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Abstract 

Background: Under the influences of chemotherapy regimens, clinical staging, immunologic expressions and other 
factors, the survival rates of patients with diffuse large B-cell lymphoma (DLBCL) are different. The accurate prediction 
of mortality hazards is key to precision medicine, which can help clinicians make optimal therapeutic decisions to 
extend the survival times of individual patients with DLBCL. Thus, we have developed a predictive model to predict 
the mortality hazard of DLBCL patients within 2 years of treatment.

Methods: We evaluated 406 patients with DLBCL and collected 17 variables from each patient. The predictive 
variables were selected by the Cox model, the logistic model and the random forest algorithm. Five classifiers were 
chosen as the base models for ensemble learning: the naïve Bayes, logistic regression, random forest, support vector 
machine and feedforward neural network models. We first calibrated the biased outputs from the five base models 
by using probability calibration methods (including shape-restricted polynomial regression, Platt scaling and isotonic 
regression). Then, we aggregated the outputs from the various base models to predict the 2-year mortality of DLBCL 
patients by using three strategies (stacking, simple averaging and weighted averaging). Finally, we assessed model 
performance over 300 hold-out tests.

Results: Gender, stage, IPI, KPS and rituximab were significant factors for predicting the deaths of DLBCL patients 
within 2 years of treatment. The stacking model that first calibrated the base model by shape-restricted polynomial 
regression performed best (AUC = 0.820, ECE = 8.983, MCE = 21.265) in all methods. In contrast, the performance of 
the stacking model without undergoing probability calibration is inferior (AUC = 0.806, ECE = 9.866, MCE = 24.850). 
In the simple averaging model and weighted averaging model, the prediction error of the ensemble model also 
decreased with probability calibration.

Conclusions: Among all the methods compared, the proposed model has the lowest prediction error when predict-
ing the 2-year mortality of DLBCL patients. These promising results may indicate that our modeling strategy of apply-
ing probability calibration to ensemble learning is successful.

Keywords: DLBCL, Risk prediction, Probability calibration, Ensemble method, Discrimination, Calibration

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco 
mmons .org/publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Diffuse large B-cell lymphoma (DLBCL), the most com-
mon subtype of B-cell non-Hodgkin lymphoma (NHL), 
accounts for 30–40% of all NHLs [1]. Due to its hetero-
geneity in clinical presentations and prognoses, DLBCL 
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currently remains a significant clinical challenge [2, 3]. 
Although the application of rituximab has improved the 
overall survival rate, 30–50% of DLBCL patients remain 
sensitive to chemotherapy or relapse after remission and 
eventually die [4, 5]. In addition, under the influence of 
a chemotherapy regimen, a clinical staging, an immu-
nologic expression or other factors, the prognoses of 
patients are markedly different [2, 6, 7]. Thus, according 
to clinicopathologic factors, we aim to predict the mor-
tality hazard for patients with DLBCL at the individual 
level. Actually, clinicians need precise risk estimates for 
individuals to help them make optimal therapeutic deci-
sions to achieve precision medicine [8]. Through early 
risk assessment, appropriate therapies may be initiated 
quickly and ultimately improve the clinical outcomes of 
individual cases [9, 10].

Instead of using a single model, we consider using 
ensemble learning to predict the 2-year mortality of 
patients with DLBCL. Ensemble learning can often 
achieve better performance than a single model by 
constructing and combining multiple models [11, 12]. 
These multiple models are also called individual mod-
els or base models. Dietterich [13] explained why the 
ensemble method works from statistical, computational 
and representational points of view. In addition, Kohavi 
[14] explained the reason for the success of the ensem-
ble method from bias-variance decomposition. Due to 
its superior performance, ensemble learning has been 
applied in many fields. Wang Yuanchao [15] proposed a 
heterogeneous ensemble model composed of the random 
forest and XGBoost algorithms to classify pulsar candi-
dates which achieved higher recall rate than other two 
algorithms. In [16], an ensemble of deep belief networks 
with different parameters was introduced into regression 
and time series forecasting. Several datasets were used 
for evaluation and eventually the ensemble-based model 
achieved better performance compared with other meth-
ods. Ensemble learning is also used to assist physicians in 
decision-making such as [17] which developed an ensem-
ble model of deep belief networks for the early diagnosis 
of the Alzheimer’s Disease.

