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classification of mild cognitive impairment
Harsh Bhasin* , Ramesh Kumar Agrawal and For Alzheimer’s Disease Neuroimaging Initiative

Abstract

Background: The detection of Alzheimer’s Disease (AD) in its formative stages, especially in Mild Cognitive
Impairments (MCI), has the potential of helping the clinicians in understanding the condition. The literature review
shows that the classification of MCI-converts and MCI-non-converts has not been explored profusely and the
maximum classification accuracy reported is rather low. Thus, this paper proposes a Machine Learning approach for
classifying patients of MCI into two groups one who converted to AD and the others who are not diagnosed with
any signs of AD. The proposed algorithm is also used to distinguish MCI patients from controls (CN). This work uses
the Structural Magnetic Resonance Imaging data.

Methods: This work proposes a 3-D variant of Local Binary Pattern (LBP), called LBP-20 for extracting features. The
method has been compared with 3D-Discrete Wavelet Transform (3D-DWT). Subsequently, a combination of 3D-
DWT and LBP-20 has been used for extracting features. The relevant features are selected using the Fisher
Discriminant Ratio (FDR) and finally the classification has been carried out using the Support Vector Machine.

Results: The combination of 3D-DWT with LBP-20 results in a maximum accuracy of 88.77. Similarly, the proposed
combination of methods is also applied to distinguish MCI from CN. The proposed method results in the
classification accuracy of 90.31 in this data.

Conclusion: The proposed combination is able to extract relevant distribution of microstructures from each
component, obtained with the use of DWT and thereby improving the classification accuracy. Moreover, the
number of features used for classification is significantly less as compared to those obtained by 3D-DWT. The
performance of the proposed method is measured in terms of accuracy, specificity and sensitivity and is found
superior in comparison to the existing methods. Thus, the proposed method may contribute to effective diagnosis
of MCI and may prove advantageous in clinical settings.

Keywords: Mild cognitive impairments, Machine learning, 3D discrete wavelet transform, 3D local binary pattern,
Magnetic resonance imaging

Background
Alzheimer’s Disease (AD) is one of the most common
neuro-degenerative disease in elderly people [1]. Accord-
ing to the National Institute of Ageing, though Alzhei-
mer’s is incurable, it is not intractable [2]. Medicines are
available for treating the symptoms and the established
strategies can be employed to enhance the general brain
and mental conditions. However, the treatment is

effective only in the case of early detection. Mild Cogni-
tive Impairment (MCI) is a prodromal stage of dementia
and can be considered as a transitional phase from the
likely cognitive decline of normal aging to the graver de-
cline of dementia [3]. This makes the diagnosis of MCI
predominantly vital as appropriate steps can be taken to
slow down the progression.
MCI causes a slight but noticeable and measurable de-

cline in cognitive abilities, including memory and think-
ing skills [4]. As per Ward [5], the Annual Conversion
Rates, from MCI to AD ranged from 7.5 to 16.5 per
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person-year. Researchers have identified the following
changes in the autopsy studies of people suffering from
MCI [6]:

� Abnormal clusters of beta-amyloid protein (plaques)
� Microscopic protein clumps of tau characteristic of

AD (tangles)
� Lewy bodies, which are microscopic clumps of

another protein associated with forms of dementia
like AD and

� Small strokes or reduced blood flow through brain
blood vessels.

MCI can be detected by either clinical tests or by brain
scans. A medical professional determines the presence
or absence of MCI by evaluating a person’s cognitive
and behavioural changes and by using professional
judgement about the possible causes and severity of the
symptoms [6]. Some of the common clinical tests used
for the detection of MCI are Mini Mental State Examin-
ation, Clock Test, Logical Memory, Rey Auditory Verbal
Learning Test, Digit Span Category Fluency Tests, Trail
Making Test A-B, Boston Naming Test, American Na-
tional Adult Reading Test, Alzheimer’s Disease Assess-
ment Scale-Cognitive Behaviour, Geriatric Depression
Scale and Functional Assessment Questionnaire [7, 8].
In recent years, the veracity of the brain imaging tech-
niques has been used for the classification of

a) MCI and controls and
b) MCI-C and MCI-NC.

