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Abstract

Background: Automated de-identification methods for removing protected health information (PHI) from the
source notes of the electronic health record (EHR) rely on building systems to recognize mentions of PHI in text,
but they remain inadequate at ensuring perfect PHI removal. As an alternative to relying on de-identification
systems, we propose the following solutions: (1) Mapping the corpus of documents to standardized medical
vocabulary (concept unique identifier [CUI] codes mapped from the Unified Medical Language System) thus
eliminating PHI as inputs to a machine learning model; and (2) training character-based machine learning models
that obviate the need for a dictionary containing input words/n-grams. We aim to test the performance of models
with and without PHI in a use-case for an opioid misuse classifier.

Methods: An observational cohort sampled from adult hospital inpatient encounters at a health system between
2007 and 2017. A case-control stratified sampling (n = 1000) was performed to build an annotated dataset for a
reference standard of cases and non-cases of opioid misuse. Models for training and testing included CUI codes,
character-based, and n-gram features. Models applied were machine learning with neural network and logistic
regression as well as expert consensus with a rule-based model for opioid misuse. The area under the receiver
operating characteristic curves (AUROC) were compared between models for discrimination. The Hosmer-
Lemeshow test and visual plots measured model fit and calibration.

Results: Machine learning models with CUI codes performed similarly to n-gram models with PHI. The top
performing models with AUROCs > 0.90 included CUI codes as inputs to a convolutional neural network, max
pooling network, and logistic regression model. The top calibrated models with the best model fit were the CUI-
based convolutional neural network and max pooling network. The top weighted CUI codes in logistic regression
has the related terms ‘Heroin’ and ‘Victim of abuse’.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: Majid.afshar@lumc.edu
2Center for Health Outcomes and Informatics Research, Loyola University
Chicago, 2160 S. First Avenue, Maywood, IL 60156, USA
6Department of Health Informatics and Data Science, Loyola University
Chicago, Maywood, IL, USA
Full list of author information is available at the end of the article

Sharma et al. BMC Medical Informatics and Decision Making           (2020) 20:79 
https://doi.org/10.1186/s12911-020-1099-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-020-1099-y&domain=pdf
http://orcid.org/0000-0002-6368-4652
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:Majid.afshar@lumc.edu


(Continued from previous page)

Conclusions: We demonstrate good test characteristics for an opioid misuse computable phenotype that is void of
any PHI and performs similarly to models that use PHI. Herein we share a PHI-free, trained opioid misuse classifier
for other researchers and health systems to use and benchmark to overcome privacy and security concerns.

Keywords: Opioid misuse, Heroin, Opioid use disorder, Natural language processing, Machine learning, Computable
phenotype

Background
Clinical notes from the EHR are promising for modeling
prediction tasks in healthcare but they contain protected
health information (PHI) and require legal and regula-
tory approvals to share across hospitals for implementa-
tion. The majority of published models that use machine
learning for text classification are word-based classifiers
that internally store a vocabulary of input features (e.g.
word n-grams) [1–4]. Major challenges remain in
privacy and security of PHI-laden models for sharing,
and it prevents the deployment of NLP models at
other hospitals.
Training NLP models in a way that prevents PHI leak-

age requires a prior step to manually or automatically
scrub notes, which can be a laborious process and may
not occur at all hospitals. These steps include employing
software previously trained to identify and remove indi-
vidual mentions of PHI [5–8]. Most software were
trained on specific types of clinical documents, and
many used pattern matching with rules and dictionaries
and, more recently, machine learning. These systems do
not have perfect accuracy so training machine learning
algorithms with features derived from these systems may
still lead to PHI embedded in the machine learning
model. There remains a paucity of evidence examining
approaches that can process and train an entire corpus
of text documents in a PHI-free manner.
In this study, we experiment with the following solu-

tions using feature engineering to provide PHI-free
models for text classification: (1) using raw text con-
verted into standardized medical vocabulary (concept
unique identifiers [CUIs] mapped from the Unified Med-
ical Language System); and (2) character-based models.
CUI-based classifiers are PHI-free because their input
features are concepts mapped to the Unified Medical
Language System as standardized codes (e.g. ‘heroin’ is
mapped to CUI code ‘C0011892’) that may be deployed
across hospitals without concern for PHI leakage. A
character-based model uses characters rather than words
or n-grams as basic units of input; a classifier’s task in
this case is to identify salient character sequences that
are useful for the prediction task. Like CUI-based
models, character-based models are PHI-free since their
vocabulary consists of individual unique characters ob-
served in the corpus of text.