To achieve high performance, the base model in 
ensemble learning should have good accuracy and 
diversity [11, 12]. Diversity is key to ensemble learning, 
and there are three main ways to achieve diversity: data 
diversity, parameter diversity and structural diversity 
methods [12]. The data diversity method uses multi-
ple datasets generated from the original dataset to train 
different base models. Since the multiple datasets are 
different from each other, the trained base models gen-
erate diverse outputs. The parameter diversity method 
trains different base models using different parameter 
sets. Even with the same algorithm or the same training 

data, the outputs from base models may vary with dif-
ferent parameters. The structural diversity method uses 
different algorithms to generate different base models 
and such ensemble models are also called heterogeneous 
ensembles. In our work, we consider five different algo-
rithms for heterogeneous ensemble prediction, including 
the naïve Bayes (NB), logistic regression (logit), random 
forest (RF), support vector machine (SVM) and feedfor-
ward neural network (FNN) algorithms. However, some 
evidence [18–23] suggests that a few classifiers, such as 
the NB, RF and SVM classifiers, cannot generate pre-
cise probability estimates, although they achieve good 
classification performance in many real-world prob-
lems. Therefore, a different model structure is proposed 
to achieve both high accuracy and high diversity for the 
base models. That is, before aggregating the outputs 
from various base models, we first correct the poorly 
calibrated base models by using probability calibration 
methods. Probability calibration methods try to find a 
calibration function that maps the initial outputs of clas-
sifiers into more accurate posterior probabilities [18]. 
Many methods, such as the popular Platt scaling (Platt) 
and isotonic regression (IsoReg) approaches, have been 
proposed in this field. However, they all have their own 
preconditions. For example, Platt is effective when the 
output of the classifier is sigmoid-shaped, and IsoReg is 
prone to overfitting when the sample size is small. Thus, 
we calibrate the base model with shape-restricted poly-
nomial regression (RPR), which is a flexible and powerful 
calibration method that is not constrained by a specific 
classifier [24]. By calibrating the base models first and 
then aggregating them, we hope to achieve strong ensem-
ble performance.

Our research has three characteristics. First, this paper 
focuses not on the prediction of categories, but on mem-
bership probability. Second, a different model structure is 
proposed that applies probability calibration to ensemble 
learning. Third, both discrimination and calibration are 
considered in the model comparison.

Methods
Data sources and predictive variables
The data used in this study were derived from Shanxi 
Cancer Hospital, China. We assessed 406 patients diag-
nosed with DLBCL between April 2010 and May 2017, 
116 of whom died within 2 years after treatment. We col-
lected 17 variables for each patient from electronic medi-
cal records. See Table 1 for the names and groupings of 
each variable.

We applied three methods to select the predictive 
variables, including the Cox model, the logistic model 
and the random forest algorithm. The Cox model uses 
outcomes and survival times as dependent variables to 
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analyze the influencing factors of events. The results pro-
duced by the Cox model may not be reliable when the 
number of positive events is less than 10 times the num-
ber of covariates [25, 26]. Therefore, we first analyzed 
each variable by using the univariate Cox model. Then, 
the variables (including age, gender, stage, IPI, KPS, LDH, 
β2-MG, rituximab, and Bcl-6) that showed a univariate 
relationship (P <   0.1) with death were included in the 
multivariate Cox model. In addition to these 9 variables, 
we also added Ki-67 to the model. Ki-67 is a nuclear pro-
tein that can be used as a biomarker for cell proliferation, 
and its expression is widely used to evaluate the prog-
noses of many kinds of cancers, including lymphoma. A 
meta-analysis suggested that Ki-67 expression is associ-
ated with the prognoses of lymphoma patients. Subgroup 
analysis showed that high Ki-67 expression is highly asso-
ciated with a poor overall survival rate for DLBCL [27]. 
Another study also suggested that patients with high 
Ki-67 expression have poor prognoses with standard 
first-line therapy [28]. Therefore, Ki-67 was also included 
in the multivariate Cox model in our study, although it 
was not significant in the univariate Cox analysis. Thus, 
these 10 variables were entered into the multivariate Cox 
model, and 8 variables remained (P <  0.1). The results of 
the multivariate Cox analysis are displayed in Table 2.

We also analyzed all the collected variables using the 
logit and RF approaches. The variables selected (P <  0.1) 
by the logit model were consistent with those selected 

Table 1 The features and  groupings of  406 patients 
with DLBCL

The figures in brackets represent the number of patients of this group.