Imaging modalities like Functional Magnetic Resonance
Imaging (fMRI) [9, 10], Positron Emission Tomography
(PET) [11], structural Magnetic Resonance Imaging (s-
MRI) [12–26], etc. have been used to diagnose MCI.
Manual assessment of MCI requires more time, re-

sources and expertise, which is highly inconvenient and
costly to the patient. In the past two decades, detection
of MCI has drawn the attention of Image Processing (IP)
and Machine Learning (ML) community. ML based
methods can be used to distinguish MCI patients from
AD patients or controls. These methods require lesser
manual intervention of experts and may be less costly.
Moreover, these techniques provide better visualization
of the huge data compared to manual methods.
It was found, from research works [12–24], that the

classification of i) MCI-C and MCI-NC and ii) MCI and
CN require immediate attention owing to two reasons: i)
The above classes have not been explored copiously ii)
The maximum classification accuracy reported is rather
low [12–24]. This calls for the application of pertinent
feature extraction and feature selection methods which
can improve the performance.

The s-MRI can be used to access the structural
changes in the brain associated with MCI. Researchers
have used cortical atrophy for diagnosing MCI [27].
Moreover, the regions of the brain namely hippocampus,
amygdala and ehorhinal cortex have found to be import-
ant in the diagnosis of MCI [28]. Researchers [27–29]
have explored the Regions of Interest (ROIs) based ana-
lysis for automatic MCI diagnosis. These ROIs have
been determined either by predefinition or by adaptive
parcellation. These methods can be segregated into sin-
gle ROI methods and multiple ROIs methods. The hip-
pocampal volume was used to discriminate MCI and NC
patients by Chupin [15]. The combination of hippocam-
pus features and cerebrospinal fluid (CSF) volume was
used for this task by Ahmed et al. [23]. Magnin et al.
[26] used 90 features to represent 90 ROIs of the whole
brain, where each feature describes relative weight of
GM compared to WM and CSF. These approaches miss
out the effect of the other regions on the disease and
also subdue the fact that the regions of the brain are
interconnected.
Texture classification acts like a significant protagonist

in the bids of computer vision like image retrieval, video
retrieval, and medical diagnosis [30]. In order to carry
out texture classification, it is essential to extract good
features from an image to distinguish diverse textures.
Texture analysis methods like Gray Level Co-occurrence
Matrices (GLCM) [31, 32], Discrete Wavelet Transform
(DWT) [33], Local Binary Pattern (LBP) [34] etc. have
been used in medical image analysis. GLCM measures
the average degree correlation between pairs of pixels in
different aspects [32]. The discrimination capabilities of
GLCM depends on the choice of the separation distance
between pixels, which is difficult to ascertain. The
Wavelet Transform (WT) allows localization in both
spatial and local transients like surfaces in 3D volumes,
which help in apprehending finer minutiae of brain MRI
data present in different directions. However, the num-
ber of features obtained by the DWT is huge. LBP, an-
other popular feature extraction technique, can be used
to gauge the statistical and structural information to rep-
resent the image [34]. It captures the underlying distri-
bution of various microstructures like edges etc. [35–
37]. Moreover, it also represents original data with lesser
number of features. However, it does not retain the
spatial distribution of different patterns present in the
image.
In this paper, in order to generate a rich representa-

tion of anatomical structures, which will be more dis-
criminative to separate different groups of subjects, a
combination of 3D-DWT and a variant of 3D-LBP is
proposed. First level decomposition of an MRI using
3D-DWT provides one approximate and seven detailed
components. Each detailed component captures different
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orientation of micro-structures. However, the number of
features obtained from the seven detailed components is
large. Each of these seven detailed components is repre-
sented compactly using 3D-LBP.
The 3D-LBP with 18 neighbours results in 262,144

features. Further reduction in the number of features
can be done by applying the rotation invariant and uni-
form variants of the LBP. We have investigated i) basic
3D-LBP, ii) rotation invariant 3D-LBP and iii) uniform
3D-LBP and out of these the one which gives the best
result has been clubbed with 3D-DWT. To the best of
our knowledge, no research work carried out till date
has applied a combination of 3D-DWT and 3D-LBP on
the s-MRI data to distinguish MCI-C from MCI-NC and
MCI from CN. Further, Fisher Discriminant ratio (FDR)
is applied to determine a set of relevant features and the
well-known Support Vector Machine is used to develop
a decision model. The performance of the proposed
method is compared with existing methods on a publicly
available ADNI data.