Opioid misuse is a behavioral condition that represents a
heterogeneous pattern of use rendering it complex to iden-
tify from the EHR and is an ideal use-case to examine our
PHI-free approach. Patients with opioid misuse represent a
vulnerable population so removing PHI for publicly available
models is a priority. Opioid misuse is taking an opioid for
reasons other than prescribed or as an illicit drug [9, 10].
Traditionally, diagnostic billing codes or rule-based models
for opioid misuse have been used by health systems for
health surveillance and monitoring of outcomes [11]. How-
ever, International Classification of Diseases-9 or-10 codes
(ICD 9/10) are typically constrained by poor sensitivity/recall
with a high false negative rate [12, 13]. Computable pheno-
types that use supervised machine learning may learn the
complexities of these behavioral conditions from the clinical
notes to predict cases of opioid misuse.
We aim to compare the performance of multiple text

classification approaches, including both PHI-laden and
PHI-free, for an opioid misuse computable phenotype at a
large, tertiary health system using routinely available EHR
notes of hospitalized patients. A variety of machine learning
models, including multiple neural network architectures
that can contain hidden layers with PHI will be examined
against our PHI-free approaches. We hypothesize that it is
possible to build a PHI-free model for text classification of
opioid misuse without sacrificing performance.

Methods
Population and setting
Loyola University Medical Center (LUMC) is a 559-bed
hospital and tertiary academic center including a burn
and Level 1 trauma center serving Chicago and its west-
ern suburbs. LUMC has maintained Epic (Epic Systems
Corporation, Verona, Wisconsin) as its EHR vendor
since 2003 and includes a Microsoft SQL server-based
clinical data warehouse that has been available for re-
search since 2007. The hospital cohort is comprised of
161,520 adult inpatient encounters (≥18 years of age) be-
tween January 1, 2007 and September 30, 2017. Patients
with only outpatient encounters were excluded.

Sampling of hospital cohort to build reference dataset for
opioid misuse computable phenotype
The National Survey on Drug Use and Health (NSDUH)
and the National Institute of Drug Abuse (NIDA) define
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opioid misuse as individuals taking an opioid for reasons
other than prescribed or as an illicit drug [9, 10]. Opioid
misuse is a behavioral condition that represents a het-
erogeneous pattern of use ranging from nonmedical pre-
scription drugs to injection illicit drug use rendering it
complex to identify from the EHR. To train and test our
computable phenotype for opioid misuse, a random
case-control sampling of 1000 patients was annotated
from the hospital cohort during the study period for
chart review. The study cohort for annotation included
an oversampling of hospitalizations that had an ICD-9/
10 codes for opioid-related hospitalizations or a positive
urine drug screen for an opioid drug [14]. Additional
sampling of at-risk patients included those who had ICD
codes for chronic pain, naloxone (reversal drug for opi-
oid overdose) order and administration, or a physician
order for a urine drug screen. Age- and sex-matched
controls without any of the above criteria were included
as potential controls. A trained annotator (KS) per-
formed review of each patient record to provide a final
annotation for the likelihood of opioid misuse on a
Likert scale (1–5). The annotator met an inter-rater reli-
ability of Cohen’s kappa coefficient ≥ 0.75 with a critical
care physician and substance use researcher (MA and
ESA) before independent review was continued.
The Likert scale included definite, highly probable,

probable, definitely not, and uncertain for determining
opioid misuse in accordance with NIDA and NSDUH
definitions. Probable cases required any one of the follow-
ing: (1) history of opioid misuse evident in the clinical notes
but no current documentation for the encounter; (2) pro-
vider mention of aberrant drug behavior; (3) evidence of
other drug misuse (except alcohol) in addition to prescrip-
tion opioid use. Highly probable cases were classified by
more than one of the probable case criteria, or provider
mention of opioid dependence plus suspicion of misuse in
the clinical notes. Definite cases were classified as the
patient self-reporting opioid misuse to a provider or docu-
mentation by provider of patient misusing an opioid. For
the classification task of the computable phenotype, pa-
tients were categorized as exhibiting opioid misuse if they
met probable, highly probably, or definite criteria – these
were aligned with the definitions by NSDUH and NIDA.
The remainder of cases of definitely not or uncertain were
categorized as no opioid misuse. Only 1.9% (n = 19) of cases
were classified as uncertain. The final reference dataset was
comprised of 33.7% (n = 337) cases of opioid misuse.

Rule-based opioid misuse computable phenotype for
comparison to machine learning models
First, a simpler baseline rule-based model was built from
structured data for comparison to machine learning
models. The rules were developed by substance use spe-
cialists including an addiction specialist (ESA) and

psychiatrist (NK), and in accordance with the NSDUH
and NIDA definition for opioid misuse [9, 10]. The rule-
based criteria for opioid misuse were met if any of the fol-
lowing structured data elements qualified from the EHR:
(1) positive urine drug screen for an opioid with co-
substance use with any of the following: an illicit drug
(phencyclidine or cocaine), a benzodiazepine that was not
self-reported by the patient as a prescribed medication, or
an amphetamine that was not self-reported by the patient
as a prescribed medication; (2) positive urine drug screen
for an opioid only but not self-reported by the patient as a
prescribed medication; (3) ICD-9/10 codes for opioid poi-
soning or intoxication [14].