IPI International prognostic index, KPS Karnofsky performance status, WBC 
White blood cell, LDH Lactate dehydrogenase, β2-MG β2- microglobulin, ESR 
Erythrocyte sedimentation rate, GCB Germinal center B-cell-like lymphoma; 
CD10, Bcl-6, MUM-1 and, Ki-67 are immunohistochemical indicators

Features Instances (N)

Age ≤ 60 (219), > 60 (187)

Gender Male (209), Female (197)

Family history of cancer No (369), Yes (37)

Stage I, II (176), III, IV (230)

IPI Low (195), Low-intermediate (79),
High-intermediate (83), High (49)

KPS ≥ 80 (335), < 80 (71)

WBC Low (80), Normal (297), High (29)

LDH Normal (312), High (94)

β2-MG Normal (296), High (110)

ESR Normal (259), High (147)

Therapy Chemotherapy alone (347),
Chemotherapy and Radiotherapy (59)

GCB Yes (243), No (163)

CD10 Negative (303), Positive (103)

Bcl-6 Negative (59), Positive (347)

MUM-1 Negative (222), Positive (184)

Ki-67 <  90 (303), ≥ 90 (103)

Rituximab Not use (241), Use (165)

Table 2 The variables selected by the logit and Cox models when the threshold is 0.1

IPI International prognostic index, KPS Karnofsky performance status, LDH Lactate dehydrogenase, β2-MG β2- microglobulin

Variables Groupings Cox model Logit model

Coefficient P-value Coefficient P-value

Age ≤ 60 Reference Reference Reference Reference

>60 0.362 0.091 0.488 0.098

Gender Male Reference Reference Reference Reference

Female −0.405 0.037 − 0.509 0.061

Stage I, II Reference Reference Reference Reference

III, IV 0.641 0.046 0.961 0.020

IPI Low Reference Reference Reference Reference

Low-intermediate 0.795 0.021 0.946 0.028

High-intermediate 0.955 0.010 0.909 0.054

High 0.726 0.100 0.807 0.160

KPS ≥ 80 Reference Reference Reference Reference

<80 0.877 <  0.001 1.350 < 0.001

LDH Normal Reference Reference Reference Reference

High 0.401 0.060 0.597 0.064

β2-MG Normal Reference Reference Reference Reference

High 0.395 0.061 0.562 0.066

Rituximab Not use Reference Reference Reference Reference

Use −0.730 0.001 −0.931 0.002
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by the Cox model (see Table  2). If the threshold was 
0.05, the Cox model selected 5 variables (gender, stage, 
IPI, KPS, and rituximab), while logit selected 4 variables 
(stage, IPI, KPS, and rituximab). The only difference is 
that the Cox model contains “gender” and the logit model 
does not. Figure 1 shows the ranking of variable impor-
tance obtained by the RF algorithm. The ranking showed 
that stage, IPI, KPS, and rituximab were the four most 
important variables regardless of which importance met-
ric was used. Moreover, we found that the ranking based 

on the Gini index (Fig. 1b) also included “gender” in the 
top eight variables.

According to the results of these three methods, we 
first used 0.05 as the threshold and took the union of the 
variables selected by the Cox and logit models as pre-
dictive variables (including gender, stage, IPI, KPS, and 
rituximab). Based on these 5 variables, we pretrained all 
the base models with 100 iterations. Then, we further 
added the remaining 3 variables (age, LDH, and β2-MG) 
to each base model. Although each base model at this 
point contained all 8 variables selected by the Cox and 
logit models when the threshold was 0.1, the predictive 
performance was not significantly improved. Thus, we 
excluded these 3 variables and only used gender, stage, 
IPI, KPS, and rituximab for prediction.

Model structure
As Fig. 2 shows, there are three main components of the 
model.