Availability of data and materials
ADNI database
The datasets supporting the conclusions of this article
are available in the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) repository, Data used in the prepar-
ation of this article were obtained from the ADNI data-
base (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal In-
vestigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether Magnetic Resonance Im-
aging (MRI), PET, other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of MCI and early AD.

Retrieval of data
The ADNI database was queried for controls (CN), those
converted to AD (MCI-C) and those not converted to
AD (MCI-NC). The protocol of data selection and image
acquisition of the subjects takes into consideration age
matching, appropriate number of slices, required param-
eters etc. and has been adopted from paper [38]. How-
ever, the data of all the CN subjects was not available
and hence more CN subjects were selected from the
database. This study uses 75 MCI-C, 89 CN and 112
MCI-NC processed NIFTI images of patients. The MCI-
NC patients ranged between the ages 56 and 88. The
controls were of the ages between 63 and 90 and MCI-C
patients ranged between the ages 55 and 87. All the pat-
ents had Mini Mental State Examination score between
18 and 27 and a CDR of 0.5 or 1. The T1 weighted s-
MRI images collected had the following field strength:
1.5 Tesla, TE = 3.6099 ms, TE = 3000 ms. Table 1 shows
the relevant data of the patients.

Pre-processing
In the literature, Structural Magnetic Resonance Imaging
(s-MRI) has been widely used to detect MCI. However,
before extracting features from an image, pre-processing
is required. For this, Statistical Parametric Mapping
(SPM) is used [39].
The pre-processing of the s-MRI images includes the

following: a) Slice time correction, which is required if
the temporal dynamics of evoked responses are import-
ant. This was performed as it may improve the perform-
ance; b) Head motion correction, which is referred to as
realignment; c) Spatial Normalization, which is the co-
registration with the standard MNI template in order to
overcome brain shape variability; d) Special smoothen-
ing, in which the weighted average of the neighbouring
voxels is found and the intensity value of a voxel is re-
placed by it and e) Tissue segmentation, which is the
segregation of brain tissues into three tissue classes
namely gray matter, white matter and cerebro-spinal
fluid. In the literature, it has been found that gray matter
atrophy is responsible for Mild Cognitive Impairments
[40, 41]. For this reason, gray matter is used for building
a ML based model to diagnose MCI. The most common
method to measure differences in local concentrations of
brain tissue is Voxel Based Morphometry (VBM). In
VBM a voxel-wise comparison of the local concentration
of gray matter between the two groups of subject is car-
ried out [42]. However, in VBM also, pre-processing is
required which includes registration to a standard tem-
plate, followed by smoothening and segmentation.

Methods
3D-discrete wavelet transform
The Fourier Transform (FT) is commonly used to deter-
mine the frequency spectrum of a signal, for better ana-
lysis of the signal. However, in the case of a non-
stationary signal, FT is not of much use. For signals
where time localization of spectral components is
needed, one solution is to adopt Short-Time-Fourier-
Transform (STFT) to get frequency components of local
time intervals of fixed duration. However, in the case of
signals having non-periodic fast-transitions (i.e. high fre-
quency content for short duration), wavelet transform
(WT) is suggested to be a better option in literature
[43]. The WT analyses a signal at different frequencies
with different resolutions, which makes it to be an excel-
lent tool for the analysis of transient signals.

Table 1 Demographic and Clinical Information of the subjects

Group MCI-NC (n = 112) MCI-C (n = 75) CN (n = 89)

Female/ Male 51/61 33/42 45/44

Age (Mean ± SD) 74.83 ± 7.34 74.69 ± 7.28 75.21 ± 5.13
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WT can be categorized on the basis of orthogonal
property of wavelet into Continuous wavelet transform
(CWT), which uses non-orthogonal wavelet and Discrete
Wavelet Transform (DWT) which uses orthogonal
wavelet. The CWT is often used to characterize singu-
larities in functions, but disadvantages like infinite num-
ber of wavelets, redundancy, no analytical solutions for
most of the functions in CWT, etc. make it difficult to
use [43]. Hence, DWT is commonly used in literature.
There are two filters involved in the analysis bank of