Machine learning models: PHI-free and PHI-laden
We experimented with several classes of models to learn
the relationship between the input text and the classifica-
tion task (opioid misuse vs. no opioid misuse) including
linear classifiers and several neural network architectures.
Encounter-level analysis (n = 1000) was performed by in-
corporating all clinical documents from each patient
hospitalization for training the machine learning models.
PHI-laden models: We utilized n-gram classifiers mainly

for comparison to PHI-free models (CUIs and character-
based). A logistic regression model and convolutional
neural network were trained with n-grams. The n-gram
features were examined as unigrams, bigrams, and the
combination of the two for the linear model and a 300-
dimension word embedding for the neural network archi-
tectures. We also investigated the possibility of removing
PHI from the n-gram models by training a token-based
L1-regularized logistic regression model. Unlike L2-
regularized models that often contain thousands of fea-
tures, the sparsity of L1-regularized model allows manual
examination of the features with non-zero weights to allow
for manual removal of PHI-containing features post-hoc.
PHI-free models: We explored both CUI and character-

based CNN models. Linguistic processing of the clinical
documents into CUI codes was performed in clinical Text
and Knowledge Extraction System (http://ctakes.apache.
org) [15]. Named entity mentions in the raw text were
mapped to the Unified Medical Language System (UMLS),
which includes over 2 million concepts from nearly 9 mil-
lion distinct names that are merged into the National Li-
brary of Medicine’s Metathesaurus. The spans of the
UMLS named entity mentions (diseases, symptoms, anat-
omy, and procedures) were mapped from the raw notes
and organized into Concept Unique Identifiers (CUIs).
The free text in clinical documents from the EHR are
matched to a dictionary of concepts, by default SNOMED
CT and RxNORM, and tagged with concept codes from
the original dictionary, and a CUI code from the UMLS
Metathesaurus. This dictionary lookup puts text into a
coded format that completely de-identifies to structured
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data as SNOMED CT and RxNORM CUI codes. For in-
stance, the named entity mention for ‘heroin abuse’ has
the CUI code ‘C0600241’. Each named entity mention was
also analyzed to determine its negation status (e.g. ‘no her-
oin abuse’). The original cTAKES publication demon-
strates that concept mapping and negation status had F1
scores of 0.957 and 0.943 on certain tasks, respectively
[15]. Figure 1 represents an example of a CNN-based
model for an opioid misuse computable phenotype.
The dataset was split into training (60%), validation

(20%), and test (20%) data. The training set was used for
training models, the validation set for parameter tuning,
and the test set for the final performance evaluation.
Term frequency-inverse document frequency (tf-idf) was
applied to normalize the n-gram and CUI codes prior to
being fed into the logistic regression models. The neural
network architectures considered included: (1) a convo-
lutional neural network (CNN) [13]; (2) a deep averaging
network ( [16]; (3) a max pooling network [17]; and (4)
combination of deep averaging and max pooling net-
work. The CUI-based CNN includes 1024 filters of size
1. The filter of size one is used because the ordering of
CUI codes in clinical texts is typically not meaningful
and does not warrant larger filter sizes. A deep averaging
network is a simple neural architecture that accepts
word embeddings as inputs and averages them. The

averaged values are then fed into a classification layer
(sigmoid or softmax). The deep averaging network was
first introduced in 2015 [17] and later re-introduced in
2016 [18]. This architecture can often be as effective as
more complex models such as CNN or recurrent neural
network [19]. A max pooling network picks the max-
imum value across each embedding dimension. The
deep averaging and max pooling architectures project
the resulting patient representation onto a dense layer to
capture the interrelations between semantic dimensions.
The dense layer is followed by a sigmoid output. All
neural network models included a dropout layer for
regularization and are trained using the Adam optimizer
with binary cross-entropy loss. Random search was used
for tuning the neural network hyperparameters in the
validation cohort [20].

Model evaluation and comparisons
The models were tuned to the highest area under the re-
ceiver operating characteristic curve (AUROC). Both
neural networks and logistic regression models were ex-
amined across multiple hyperparameters (Table 1). Once
the hyperparameters for each model were finalized, we
combined the validation and training sets and evaluated
the model in the independent test set.

Fig. 1 PHI-free and PHI-laden inputs to a machine learning model with an example of a convolutional neural network using an embedding with
Concept Unique Identifiers (CUIs)
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Discrimination of the prediction models was evaluated
using the AUROC. Goodness-of-fit was formally assessed
by the Hosmer-Lemeshow test and verified visually with
calibration plots. Test characteristics (sensitivity/recall,
specificity, negative predictive value (NPV), precision/
positive predictive value (PPV) and macro F1 score) were
provided to compare between classifiers. The DeLong
et al. method was used to compare the AUROC between
models [21]. For the logistic regression model, the beta-
coefficients of the selected features were listed to examine
face validity. Analysis was performed using Python Ver-
sion 3.6.5 (Python Software Foundation) and RStudio Ver-
sion 1.1.463 (RStudio Team, Boston, MA). The study was
approved by the Loyola University Chicago Institutional
Review Board (LU #209950). Need for consent was waived
by the IRB and deemed unnecessary according to national
regulations. The PHI-free models and the relevant code
are publicly available in our GitHub repository (https://
github.com/AfsharJoyceInfoLab/OpioidNLP_Classifier).