The first part is the construction of the base models. 
We used five common classifiers with good classifica-
tion performances on many real-world problems as the 
base models, including the NB, Logit, RF, SVM, and FNN 
models. NB, which calculates the posterior probability 
that an observation belongs to each class based on Bayes’ 
theorem, classifies an observation as a member of the 
class for which the posterior probability is the largest. 
Logit is a generalized linear model used to solve classifi-
cation problems. Since the model takes the logistic func-
tion as the link function, the posterior probability can be 
generated. The RF algorithm builds a number of decision 
trees based on bootstrapped training sets for prediction. 
In our RF, we used the voting ratio of all decision trees 
as the initial probability estimate. SVMs attempt to find 
an optimal separating hyperplane to classify observations 
into different classes. The sign of the output determines 
the class of the sample, and the magnitude of the output Fig. 1 The ranking of variable importance (only showed top eight 

variables)

Fig. 2 Schematic diagram of the model structure
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can be used as a measure of predictive confidence, since 
examples far from the hyperplane are more likely to be 
classified correctly than examples close to the hyper-
plane. The FNN, in which the neurons in each layer are 
fully connected to the neurons in the next layer and there 
is no loop in the network, is a common neural network 
structure. In our study, we built a 3-layer network, and 
the hidden layer included 500 units. We designed our 
network with a large number of hidden nodes because 
several studies suggest that a neural network with excess 
capacity generalizes better than a simple network when 
trained with back propagation and early stopping [29–
31]. Other studies have also shown that a feedforward 
neural network can fit any continuous function of arbi-
trary complexity, and it only needs a single hidden layer 
containing enough units [32, 33].

The second part is the probability calibration of the 
base models. We selected RPR to calibrate the base mod-
els since it is a flexible and powerful method that is not 
constrained by a specific classifier [24]. We also applied 
two other methods (Platt, IsoReg) to investigate whether 
RPR was the best.

RPR calibrates initial probability using polynomial 
regression in which calibration function f has the follow-
ing form [24]:

where s is the initial probability of an observation. The 
solution is the following optimization problem:

With constraint (a) all corrected probabilities are 
guaranteed to fall in the interval between 0 and 1. Con-
straint (b), which derives from the differentiability of 
f(s), ensures the monotonicity of the polynomial. In con-
straint (c), a l1-norm of a is used to prevent the polyno-
mial from overfitting.
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Platt is a parametric method which uses the sigmoid 
function as a calibration function [19]:

where A and B are estimated using the maximum likeli-
hood estimation on the training set (si, yi).

IsoReg is a nonparametric method which attempts to 
find an isotonic (i.e. non-decreasing) function that satis-
fies the following objective [21]:

where yi = [  y1, y2, y3, …, yN] is the label sequence of all 
samples that has been sorted by their initial probabili-
ties. A well-known method called pair adjacent violators 
(PAV) algorithm is used to estimate the isotonic function 
[34].

The third part is the combination of the base models. 
We used three methods (simple averaging, weighted 
averaging, and stacking) to combine the above 5 base 
models. Stacking or stacked generalization, which takes 
the outputs of the base models as its inputs, uses another 
machine learning algorithm (also called a meta-learner) 
to estimate the weight of each base model [35]. In our 
research, logit was used as a meta-learner. Since the out-
puts of all base models are numeric in our study, we also 
used simple averaging and weighted averaging to com-
bine these base models and compared the results with 
those obtained by stacking. In weighted averaging, the 
weight of each base model was set to the reciprocal of the 
expected calibration error (ECE) and maximum calibra-
tion error (MCE). We first combined 5 uncalibrated base 
models (NB, logit, RF, SVM, FNN) by using these three 
methods. Then, according to our modeling strategy, we 
used the same methods to combine the calibrated base 
models (NB-RPR, logit, RF-RPR, SVM-RPR, FNN). We 
did not calibrate logit and FNN models because they 
could already generate accurate probability estimates, 
and their performances after calibration were not signifi-
cantly improved.

Model construction and evaluation
We combined the hold-out test with 3-fold cross-valida-
tion to complete the model construction and evaluation 
processes. To reduce statistical variability, all experi-
ments were repeated 300 times. In each dataset, we 
randomly sampled 80% of the data (320 samples) as the 
training set and the residual 20% of the data (86 samples) 
as the testing set. Stratified sampling was used for each 
division to ensure the consistency of the data distribu-
tion across 300 experiments. In 3-fold cross-validation, 

f (s) =
1

1+ exp (As + B)
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the data were divided into 3 mutually exclusive subsets 
that were approximately equal in size. In each iteration, 
2 of the 3 subsets were used as the training set, and the 
remaining subset was used as the validation set. The final 
evaluation depended on the average performance of the 
model on the 3 validation sets.