DWT, one is the wavelet (detailed) filter, and the other
is the scaling (averaging) filter. Wavelet expansion of a
discrete function f(x) in terms of wavelet ψ(x) and scal-
ing function τ(x) is defined as follows [43]:

f xð Þ ¼ 1ffiffiffiffi
A

p
X
a

W τ P; að ÞτP;a xð Þ þ 1ffiffiffiffi
A

p
XP
p¼1

X
a

W ψ p; að Þψp;a xð Þ

ð1Þ

where 1ffiffiffi
A

p is normalizing factor, P is the decomposition
level, ψp, a(x) are detailed or wavelet coefficients and τP,
a(x) are averaging or scaling coefficients are discrete
functions in and where a ¼ f 0; 1; 2;…; A2p −1g [44]. The
scaling and detailed coefficients are computed as:

W τ P; að Þ ¼ 1ffiffiffiffi
A

p
XA−1
x¼0

f xð Þ~τ P;að Þ xð Þ ð2Þ

Wψ p; að Þ ¼ 1ffiffiffiffi
A

p
XA−1
x¼0

f xð Þ~ψ p;að Þ xð Þ ð3Þ

1D DWT can be extended to 3D DWT for 3D brain
volumes. In 3D DWT [44], we have one 3D approximate
coefficient (scaling function) τ(a, b, c) and seven 3D de-
tailed coefficients ψi(l,m, n), where i ∈ {1, 2,…, 7}. The
function τ(a, b, c) in 3-D, is the product of τ(a),
τ(b) and τ(c). Also, each ψi(a, b, c) is the product of all
seven possible combinations of 1-D τ and ψ, with at least
one ψ. The above functions help us to find Wi

ψðp; a; b; c
Þ. The functions have been defined as follows [44]:

τ a; b; cð Þ ¼ τ að Þτ bð Þτ cð Þ ð4Þ
ψ1 a; b; cð Þ ¼ ψ að Þτ bð Þτ cð Þ ð5Þ
ψ2 a; b; cð Þ ¼ τ að Þψ bð Þτ cð Þ ð6Þ
ψ3 a; b; cð Þ ¼ ψ að Þψ bð Þτ cð Þ ð7Þ
ψ4 a; b; cð Þ ¼ τ að Þτ bð Þψ cð Þ ð8Þ
ψ5 a; b; cð Þ ¼ ψ að Þτ bð Þψ cð Þ ð9Þ
ψ6 a; b; cð Þ ¼ τ að Þψ bð Þψ cð Þ ð10Þ

ψ7 a; b; cð Þ ¼ ψ að Þψ bð Þψ cð Þ ð11Þ

Wavelet expansion of 3D image volume of size A ×
B ×C can be expressed as:

f l;m; nð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
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τP;a;b;c l;m; nð Þ ¼ 2
P
2τ 2Pl−a; 2Pm−b; 2Pn−c
� �

; and

ð15Þ

This study uses the ‘db2’ wavelet function.

Local binary pattern and its variants
Local Binary Pattern (LBP) is a common feature extrac-
tion technique [35]. The technique can be used to gauge
the statistical and structural information [35]. The LBP
values capture the underlying distribution of various mi-
crostructures like edges etc. The LBP value of each pixel
is calculated by comparing the pixel value with the in-
tensity of its neighbours using the following formula.

LBPQ;R ¼
XQ
i¼1

2i−1 � ξ IQ−Icenter
� � ð16Þ

where

ξðxÞ ¼ f 1; i f x≥0

0; i f x < 0
ð17Þ

Here, Q is the total number of neighbours and R is the
radius from the central pixel, Icenter. After the computa-
tion of LBP value for each pixel, a histogram of 2Q bins
is obtained.
The 2-dimensional LBP can be extended to 3-

dimension as follows. For each voxel, its intensity is
compared with the intensity of the neighbouring voxels.
The 18 neighbouring voxels present at the Axial, Cor-
onal, Sagittal and diagonal planes have been considered.
This work considers 18 neighbours and threshold their

intensity with respect to the central one, Icenter.
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LBPQ;R ¼
X18
i¼1