Results
The data corpus of 1000 patients was comprised of 63,
301 notes, 15,651 CUI codes, and 71,987 unigrams. Clas-
sifier performance across the top neural network models
for opioid misuse as well as a rule-based model and lo-
gistic regression model using CUI codes, words, and
characters are displayed in Table 2.
The primary outcome was to optimize to the highest

AUROC and the following were the top performing
models: (1) CNN CUI; (2) CNN n-gram; (3) CNN char-
acter; (4) max pooling network CUI; (5) combined max
pooling and deep averaging network CUI; (6) max pool-
ing network n-gram; (7) combined max pooling and
deep averaging network n-gram; (8) combined maxed
pooling and deep averaging network CUI; (9) logistic re-
gression n-gram; and (10) logistic regression CUI. In

these top performing models, comparisons between the
AUROC curves did not demonstrate any statistical dif-
ferences (p > 0.05 for all comparisons). The AUROC
curve for the CNN CUI model is displayed in Fig. 2.
Of these top performing models, only the CNN CUIs

and n-grams, max pooling network CUIs and n-grams,
and logistic regression CUIs fit the data well by Hosmer-
Lemeshow test (p > 0.05). The rule-based model did not
fit the data well (p < 0.01). The CUI codes approach for
CNN, max pooling network and logistic regression visu-
ally fit the data best when plotted across deciles of pre-
dicted probabilities (Fig. 3).
In comparing n-gram to character-level and CUI-

based features, similar test characteristics are noted for
precision/PPV, recall/sensitivity, specificity, and NPV
within the CNN and max pooling network architecture.
The logistic regression CUIs had better recall/sensitivity
than the logistic regression with n-grams. The CNN ap-
proach outperformed the rule-based classifier in most
metrics except for recall/sensitivity and NPV. The CNN
CUIs had the greatest recall/sensitivity whereas the lo-
gistic regression CUIs had the greatest precision/PPV
(Table 2).
In terms of complexity, the CNN CUI model had a

total number of 5,721,449 trainable parameters and the
max pooling network CUI model had 4,401,257 trainable
parameters. The logistic regression model selected 992
CUI code trainable parameters. L1 regularization re-
moved zero weighted features and the final model had
21 features (Table 3). Among the selected CUI features
from logistic regression, ‘heroin’ followed by ‘victim of
abuse (finding)’ carried the highest beta coefficients.

Discussion
CUI code inputs to a CNN, max pooling network, and
logistic regression model had the optimal performance

Table 1 Machine learning models with hyperparameters

Model Hyper-parameters

Logistic Regression-CUIs C = 1, penalty = L1, class_weight = balanced

Logistic Regression-Words C = 1, penalty = L1, class_weight = balanced

Convolutional Neural Network-CUIs Filters = 1024, Filter Size = 1, Dropout = 0.5, Units = 1024, Learning Rate = 0.0001

Convolutional Neural Network-Words Filters = 1024, Filter Size = 3, Dropout = 0.25, Units = 128, Learning Rate = 0.0001

Convolutional Neural Network-Character Filters = 1024, Filter Size = 11, Dropout = 0.25, Units = 1024, Learning Rate = 0.0001

Deep Averaging Network-CUIs Dropout = 0.25, Units in layer 1 = 2048, Units in layer 2 = 512, Learning Rate = 0.001

Deep Averaging Network-Words Dropout = 0.75, Units = 128, Learning Rate = 0.001

Max Pooling Network-CUIs Dropout = 0.5, Units = 128, Learning Rate = 0.001

Max Pooling Network-Words Dropout = 0.5, Units = 128, Learning Rate = 0.001

Deep Averaging + Max Pooling Network-CUIs Dropout = 0.5, Units = 1024, Learning Rate = 0.001

Deep Averaging + Max Pooling Network-Words Dropout = 0.25, Units = 512, Learning Rate = 0.001

Logistic regression’s C value is inverse of regularization strength, and penalty term that penalizes the loss function using different regularization techniques.
Optimizer Adam is selected for all the neural networks. Units are the number of neurons in the dense layer of the neural network
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for an opioid misuse classifier with AUROCs greater
than 0.90. CUI codes are a standardized and automated
feature representation that require no domain expertise
and can be extracted using off-the-shelf software. Our
main finding was that PHI-free models were similar to
or outperformed models containing PHI. The PHI-free
neural network models (CNN and max pooling network
with CUI codes) were the top calibrated models with the
best discrimination and are available to health systems
interested in deploying these black box models with the
assurance that they are compliant with the Health Insur-
ance Portability and Accountability Act (HIPAA). The
PHI-free, trained opioid misuse computable phenotypes
are available on GitHub for other researchers and health
systems to apply (https://github.com/AfsharJoyceInfo
Lab/OpioidNLP_Classifier).
An estimated 80% of all data in EHRs reside in clinical

notes [22, 23] and are a rich source of data, but their un-
structured format makes them complex and difficult to
de-identify. Recent methods for identification of the