Amid the construction of the 5 base models, we first 
performed 3-fold cross-validation within the training 
set to find the optimal hyperparameters of the RF, SVM, 
and FNN models. Then, we used all training data to train 
these three models with the optimal hyperparameters, 
and assessed them within the testing set. For the RF algo-
rithm, the number of candidate variables at each split was 
set to 2 and 3, and the choices for the number of trees 
were {500, 600, …, 1500}. For the SVM, the kernel func-
tion was selected from linear and Gaussian. The choices 
for the parameters C and Gamma were 

{

10i
}4

i=−4
 . 

In addition, we used all training data to fit the NB and 
logit models and assessed them within the testing set. 
Although they do not include hyperparameters, we also 
performed 3-fold cross-validation for them within the 
training set. For each base model, we finally extracted all 
the predictive values in the 3 validation sets as the train-
ing set of the calibration function.

Amid the probability calibration of the 5 base models, 
we first used 3-fold cross-validation within the calibra-
tion training set to determine the k and λ parameters of 
RPR. Then, we used the entire calibration training set to 
train the Platt, IsoReg, and RPR models with the optimal 
k and λ parameters. Finally, we calibrated the predictive 
values of the 5 base models in the testing set by using the 
trained Platt, IsoReg, and RPR models and then evalu-
ated them. For the RPR, the choices for the degree k were 
{4, 5, 6, …, 20} and the choices for λ were 

{

4i
}5

i=−1
.

Amid the combination of the 5 base models, the weight 
of each base model was set to 0.2 for simple averaging. 
For weighted averaging, the weight of each base model 
was set to the reciprocal of its ECE and MCE in the train-
ing data. For stacking, the outputs from the 5 base mod-
els were used as the inputs of the meta-learner (the logit 
model, in our study). To avoid overfitting, we used the 
union of the predictions of the base models on validation 
sets to train the meta-learner. Finally, we used the weights 
learned by stacking to combine the 5 base models.

Both discrimination and calibration were considered 
in the model evaluation. Discrimination and calibration 
are indispensable properties for assessing the accuracy of 
risk prediction models [36]. Discrimination is the ability 
to distinguish between patients who will have an event 
and those who will not. Calibration measures the con-
sistency between the predicted probability and the true 
(observed) probability of patients at different risk strata. 
Although providing accurate probability estimates is our 

purpose, there is no need to further assess the calibration 
when the model has poor discrimination [36]. Therefore, 
we used the AUC to measure discrimination. The H-L 
test, ECE and MCE were used to evaluate the calibration 
of the models.

The H-L test is used to evaluate whether the difference 
between the predicted probability and the true probabil-
ity is caused by chance [37]. The ECE and MCE are two 
measures related to the reliability diagram [38]. In com-
puting these, the predictions are first sorted and then 
partitioned into k bins of equal size. For each bin, the pre-
dicted probability is the mean of the predictions in this 
bin, and the true (observed) probability is the proportion 
of positive observations in this bin. The ECE and MCE 
calculate the average prediction error and maximum pre-
diction error over these bins, respectively:

where pi and oi are the predicted probability and the 
observed probability in the i-th bin, respectively. The 
lower the values of the ECE and MCE are, the lower the 
calibration error of the prediction.

The NB, logit, RF, and SVM models were implemented 
in the R 3.6 using the “e1071”, “glm”, “randomForest” and 
“e1071” packages. The FNN and RPR models were per-
formed with Keras and CVXPY in the Python 3.6 [39, 
40].

Results
To reduce the variability caused by the data partition, 
the hold-out test was executed 300 times. The final 
evaluation was based on the average results of these 300 
iterations.

Performances of the 5 base models before and after 
calibration
We calibrated the NB, Logit, RF, SVM, and FNN models 
using RPR and compared the results with those of the 
Platt and IsoReg models. The performances of the 5 base 
models before and after calibration are shown in Table 3. 
The main features are summarized as follows:

The AUCs of the 5 uncalibrated base models were all 
greater than 0.75, so they were considered as having 
good discrimination. Except for that of the SVM, the 
AUCs of the other 4 models were all greater than 0.8. In 
terms of calibration performance, the FNN had the low-
est calibration error (ECE = 9.211, MCE = 23.500). The 
logit could also generate accurate probability estimates 
(ECE = 9.517, MCE = 24.400). According to the H-L test, 

ECE =

k
∑

i=1

|pi − oi|/k

MCE = max (|pi − oi|), i = 1, 2, . . . , k
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these two models achieved good calibration (P > 0.05) 
228 and 257 times out of 300 experiments. See Fig. 3a. By 
comparison, the NB, RF and SVM models had large pre-
diction errors and they achieved good calibration only 7, 
1, and 107 times out of 300 experiments, respectively.