2i−1 � f IQ−Icenter
� � ð18Þ

where

f xð Þ ¼ 1; if x≥0
0; if x < 0

�
ð19Þ

The above technique results in a histogram with 262,
144 bins. This method henceforth would be referred to
as the LBP-3D method.
It may be further noted that the number of bins in the

histogram, so obtained, is humungous. This can be fur-
ther reduced by applying the uniform and rotation in-
variant methods in 3D. The Uniform LBP is one that
contains at most two ‘0 to 1’ or ‘1 to 0’ transitions [35,
36]. In case of an n-bit binary number (n-neighbour-
hood), there are n × (n − 1) + 3 uniform binary patterns.
The corresponding histogram of a uniform LBP would
therefore contain a lesser number of bins as compared
to the conventional LBP, which contain 2n bins. In this
work, 18 neighbourhoods have been used, so by the ap-
plication of uniform LBP, the number of features is re-
duced to 309. This method would be henceforth referred
to as LBP-309.
The uniform-rotation-invariant LBP considers a pattern

and all the patterns obtained by shifting the given pattern
one bit to the right till the same pattern is obtained [35].
For an n-bit number, the uniform-rotation-invariant LBP
has (n + 2) bins thus reducing the number of features to a
great extent. For example, in case of 18 neighbourhoods
in 3-D, the pattern can be described as a 18-bit number
and the number of features to represent each slice 20 in
the case of the rotation-invariant version. This method
would henceforth be referred to as LBP-20.

3D DWT + LBP-20
The experiments bring forth the point that the perform-
ance of LBP-20 exceeds the rest of the variants in terms
of specificity, accuracy and sensitivity. Moreover, the
number of features in LBP-20 is despondently low. For
this reason, this work proposes a combination of 3D-
DWT and LBP-20 for extracting features. This method
would be henceforth referred to as 3D-DWT + LBP-20.
Feature Selection.
Some features extracted in brain imaging may be re-

dundant or noisy and even negatively affect the perform-
ance of the decision model. This makes the feature
selection an indispensable step before performance clas-
sification. Fisher Discriminant Ratio (FDR) is a simple
and effective method which measures the discrimination
power for a given feature between data of two different
classes [45]. The FDR score of the ith feature is calcu-
lated as follows:

FDR ið Þ ¼ mi
1−m

i
2

� �2
= σi1

� �2 þ σi2
� �2� �

ð20Þ

Where, mi
1 is the mean of samples, of the ith feature,

that belong to the first class; mi
2 is the mean of samples,

of the ith feature, that belong to the second class, σ i1 is
the standard deviation of samples, of the ith feature, that
belong to the first class; σ i2 is the standard deviation of
samples, of the ith feature, that belong to the second
class.
Feature with a higher value is considered to be more

relevant. Hence, the calculation of the FDR values of fea-
tures is followed by the arrangement of the features in
descending order of FDR values.

Classification and evaluation
For a two-class problem, the Support Vector Machine
crafts a hyperplane, which separates the data points of
the two classes by maximum margin [46]. For the pur-
pose of classification, linear kernel is used. To evaluate
the performance of the proposed system, accuracy
(ACC), sensitivity (SEN), and specificity (SPE) are used,
which are calculated as follows:

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

ð21Þ

SENS ¼ TP
TP þ FN

ð22Þ

SPEC ¼ TN
TN þ FP

ð23Þ

where FP, FN, TP and TN and are the number of false
positive samples, false negative samples, true positive
samples and true negative samples and respectively.
In order to calculate the performance of the proposed

decision system and to set the system parameters, nested
10-fold validation scheme is used. In this scheme, the
data is divided randomly into 10 equal sized subsets. In
each fold 9 subsets are used for training and validation
and one subset is used for testing. This process is re-
peated 10 times and each subset is used exactly once for
testing. This constitutes outer folds. In each outer fold,
10 inner fold are made such that the training and valid-
ation data is further divided into 10 equal subsets. In
each inner fold 9 subsets are used for training data and
one for validation. The experimental results of the inner
folds are used for setting the system parameters.
In the experiment, for each feature the average accur-

acy was found over the outer 10 CV-Fold. The variation
of this average accuracy with the number of features was
then noted. The number of features for which the per-
formance is best is then reported. The average and the
standard deviation are then reported as the performance
of the proposed system.
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The procedure for the proposed framework is summa-
rized as follows. It is also depicted in Fig. 1.

Diagnosis of MCI
For the given data

1) Divide the data into train and test set.
2) Perform the following computation for each MRI

volume of the train set:
a. Extract 7 detailed components from each MRI

using 3D-DWT.
b. Obtain features from each of the 7 detailed

components using 3D- LBP-20.

c. Concatenate the features obtained from the 7
volumes to obtain 140 features.

3) Apply FDR to order the features obtained from
the step 2 in terms of their relevance
(decreasing values of their FDR values). The
indices so obtained would be used in testing
phase.