clinical notes have achieved above 90% in accuracy and F1
scores [24–26]. However, this does not constitute as fully
PHI-free data and poses a barrier for health systems to
share data legally. The legal requirements from HIPAA
were recently highlighted in a federal class-action lawsuit
making a claim that notes in the EHR of a major health
system did not meet the requirements for a fully de-
identified dataset [27]. Clinical notes lack common struc-
tural frameworks, contain many grammatical and spelling
errors, lexical variation, and are often semantically am-
biguous making de-identification difficult [28]. Methods
in NLP, including concept mapping to CUI codes to pro-
duce a standard medical vocabulary, are a more effective
and efficient approach for automatic semantic analyses of
clinical notes [29]. We have previously shown success in
using a CUI code-based approach for a NLP classifier to
identify alcohol misuse and respiratory failure [30, 31].
Given the complexities of behavioral conditions like

opioid misuse, very little data are available demonstrat-
ing useful computable phenotypes from CUI codes or

Fig. 2 Receiver operating characteristics area under the curve for convolutional neural network model using concept unique identifiers (CUI) for
classification of opioid misuse. CNN = convolutions neural network; AUC = area under the curve
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character-based approaches. A systematic review of
computable phenotypes for opioid misuse revealed the
data used in many published algorithms are not rou-
tinely available in the EHR, use PHI-laden machine
learning models, or rely solely on diagnostic billing
codes [11]. To date, the best performing algorithms de-
pend on pharmacy claims data which are not available in
EHRs; therefore, are impractical to implement for pro-
viders and hospitals [32–34]. Text classification from clin-
ical notes has demonstrated good test characteristics but
have been focused in certain subtypes or specific cohorts
of patients with opioid misuse and contain PHI [4, 35].
Our study using a CUI-based machine learning approach
for predicting all types of opioid misuse provides a PHI-
free solution and also accounts for lexical variations and
semantic ambiguities. In this approach, discovery is not
limited by domain knowledge or expertise, and other
entity mentions outside the opioid domain may prove
predictive.
Identification of opioid misuse incorporates a con-

tinuum of individuals who may occasionally use opioids

for non-medical purposes to opioid use disorders, and
these individuals commonly have co-occurring mental
health conditions and polysubstance use [36–38]. In
examining the CUI codes selected from logistic regression,
this becomes apparent as clinically relevant concepts that
are not explicit mentions of opioid drugs such as pain
conditions, victims of abuse, and adverse events of opioid
misuse are identified [39]. Also noteworthy is the logistic
regression classifier identified negative features such as
malignant neoplasms and acute pain conditions that are
not relevant to opioid misuse. The character-based ap-
proaches for opioid misuse also proved to be useful and
have similar discrimination to the logistic regression n-
gram model but face validity is not apparent in the more
complex, neural network architecture.
Our group has previously shown advantages to opioid

misuse phenotyping using transfer learning, but this
paradigm is more beneficial for tasks with small sample
sizes of training data [40]. In addition, transfer learning
further obscures the feature extraction from more
conventional neural architectures, which may be less

Fig. 3 Calibration plot for top performing machine learning classifiers for opioid misuse. The diagonal line represents perfect calibration between
predicted probabilities that are observed (y-axis) and predicted (x-axis). CNN = convolutions neural network; CUIs = concept unique identifiers;
LR = logistic regression; MPN =max pooling network
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appealing to healthcare providers. Our study utilized a
training set with adequate size to achieve AUROCs
above 0.90 and obviated any need for transfer learning.
A future direction in this field of research involves ex-
tending pre-trained models like the Bidirectional En-
coder Representations from Transformers (BERT) to
very long sequences of text (e.g., thousands of tokens).
Potential limitations of our approach include a data

corpus from a single hospital that may not represent the
practice variations across hospitals. Further, social and
behavioral determinants of health are typically limited in
the EHR or not available at all [41]; however, substance
use is a routinely captured data metric during intake in
notes by providers, which is why we focused only on
notes. The CUI approach did not prove to have appre-
ciable differences in performance from an n-gram ap-
proach; however, a lot of the medical vocabulary may be
lost during concept mapping to CUIs. This may prove to
be a limitation at other health systems and potentially
lead to high variance in extracted medical terms and, ul-
timately, performance of the classifier. For example,
while some non-standard terms such as “dope” and
“speedball” have CUIs, these terms may be unique to the

catchment of the health system with other slang used in
other regions of the US. Further misspellings of heroin
and opiate/opioid, undocumented sentence structure,
and other lexical variations may further contribute to
the variability in mapped CUI features. Lastly, the com-
puting resources needed to produce CUI codes and
process large amounts of notes may not be readily avail-
able at other hospitals, but we have previously published
a pipeline architecture for clinical data warehouses to
help overcome this barrier [42].

Conclusion
PHI-free approaches for building computable phenotypes
from clinical notes are needed for better surveillance and
case-identification. Opioid misuse is a complex behavioral
condition that requires information contained in the clin-
ical notes, and machine learning approaches for text clas-
sification are a viable solution for case-identification. Our
computable phenotypes for opioid misuse may prove use-
ful to health systems for more accurate identification and
surveillance of hospitalized patients without the risk of
leaking any PHI.

