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Abstract

Background: Data masking is an inborn defect of measures of disproportionality in adverse drug reactions (ADRs)
signal detection. Many previous studies can be roughly classified into three categories: data removal, regression and
stratification. However, frequency differences of adverse drug events (ADEs) reports, which would be an important
factor of masking, were not considered in these methods. The aim of this study is to explore a novel stratification
method for minimizing the impact of frequency differences on real signals masking.

Methods: Reports in the Chinese Spontaneous Reporting Database (CSRD) between 2010 and 2011 were selected.
The overall dataset was stratified into some clusters by the frequency of drugs, ADRs, and drug-event combinations
(DECs) in sequence. K-means clustering was used to conduct stratification according to data distribution characteristics.
The Information Component (IC) was adopted for signal detection in each cluster respectively. By extracting ADRs from
drug product labeling, a reference database was introduced for performance evaluation based on Recall, Precision and
F-measure. In addition, some DECs from the Adverse Drug Reactions Information Bulletin (ADRIB) issued by CFDA were
collected for further reliability evaluation.

Results: With stratification, the study dataset was divided into 21 clusters, among which the frequency of DRUGs, ADRs
or DECs followed the similar order of magnitude respectively. Recall increased by 34.95% from 29.93 to 40.39%,
Precision reduced by 10.52% from 54.56 to 48.82%, while F-measure increased by 14.39% from 38.65 to 44.21%.
According to ADRIB after 2011, 5 DECs related to Potassium Magnesium Aspartate, 61 DECs related to Levofloxacin
Hydrochloride and 26 DECs related to Cefazolin were highlighted.

Conclusions: The proposed method is effectively and reliably for the minimization of data masking effect in signal
detection. Considering the decrease of Precision, it is suggested to be a supplement rather than an alternative to non-
stratification method.
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Background
Spontaneous reporting system (SRS) is one of critical data
resources for adverse drug reactions (ADRs) surveillance.
Tau N et al. demonstrated that the most frequent infor-
mation sources that served as the basis of the initial safety
signal in the Unite States were Food and Drug Adminis-
tration’s adverse event reporting system (87 [38%]) and
randomized clinical trials (81[36%]) or observational

studies among the 228 drug safety communications [1]. In
China, medical institutions, pharmaceutical manufacturers
and patients report adverse drug events (ADEs) through
SRS in the voluntary reporting approach. Each report is
assessed by experts of pharmacovigilance before being re-
corded into the Chinese Spontaneous Reporting Database
(CSRD). Up to now, the number of new reports has
exceeded one million per year. An important task for
pharmacovigilance is to discover potential risks for post-
marketing drugs by signal detection based on the CSRD.
As the quality of reports varies greatly, all reports of SRS
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are mainly used for hypothesis generation of suspicious
signals rather than evidence.
The conventional methods of ADR signal detection are

mainly based on disproportionality analyses [2], such as
Proportional Reporting Ratio (PRR), Reporting Odds Ratio
(ROR), the integrated standard method taken by
Medicines and Healthcare Products Regulatory Agency
(MHRA), Information Component (IC), Multi-item
Gamma Passion Shrinker (MGPS) and so on [3–11].
Although these methods have achieved acceptable per-
formance [12, 13], they are strongly affected by several
biases, such as under-reporting, misdiagnosis and selective
reporting [14, 15], which may lead to data masking effect
[16–18] or competition bias [15, 19].
Data masking is a collateral effect of quantitative

methods in signal detection, which relies on dispropor-
tionality analysis by which signals of suspected drug-
event combinations (DECs) may be delayed or hindered
because of the over-reporting of another DEC [20]. The
previous researches for minimizing data masking can be
classified into three categories: data removal, regression
and stratification method. In data removal method, some
specific data such as the known DECs [19] and reports
related to drug competitors [21] were removed to cor-
rect for competition bias and highlight suspected DECs
of interest. Some reasonable statistical decision rules
were proposed to determine the type and quantity of
data to be removed more objectively [22]. Arnaud et al.
identified [15] potential competitors via competition
index, as well as masking factor [23] and masking ratio
[20] and performed signal detection after removing re-
ports mentioning such competitors. In general, the per-
formance of data removal methods is highly dependent
on human decision and rule-making. Different from data
removal methods, Caster et al. [24, 25] applied lasso lo-
gistic regression into ADR surveillance and highlighted
more DECs signals related to specific drugs earlier than
the IC method. Each report was treated as observation
object [16, 26] to avoid losing data, however the compu-
tation process was extremely tedious and time-
consuming. Furthermore, some researchers thought that
ADRs were mostly related to drugs’ medicinal proper-
ties, but the confounders of patients could not be simply
ignored (e.g., age, gender, region), which would result in
many false signals [11, 27, 28]. Ye et al. [29, 30] stratified
the whole dataset into several strata according to sus-
pected confounders and performed signal detection sep-
arately. However, it should be noted that confounding
could only be evaluated in the absence of effect modifi-
cation [28, 31], otherwise the integrity of data would be
destroyed and false signals might come.
These adjusted methods for signal detection are