4) Train the model using the train set.
5) For the test set apply all the steps of 2. Use the

indices obtained in step 3) to represent the MRI
volume. Obtain accuracy, specificity and sensitivity
of the proposed method.

Fig. 1 Flowchart of the training phase of 3D-DWT-LBP-20
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Results
Firstly, the proposed pipeline is applied to distinguish
MCI-C from MCI-NC. The features from the pre-
processed data are extracted through the LBP-3D
method which results in 262,144 features. The features
are placed in the descending order of their FDR values
and are included incrementally in order of their rele-
vance to develop a decision model. This work uses
nested cross validation. It may be noted that the max-
imum accuracy of 0.7644 is. The same procedure is used
with LBP-309 in which the maximum accuracy of 0.8361
is obtained. In the case of LBP-20, the maximum accur-
acy of 0.8432 is obtained. The application of 3D-DWT
results in the maximum accuracy of 0.8574. Based on

these observations 3D-DWT is combined with LBP-20,
which results in a maximum accuracy of 0.0.8877. Simi-
larly, the proposed combination of methods is also ap-
plied to distinguish MCI from CN data. Results similar
to those obtained in MCI-C and MCI-NC data are ob-
served.. The summarized results are shown in Table 2.

Discussion
From the results presented in Table 2, the following can
be inferred:

� The combination of 3D-DWT with LBP20 after a cer-
tain number of features gives better performance than
individual feature extraction methods such as 3D-

Table 2 Comparison of performance of various methods to distinguish MCI-C from MCI-NC and MCI from CN

Dataset Model Original Number
of Features

Accuracy Specificity Sensitivity Average Number
of Features

MCI-C vs. MCI-NC 3D DWT 1,359,872 0.8574 ± 0.0073 0.8564 ± 0.0068 0.8555 ± 0.0099 271.8 ± 79.35

LBP-3D 262,144 0.7644 ± 0.0395 0.7497 ± 0.0291 0.8100 ± 0.0237 232.6 ± 29.28

LBP-309 309 0.8361 ± 0.0209 0.8453 ± 0.0264 0.8363 ± 0.0238 194.5 ± 59.68

LBP-20 20 0.8432 ± 0.0131 0.8416 ± 0.0093 0.8411 ± 0.0132 16 ± 2.49

3D DWT + LBP-20 140 0.8877 ± 0.0167 0.8916 ± 0.0216 0.9016 ± 0.0054 15.3 ± 2.40

MCI vs. CN 3D DWT 1,359,872 0.8834 ± 0.0072 0.8846 ± 0.0064 0.8802 ± 0.0072 235.6 ± 95.01

LBP-3D 262,144 0.7763 ± 0.0267 0.7805 ± 0.0331 0.7900 ± 0.0342 230.4 ± 3
8.29

LBP-309 309 0.8791 ± 0.0134 0.8780 ± 0.0167 0.8631 ± 0.0158 188 ± 67.42

LBP-20 20 0.8847 ± 0.0086 0.8699 ± 0.0137 0.8575 ± 0.0115 15.1 ± 2.33

3D DWT + LBP-20 140 0.9031 ± 0.0137 0.9015 ± 0.0168 0.9022 ± 0.0134 16.2 ± 1.39

Table 3 Comparison of performance of the proposed method with existing works

Method Accuracy (%) Sensitivity (%) Specificity (%)

MCI-C vs. MCI-NC Colliot et al. 2008 [13] 66 66 65

Chupin et al. 2009 [15] 65 68

Andrea Chincarini et.al., 2011 [16] _ 72 65

Chong-Yaw Wee et.al., 2013 [19]. 75.05 63.52 84.41

Tong Tong et al., 2014 [20]. 72 69 74

Suk et al. 2014 [21] 72.42 36.70 90.98

Liu et al. 2018 [24] 72.08 75.11 71.05

3D-DWT + LBP12 0.8877 0.8916 0.9016

MCI vs. CN Pennanen et al.2004 [12] 65.9 66.2 65.5

Chupin et al. 2009 [15] 75 74

Carlton Chu et al., 2011 [17] 67.3 _ _

Chong-Yaw Wee et.al., 2013 [19]. 92.33 83.55 83.95

Suk et al. 2014 [21] 84.24 99.58 53.79

Ahmed et al. 2015 [23] 78.22 70.73 83.34

Khedher et al. 2015 [22] 80.27 73.51 82.70

Liu et al. 2018 [24] 85.79 88.91 80.34

Proposed Model 0.9031 0.9015 0.9022
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DWT, LBP-3D, LBP-309, LBP-20. The combination
provides maximum accuracy of i) 0.8877in the case of
MCI-C vs MCI-NC and ii) 0.9031 MCI vs CN.