Abbreviations
PHI: Protected health information; CUI: Concept unique identifier;
NLP: Natural language processing; HER: Electronic health record;
ICD: International classification of disease; cTAKES: Clinical text and
knowledge extraction system; UMLS: Unified medical language system; ROC
AUC: Receiver operating characteristic area under the curve; PPV: Positive
predictive value; NPV: Negative predictive value; CNN: Convolutional neural
network; CDW: Clinical data warehouse; LUMC: Loyola University Medical
Center

Acknowledgements
We would like to thank Susan Zelisko, and Jason Boyda at Loyola’s Systems
Development and IT Department for providing the data from the clinical
data warehouse.

Authors’ contributions
All authors have read and approved the final version of this manuscript;
have made a substantial contribution to the conception, design, gathering,
analysis and/or interpretation of data and a contribution to the writing and
intellectual content of the article; and acknowledge that they have exercised
due care in ensuring the integrity of the work. Formal analysis: MA CJ, DD,
BS, KS. Funding acquisition: MA, NSK. Investigation: BS, MA, CJ, DD.
Methodology: DD, MA, BS, CJ, DD. Project administration: MA. Resources:
MA, CJ, NSK. Software: MA, CJ, DD, BS. Supervision: MA, CJ, DD, ESA, NSK.
Validation: MA, BS, CJ, DD, KS. Visualization: MA, BS, CJ, DD, BS. Writing –
original draft: MA, BS, DD, ESA. Writing – review & editing: MA, CJ, DD, ESA,
NSK.

Funding
This research was supported in part by the following:
(1) National Institute of Alcoholism and Alcohol Abuse grant number
K23AA024503 (MA)
This fund supported the Dr. Majid Afshar’s effort in performing the research
and writing the manuscript.
(2) National Library of Medicine grant number R01LM012973 (DD)
This fund supported the effort in experiments by Dr. Dmitriy Dligach in
neural network architectures.
(3) National Institute on Drug Abuse grant numbers R01DA04171 (NSK)
This fund provided the effort for Dr. Niranjan Karnik to share content
expertise in opioid misuse.
(4) Loyola’s Center for Health Outcomes and Informatics Research

Table 3 Concept Unique Identifiers (CUIs) for opioid misuse
from logistic regression classifier and their β coefficients

CUI Related text β coefficients

POSITIVE FEATURES

C0011892 Heroin 16.57

C0344198 Victim of abuse (finding) 12.70

C0562381 Cocaine 4.39

C0025605 Methadone 4.19

C0376196 Opiates 4.09

C0001927 Albuterol 2.40

C0728755 Dilaudid 1.73

C0029944 Drug Overdose 1.34

C0030049 Oxycodone 1.12

C0150055 Chronic pain 0.47

C0040861 Triage 0.47

C1299583 Independently able 0.19

C0022742 Knee 0.02

NEGATIVE FEATURES

C0002903 Anesthesia procedures −2.08

C0003483 Aorta −1.51

C0006826 Malignant Neoplasms −1.50

C1272883 Injection −1.36

C0006434 Burn injury −0.71

C0020538 Hypertensive disease −0.42

C0021641 Insulin −0.09

C0004604 Back Pain −0.01

Sharma et al. BMC Medical Informatics and Decision Making           (2020) 20:79 Page 9 of 11



This fund paid for the server and computing resources to store the data and
perform the analytics.

Availability of data and materials
The trained models generated from this study are available on the
corresponding author’s GitHub repository (https://github.com/
AfsharJoyceInfoLab/OpioidNLP_Classifier). The original patient data used for
model training are only available from Loyola University Medical Center and
Loyola University, where the data were extracted from the hospital’s
electronic health record (EHR) and contains patients’ protected health
information (PHI). These data can only be accessed for researchers who meet
the legal and regulatory criteria from the institution for access to confidential
data, including a data usage agreement and IRB approval with both Loyola
University Chicago and Loyola University Medical Center. Requests for data
may be initiated with the corresponding author (majid.afshar@lumc.edu).

Ethics approval and consent to participate
The study was approved by the Loyola University Chicago Institutional
Review Board (LU #211621). Need for patient consent was waived by the
Loyola University Chicago Institutional Review Board. However, the minimal
data underlying the results of this study are only available upon request due
to ethical and legal restrictions imposed by the Loyola University Chicago
Institutional Review Board (please see section on Data Availability).

Consent for publication
Not Applicable.

Competing interests
The authors declare they have no competing interests.

Author details
1Department of Computer Science, Loyola University Chicago, Chicago, IL,
USA. 2Center for Health Outcomes and Informatics Research, Loyola
University Chicago, 2160 S. First Avenue, Maywood, IL 60156, USA. 3Stritch
School of Medicine, Loyola University Chicago, Maywood, IL, USA. 4Center for
Multi-System Solutions to the Opioid Epidemic, American Institute for
Research, Chicago, IL, USA. 5Department of Psychiatry, Rush University
Medical Center, Chicago, IL, USA. 6Department of Health Informatics and
Data Science, Loyola University Chicago, Maywood, IL, USA. 7Department of
Medicine, Loyola University Medical Center, Maywood, IL, USA.

