func-
tions. It would be interesting to explore our proposed 
method in other medical segmentation tasks.
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