mainly based on measures of disproportionality, in
which suspected DECs signals are highlighted by

disproportionate observed-to-expected (OE) ratios. The
OE ratios are strongly affected by over-reported drugs or
ADRs, and some specific DECs corresponding to true
signals which are rarely reported may be masked with
lower OE ratios. Therefore, frequency difference of
ADEs is an important factor of data masking, which has
not been considered in the above methods. It is reason-
able to stratify the data into some clusters, among which
the data is of similar order of magnitude. The aim of this
study is to explore a novel stratification method to re-
duce the impact of frequency differences on true signals
masking.

Method
Data source
All reports of ADEs in the CSRD between 1 January
2010 and 31 December 2011 were selected. By prepro-
cessing, a study dataset including 1,081,898 records was
obtained, which included 1763 drugs, 877 ADRs and 37,
193 DECs.
A reference database was considered as the gold stand-

ard for performance evaluation, which contained ADRs
extracted from drug product labeling manually. If some
DECs exist in the reference database but are not de-
tected as positive signals by disproportionation analysis,
we suppose these DECs are masked. Among 37,193
DECs from the CSRD, there are 12,493 DECs existing in
the reference database and we denote them as known
DECs.

Stratification strategy
Disproportionality analysis method, such as IC, is based
on an OE ratio comparing the relative reporting rate of
the ADR for a specific drug with that for the overall
drugs in the database. If the usage quantities of drugs
are equivalent, OE ratio may be more reliable. In a sense,
commonly used drugs are of more reports. For example,
among 1763 drugs in our study dataset, Levofloxacin
Hydrochloride and Azithromycin, the two widely used
drugs, were reported 111,335 times and 78,449 times, ac-
counting for 6.18 and 4.35% of all reports respectively.
Thus, the frequency of reports in SRS reflects the usage
quantities of drugs indirectly.
We scanned the study dataset by the IC method and

compared all suspected signals with the reference data-
base. Table 1 revealed that the average frequency of re-
ports on all drugs was 1022.06 times, while the average
frequency of reports on the drugs related to masked
DECs was 366.96 times with frequency decline rate
64.10%. The signals of drugs with less frequency were
more likely to be masked, just as Maignen et al. men-
tioned that the strongest masking effect was associated
with the drug with the highest number of records for
any event [20]. Similarly, overall averages on ADRs and
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DECs were 2054.62 times and 48.45 times, while the
corresponding average frequency of reports involved in
the masked signals were 1001.76 times and 48.29 times,
declined by 51.24 and 0.33% respectively. The frequency
difference of drugs (64.10%) is most obvious, followed by
ADRs (51.24%) and DECs (0.33%). Therefore, in order to
reduce the impact of frequency difference on OE ratio,
the stratification will be conducted in the sequence of
“DRUGs-ADRs-DECs”.

Stratification procedure
The stratification process can be described as follows:

Step 1: Stratify the study dataset according to the
frequency distribution characteristics of DRUGs. The
frequency of ADR reports is counted for each drug and
K-means clustering algorithm is adopted to partition
the study data into several clusters. Cluster refers to a
group of objects with the similar characteristic, and in
this case, it refers to a group of drugs with similar
order of magnitude in frequency.
Step 2: Further divide each cluster into multiple small
clusters based on the frequency of ADRs.
Step 3: Conduct repetitive operations based on DECs
subsequently to divide the study dataset into many
smaller clusters.

Specifically, a cluster is divided into some small clus-
ters in each stratification by following processes: analyze
data distribution, determine the number of clusters and
perform stratification with K-means algorithm. K-means
is a clustering algorithm frequently used in data mining.
It aims to partition m objects into k clusters, in which
each object has the similar attributes. k is a parameter
that needs to be predefined, representing the number of
clusters. First, k cluster centers are randomly selected
from all objects. The remaining objects are assigned to
the different cluster based on the similarity measure be-
tween the object and all cluster centers. Then, cluster
centers are updated by computing the mean of the ob-
jects in the same cluster. All objects are arranged into
new clusters with this iterative refinement technique.
Considering that the intensive areas in the data distribu-
tion chart will form peaks, k is determined by peaks
number of data distribution in this study.

Signal detection method
The IC method is adopted for signal detection. The
lower limit of the 95% confidence interval is referred to
as IC025, which is the standard measure used to screen
the WHO database for excessive ADR relative reporting
rates [27]. The signal with the threshold at IC025 > 0 is
considered suspected.