Received: 19 December 2019 Accepted: 22 April 2020

References
1. Demner-Fushman D, Chapman WW, McDonald CJ. What can natural

language processing do for clinical decision support? J Biomed Inform.
2009;42:760–72.

2. Jones BE, South BR, Shao Y, et al. Development and validation of a natural
language processing tool to identify patients treated for pneumonia across
VA emergency departments. Appl Clin Inform. 2018;9:122–8.

3. Castro VM, Dligach D, Finan S, et al. Large-scale identification of patients
with cerebral aneurysms using natural language processing. Neurology.
2017;88:164–8.

4. Carrell DS, Cronkite D, Palmer RE, Saunders K, Gross DE, Masters ET, Hylan
TR, Von Korff M. Using natural language processing to identify problem
usage of prescription opioids. Int J Med Inform. 2015;84:1057–64.

5. Friedlin FJ, McDonald CJ. A software tool for removing patient
identifying information from clinical documents. J Am Med Inform
Assoc. 2008;15:601–10.

6. Meystre SM, Friedlin FJ, South BR, Shen S, Samore MH. Automatic de-
identification of textual documents in the electronic health record: a review
of recent research. BMC Med Res Methodol. 2010;10:70.

7. Meystre SM, Ferrandez O, Friedlin FJ, South BR, Shen S, Samore MH. Text
de-identification for privacy protection: a study of its impact on clinical text
information content. J Biomed Inform. 2014;50:142–50.

8. Ferrandez O, South BR, Shen, Friedlin FJ, Samore MH, Meystre SM.
Generalizability and comparison of automatic clinical text de-identification
methods and resources. AMIA Annu Symp Proc. 2012;2012:199–208.

9. National Institute of Drug Abuse. Misuse of prescription drugs. https://www.
drugabuse.gov/publications/misuse-prescription-drugs/overview. Accessed
10 Oct 2019.

10. Center for Behavioral Health Statistics and Quality. 2015 National Survey on
drug use and health: methodological summary and definitions. Rockville:
MSAaMHS; 2016.

11. Canan C, Polinski JM, Alexander GC, et al. Automatable algorithms to
identify nonmedical opioid use using electronic data: a systematic review. J
Am Med Inform Assoc. 2017;24:1204–10.

12. Boscarino JA, Moorman AC, Rupp LB, et al. Comparison of ICD-9 codes for
depression and alcohol misuse to survey instruments suggests these codes
should be used with caution. Dig Dis Sci. 2017;62:2704–12.

13. Birman-Deych EWA, Yan Y, Nilasena DS, et al. Accuracy of ICD-9-CM
codes for identifying cardiovascular and stroke risk factors. Med Care.
2005;43:480–5.

14. Weiss AJ, Bailey MK, O'Malley L, et al. Patient characteristics of opioid-related
inpatient stays and emergency department visits nationally and by state,
2014: statistical brief #224. Rockville: Healthcare Cost and Utilization Project
(HCUP) Statistical Briefs; 2006.

15. Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical text analysis and
knowledge extraction system (cTAKES): architecture, component evaluation
and applications. J Am Med Inform Assoc. 2010;17:507–13.

16. Hughes M, Li I, Kotoulas S, et al. Medical text classification using
convolutional neural networks. Stud Health Technol Inform. 2017;235:
246–50.

17. Iyyer M MV, Boyd-Graber J, Daume H. Deep unordered composition rivals
syntactic methods for text classification. Paper presented at: Proceedings of
the 53rd Annual Meeting of the Association of Computational Linguistics:
volume 1, 2015; Beijing, China. 2015. https://www.aclweb.org/anthology/
P15-1162/.

18. Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of tricks for efficient text
classification. Paper presented at: Proceedings of the 53rd Annual Meeting
of the Association of Computational Linguistics: volume 2, 2017; Valencia,
Spain. 2017. https://www.aclweb.org/anthology/E17-2068/.

19. Shen D, Wang G, Wang W, et al. Baseline needs more love: on simple word-
embedding-based models and associated pooling mechanisms. Paper
presented at: Proceedings of the 56th Annual Meeting of the Association of
Computational Linguistics: volume 1, 2018; Melbourne, Australia. 2018.
https://www.aclweb.org/anthology/P18-1041.

20. Y BJaB. Random search for hyper-paramater optimization. J Mach Learn Res.
2012;13:281–305.

21. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under
two or more correlated receiver operating characteristic curves: a
nonparametric approach. Biometrics. 1988;44:837–45.

22. Ford E, Carroll JA, Smith HE, et al. Extracting information from the text of
electronic medical records to improve case detection: a systematic review. J
Am Med Inform Assoc. 2016;23:1007–15.

23. Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from
textual documents in the electronic health record: a review of recent
research. Yearb Med Inform. 2008;17:128–44.

24. Jiang Z, Zhao C, He B, et al. De-identification of medical records using
conditional random fields and long short-term memory networks. J Biomed
Inform. 2017;75S:S43–53.