� LBP-3D gives poorest performance amongst the
variants of LBP and 3D DWT.

� LBP-20 gives the best performance amongst the
variants of LBP and utilize only 20 features for this.

� For each feature extraction method, the performance
improves with the increase in number of features
initially and becomes almost stable thereafter.

� On applying the proposed method, the specificity of
0.9016 and the sensitivity of 0.8916 is obtained in
the case of MCI-C vs MCI-NC and the specificity of

0.9022 and the sensitivity of 0.9015 is obtained in
the case of MCI vs CN.

The comparison of the accuracy, specificity and sensitiv-
ity of the proposed model with the existing models is pre-
sented in Table 3. It can be observed from the table that
the proposed method performs well not only in terms of
classification accuracy but also in terms of specificity and
sensitivity for both i) MCI-C vs MCI-NC and ii) MCI vs
CN.
Although each of the seven detailed components ob-

tained with the application of 3D-DWT captures local-
ized edges of different orientation, the number of

Fig. 2 The comparison of the normalized features obtained with LBP-20 and 3D-DWT+ LBP-20: Here, DWT1, DWT2 etc. are the seven detailed
components obtained using the 3D-DWT
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features so obtained is quite large. Because of this, it re-
quires large amount of memory and computation time
to build a decision model. On the other hand, LBP-20
provides global distribution of patterns present in MRI
volume with few features but omits finer details. The
combination of 3D-DWT and LBP-20 brings advantages
of the two methods. With the use of combination, the
MRI volume is compactly represented in terms of distri-
butions of different patterns from each of the seven de-
tailed components obtained from 3D-DWT without
omitting any relevant details. Hence, the combination of
two methods provides better distinguishing power to dif-
ferentiate two different types of MRI volumes. This is
also reflected in our empirical analysis.
To understand the better performance of the proposed

technique in comparison to LBP-20, we initially normal-
ized the individual features of both the methods i.e.
LBP-20 and 3D-DWT + LBP-20. Subsequently the aver-
age value of individual feature is computed class wise,
separately for both the methods. The comparison of the
two methods to distinguish the two classes is shown in
Fig. 2. The maximum difference between the values, in
case of LBP-20 is 0.302 whereas the maximum difference
between the values, in case of 3D-DWT + LBP20 is
0.613. This may be attributed to the ability of capturing
more relevant patterns to distinguish the data of the two
classes using the proposed method in comparison the
LBP-20. It may also be noted that there are two or three
peaks in most of the graphs, indicating that the corre-
sponding bins may contribute to the classification of the
two classes owing to a marked difference between the
values of the two classes.

Conclusion
In this paper, 3D variants of LBP called LBP-3D, LBP-
309 and LBP-20 have been proposed. LBP-20 gives a
better performance among the three variants of 3D-LBP
and is combined with 3D-DWT in the proposed model,
3D-DWT + LBP-20, to extract relevant features from
MRI for the classification between i) MCI-C and MCI-
NC and ii) MCI and CN. The experimental results on
publicly available ADNI datasets show that the proposed
pipeline is quite effective to distinguish between the
above-mentioned classes. It is also noted that the pro-
posed combination of 3D-DWT and LBP-20 provides a
better performance in comparison to 3D-LBP and its
variants and it also performs better as compared to 3D-
DWT in terms of specificity, accuracy and sensitivity.
Also, the proposed method provides a superior perform-
ance with lesser number of features in comparison to
the existing methods. This is attributed to the represen-
tation of MRI volume in terms of relevant and compact
features, which are obtained with the application of
LBP-20 on each of the seven detailed components of 3D.

In the future, the proposed method will be extended
for multi-class classification. Also, in the future works,
multivariate methods will be used for feature selection.
Moreover, the analysis will be extended for other
methods capable of finding out a smaller subset of rele-
vant features which are more discriminative of the
above-mentioned classes. As per Antoine Marie Jean-
Baptiste Roger “It is only with the heart that one can see
rightly; what is essential is invisible to the eye.” The
above investigation suggests that “heart” can be replaced
by “pertinent feature extraction.”
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