Performance evaluation
Three classic indicators are adopted for performance
evaluation, including Precision, Recall and F-measure
[32]. Precision is a measure of exactness, indicating the
percentage of DECs labeled as positive that are actually
ADRs. Recall is a measure of completeness, indicating
the percentage of DECs corresponding to ADRs that are
labeled as positive. There tends to be an inverse relation-
ship between Precision and Recall, where it is possible to
increase one at the cost of reducing another. An alterna-
tive compromise is F-measure, which is the harmonic
mean of Precision and Recall. According to the reference
database, true positive (TP) represents the number of
known DECs accurately detected as positive signals, false
negative (FN) represents the number of known DECs
detected as negative signals, false positive (FP) represents
the number of unknown DECs detected as positive sig-
nals and true negative (TN) represents the number of
unknown DECs detected as negative signals. Based on
TP, FP, FN and TN, the three indicators are calculated
for comparing the performance differences between
stratification and non-stratification.
Meanwhile, some ADEs of the Adverse Drug Reaction

Information Bulletin (ADRIB) after 2011 issued by
CFDA are collected for reliability evaluation.

Results
Stratification results
To determine the numbers of clusters in each step, statistical
analysis was adopted on data distribution. In the first step of
stratification, we found the frequency of different drugs var-
ied dramatically. For example, ω-3 Fish Oil Fat Emulsion and
Bicalutamide were reported only three times, while Levoflox-
acin Hydrochloride was up to 111,335 times. The statistic
analysis of data distribution would not be obvious on ac-
count of the large data range. The natural logarithm (ln) was
introduced to compress the scales. The frequency ranging
from 3 to 111,335 was transformed into an interval [1.1,

Table 1 Statistics of ADE reports

Average frequency of reports on DRUGs Average frequency of reports on ADRs Average frequency of reports on DECs

Related to masked DECs 366.96 1001.76 48.29

Overall average 1022.06 2054.62 48.45

Decline ratea 64.10% 51.24% 0.33%
aDecline rate: the percentage of decrease in frequency of masking signals compared to the overall average
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11.6], and the frequency statistics was performed with
an interval step of 0.5.
The frequency histogram of 1763 drugs was presented

in Fig.1. The ln-adjusted frequency intervals labeled the
horizontal axis, and quantity of drugs marked the vertical
axis. There were three peaks in Fig. 1, and each peak indi-
cated that the data was concentrated in corresponding
magnitude range. Therefore, the cluster number based on
DRUGs was set as 3, and K-means clustering algorithm
was performed by SPSS 19.0. Similar operations were con-
ducted based on ADRs and DECs in sequence.
With stratification, the study dataset was eventually di-

vided into 21 clusters, among which the frequency of
DRUGs, ADRs or DECs followed the similar order of
magnitude respectively. Taking DECs as an example, the
frequency distribution of each cluster was illustrated by
a box and whisker diagram (Fig. 2). The vertical axis rep-
resented the ln-adjusted frequency of DECs. The hori-
zontal axis represented the cluster ID, which meant the
hierarchical relationship among clusters. For example,
the ID 1–1-1 indicated DRUGs cluster 1→ADRs cluster
1→DECs cluster 1.
The maximum value and minimum value of each clus-

ter were mostly in the similar order of magnitude. How-
ever, there were a few outliers in some clusters, such as
cluster 3–2-3 and cluster 3–3-3. The reason for the ex-
istence of outliers was that the relatively low-frequency
DECs occupied a large proportion.

Performance for unmasking
Using the IC method, 6853 suspected signals including
3739 known DECs were detected with non-stratification,

and 10,336 suspected signals including 5046 known
DECs were detected with stratification. Detailed results
were shown in Table 2, where the values in brackets
were the results of non-stratification.
With stratification, the increase in TP was 1307, while

the increase in FP was 2176. Table 3 showed that Recall
increased by 34.95% from 29.93 to 40.39%, Precision re-
duced by 10.52% from 54.56 to 48.82% and F-measure
increased by 14.39% from 38.65 to 44.21%. The consid-
erable improvement of F-measure confirmed the effect-
iveness of the proposed method.
A precision-recall curve was introduced to evaluate

the overall performance of the method. The study data-
set was sorted in descending order based on the IC025

values for stratification and non-stratification, and Preci-
sion and Recall for each DEC were calculated gradually.
Figure 3 showed that Recall of non-stratification was
slightly better than that of stratification under the same
Precision at the beginning of signal detection. With more
and more TP signals were detected subsequently, Recall
of stratification was significantly better than that of non-
stratification. On the whole, under the same Precision,
Recall of stratification was better than that obtained
without stratification, which proved that the perform-
ance of signal detection had improved with stratification.
For further reliability evaluation, we selected out some