25. Stubbs A, Kotfila C, Uzuner O. Autmoated systems for the de-identification
of longitudinal clinical narratives: overview of 2014 i2b2/UTHealth shared
task track 1. J Biomed Inform. 2015;58:S11–9.

26. Liu Z, Tang B, Wang X, et al. De-identification of clinical notes via
recurrent neural network and condition random field. J Biomed Inform.
2017;75S:S34–42.

27. Matt Dinerstein versus Google LLC and The University of Chicago. Class
actiona complaint and demand for jury trial. United States Distrcit Court.
Document accesed on 9 Sept 2019 at https://edelson.com/wp-content/
uploads/2016/05/Dinerstein-Google-DKT-001-Complaint.pdf.

28. Gonzalez-Hernandez G, Sarker A, O'Connor, et al. Capturing the patient’s
perspective: a review of advances in natural language processing of health-
related text. Yearb Med Inform. 2017;26:214–27.

29. Shivade C, Raghavan P, Fosler-Lussier E, et al. A review of approaches to
identifying patient phenotype cohorts using electronic health records. J Am
Med Inform Assoc. 2014;21:221.

30. Afshar M, Phillips A, Karnik N, et al. Natural language processing and
machine learning to identify alcohol misuse from the electronic health

Sharma et al. BMC Medical Informatics and Decision Making           (2020) 20:79 Page 10 of 11

https://github.com/AfsharJoyceInfoLab/OpioidNLP_Classifier
https://github.com/AfsharJoyceInfoLab/OpioidNLP_Classifier
mailto:majid.afshar@lumc.edu
https://www.drugabuse.gov/publications/misuse-prescription-drugs/overview
https://www.drugabuse.gov/publications/misuse-prescription-drugs/overview
https://www.aclweb.org/anthology/P15-1162/
https://www.aclweb.org/anthology/P15-1162/
https://www.aclweb.org/anthology/E17-2068/
https://www.aclweb.org/anthology/P18-1041
https://edelson.com/wp-content/uploads/2016/05/Dinerstein-Google-DKT-001-Complaint.pdf
https://edelson.com/wp-content/uploads/2016/05/Dinerstein-Google-DKT-001-Complaint.pdf


record in trauma patients: development and internal validation. J Am Med
Inform Assoc. 2019;26:254–61.

31. Afshar M, Joyce C, Oakey A, et al. A computable phenotype for acute
respiratory distress syndrome using natural language processing and
machine learning. AMIA Annu Symp Proc. 2018;2018:157–65.

32. Hylan TR, Von Korff M, Saunders K, et al. Automated prediction of risk for
problem opioid use in a primary care setting. J Pain. 2015;16:380–7.

33. Smith RC, Frank C, Gardiner JC, et al. Pilot study of a preliminary criterion
standard for prescription opioid misuse. Am J Drug Alcohol Abuse. 2010;19:
523–8.

34. Wang Y, Chen ES, Pakhomov S, et al. Automated extraction of substance use
information from clinical texts. AMIA Annu Symp Proc. 2015;2015:2121–30.

35. Lingeman JM, Wang P, Becker, et al. Detecting opioid-related aberrant
behavior using natural language processing. AMIA Annu Symp Proc. 2017;
2018:1179–85.

36. Edlund MJ, Steffick D, Hudson T, et al. Risk factors for clinically recognized
opioid abuse and dependence among veterans using opioids for chronic
non-cancer pain. Pain. 2007;129:355–62.

37. Doran KM, Rahai N, McCormack RP, et al. Substance use and homelessness
among emergency department patients. Drug Alcohol Depend. 2018;188:
328–33.

38. Lee C, Sharma M, Kantorovich S, Brenton A. A predictive algorithm to detect
opioid use disorder: what is the utility in a primary care setting? Health Serv
Res Manag Epidemiol. 2018;5:2333392817747467.

39. Grigsby TJ, Howard JT. Prescription opioid misuse and comorbid substance
use: past 30-day prevalence, correlates and co-occurring behavioral
indicators in the 2016 national survey on drug use and health. Am J Addict.
2019;28:111–8.

40. Dligach D, Afshar M, Miller T. Toward a clinical text encoder: pretraining for
clinical natural language processing with applications to substance misuse.
J Am Med Inform Assoc. 2019;26:1272.

41. Arons A, DeSilvey S, Fichtenberg C, et al. Documenting social determinants
of health-related clinical activities using standardized medical vocabularies.
JAMIA Open. 2019;2:81–8.

42. Afshar M, Dligach D, Sharma B, et al. Development and application of a
high throughput natural language processing architecture to convert all
clinical documents in a clinical data warehouse into standardized medical
vocabularies. J Am Med Inform Assoc. 2019;26:1364–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Sharma et al. BMC Medical Informatics and Decision Making           (2020) 20:79 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Population and setting
	Sampling of hospital cohort to build reference dataset for opioid misuse computable phenotype
	Rule-based opioid misuse computable phenotype for comparison to machine learning models
	Machine learning models: PHI-free and PHI-laden
	Model evaluation and comparisons

	Results
	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