DECs from the ADRIB after 2011 issued by CFDA which
contained true signals that were not present in the refer-
ence database. The DECs were not detected as positive
signals by non-stratification, but newly highlighted by
stratification. As listed in Table 4, some ADEs related to
Potassium Magnesium Aspartate (in the 50th ADRIB,

Fig. 1 Frequency distribution of drugs
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September 19, 2012) [33], Levofloxacin Hydrochloride (in
the 56th ADRIB, August 2, 2013) [34] and Cefazolin (in
the 59th ADRIB, January 26, 2014) [35] were detected
with IC025 by stratification method. It could be noted
that these DRUGs were reported in a large order of
magnitude, but the frequencies of the DECs correspond-
ing to them were very small. Therefore, when OE ratios
were calculated based on disproportionality method, the
expected value increased while the observed value de-
creased, which resulted in the decreased OE ratios and
masked signals. Data masking effect was particularly evi-
dent to Levofloxacin Hydrochloride in Table 4. By strati-
fication, the reports of the drug were scatter into many

clusters, in which the frequency declined significantly.
As a result, 61 DECs related to it were newly unmasked.
Similarly, 5 DECs related to Potassium Magnesium As-
partate and 26 DECs related to Cefazolin were
unmasked by stratification.

Discussion
Data masking or competition bias is an inborn defect in
disproportionality analysis which depends on OE ratio to
highlight DECs. Some measures can be adjusted to
minimize any undue influence on the ADR reporting
rate of covariates by performing stratification according
to a set of common potential confounders [28]. How-
ever, these adjusted methods still result in data masking
as ignoring frequency differences between ADEs. To re-
duce the impact on OE ratios, this pilot study mainly fo-
cuses on minimizing the data masking effect in signal
detection by stratification based on clustering. The study
dataset is stratified into some clusters according to the
sequence of “DRUGs-ADRs-DECs” and signal detection
is conducted by the IC method of disproportionality for
each cluster respectively. All highlighted DECs are

Fig. 2 Frequency distribution of DECs in each cluster

Table 2 Signal detection results of stratification and non-
stratification

Positive Negative

Stratification (Non-
stratification)

Stratification (Non-
stratification)

Known 5046 (3739) 7447 (8754)

Unknown 5290 (3114) 19,410 (21,586)
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collected to evaluate unmasking performance of stratifi-
cation based on the reference database and ADRIB. The
specific number of clusters is determined by data distri-
bution characteristics, and stratification is performed by
K-means clustering algorithm step by step. Such pro-
cesses can avoid the subjective decision existing in other
stratification methods.
In our study dataset, there are more than one million

reports where the frequencies of DECs vary greatly for
various reasons, such as the frequent uses of drugs, the
differences of drug side effects or even the individual se-
lective reporting. The over-reported DRUGs, ADRs and
DECs are more likely to mask some specific DECs which
are less reported but actually true signals. The frequency
distribution of reports in each cluster is smoothed by
stratification, which is different from other stratification
methods where the whole dataset is stratified into sev-
eral strata according to confounding factors such as gen-
der, age, region, etc.

TP signals increase from 6853 to 10,336 with strati-
fication, which means a significant increase in the
number of positive signals. These signals include 5046
TP signals and 5290 FP signals. The increase in the
signals identified by our method is due to the fact
that all high frequency drugs or ADEs are divided
into different clusters, which reduces the possibility of
the related low frequency DECs being masked.
Among 5046 TP signals, 1656 signals (32.82%) are
not detected by non-stratification, which fully proves
our method can better minimize data masking. While
FP signals increase from 3114 to 5290, which means
more workload is need in signal evaluation for
pharmacovigilance.
There are some limitations in this study. First, 2

years of spontaneous reporting data may not fully
represent total data in CSRD. Then, as the gold
standard for performance evaluation of signal detec-
tion, the reference database is extracted from drug
product labeling manually, and the omissions or er-
rors are unavoidable. Meanwhile, only the IC method
is adopted for signal detection. The other methods of
disproportionality analysis, such as PRR and MHRA,
are not tried to verify the proposed method. These
limitations above may lead to uncertain impact on
the experimental results.

Table 3 Performance evaluation of stratification and non-
stratification

Precision Recall F

Non-stratification 54.56% 29.93% 38.65%

Stratification 48.82% 40.39% 44.21%

Fig. 3 Precision-recall curve
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Conclusion
This paper proposes a stratification method based on
clustering for the minimization of masking in signal de-
tection. All reports of 2 years in the CSRD are stratified
into some clusters, among which DRUGs, ADRs or
DECs are of the similar order of magnitude in frequency.
Experimental results show that better performance for
unmasking signals is obtained with stratification. Owing
to the decline of Precision, we suggest that this method
can be used in parallel to non-stratification method ra-
ther than replacing it.
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