After probability calibration was completed, the errors 
of the NB, RF and SVM models decreased significantly, 
and their frequencies of generating accurate probability 
estimates increased to 244, 219, and 196, respectively. 
However, regardless of which calibration method was 
used, the calibration error of the logit and FNN models 
were not further decreased. Out of the 3 evaluated proba-
bility calibration methods, RPR achieved the best correc-
tion for the SVM (ECE = 10.893, MCE = 26.300). IsoReg 
only achieved a good correction effect for the RF, while 
NB-IsoReg and SVM-IsoReg still had large calibration 
errors. According to Fig. 3a, NB-RPR, RF-RPR and SVM-
RPR had higher frequencies of achieving good calibration 
in 300 experiments than the Platt and IsoReg models.

Using 3 methods to combine the base models
First, we combined the NB, Logit, RF, SVM, and FNN 
models by simple averaging, weighted averaging using the 
ECE, weighted averaging using the MCE, and stacking. 
The results are presented in Table  4. Of all the models, 

the FNN had the best performance in terms of both dis-
crimination and calibration (AUC = 0.813, ECE = 9.211, 
MCE = 23.500). Compared with the NB, RF and SVM 
models, the calibration errors of the 4 ensemble models 
decreased significantly.

Then, we combined the NB-RPR, Logit, RF-RPR, SVM-
RPR, and FNN models in the same ways. The results 
are presented in Table  5. Stacking-EN-C performed the 
best out of all the models (AUC = 0.820, ECE = 8.983, 
MCE = 21.265). The MCEs of the 4 ensemble mod-
els were all lower than those of any of the base models. 
Except for SA-EN-C, the remaining 3 ensemble models 
had lower ECEs than that of any base model.

Last, we compared the 4 ensemble models (SA-EN-C, 
ECE-EN-C, MCE-EN-C, Stacking-EN-C) that under-
went probability calibration and the 4 ensemble models 
(SA-EN, ECE-EN, MCE-EN, Stacking-EN) that did not. 
Regardless of which combination of methods was used, 
the 4 ensemble models that underwent probability cali-
bration had lower calibration errors in terms of both the 
ECE and MCE than the ensemble models that did not 
undergo probability calibration. According to the H-L 
test, our 4 ensemble models had the highest frequencies 
of achieving good calibration (P > 0.05), which were 270, 
274, 272 and 272 out of 300 experiments. By comparison, 

Table 3 Performance of the 5 base models before and after calibration

In each cell M  (P25 -  P75): M is the median,  P25 is the 25th percentile and  P75 is the 75th percentile of 300 tests. For each individual model, the best performance in each 
column is in bold and the secondary best performance in each column is underlined

NB Naïve Bayes, Logit Logistic regression, RF Random forest, SVM Support vector machine, FNN Feedforward neural network, Platt Platt scaling, IsoReg Isotonic 
regression, RPR Shape-restricted polynomial regression. “-Platt”, “-IsoReg” and “-RPR” represent performing probability calibration using corresponding method

AUC ECE MCE P

NB 0.804 (0.773–0.839) 14.206 (11.646–16.880) 38.900 (31.675–46.575) < 0.001(< 0.001- < 0.001)

NB-Platt 0.804 (0.773–0.839) 9.966 (8.216–11.942) 23.500 (19.100–29.925) 0.250 (0.069–0.427)

NB-IsoReg 0.749 (0.686–0.792) 12.027 (8.577–15.908) 37.450 (25.000–53.550) 0.009(< 0.001–0.275)

NB-RPR 0.794 (0.767–0.830) 9.514 (7.761–11.503) 23.800 (17.900–30.625) 0.257 (0.072–0.536)

Logit 0.803 (0.773–0.835) 9.517 (7.909–11.415) 24.400 (18.875–31.900) 0.226 (0.055–0.486)

Logit-Platt 0.803 (0.773–0.835) 10.475 (8.588–12.490) 25.200 (19.450–33.200) 0.185 (0.057–0.409)

Logit-IsoReg 0.752 (0.697–0.794) 10.897 (8.234–15.700) 33.350 (21.720–50.820) 0.026(< 0.001–0.342)

Logit-RPR 0.801 (0.771–0.832) 9.784 (8.266–11.712) 24.600 (19.050–31.025) 0.244 (0.093–0.479)

RF 0.800 (0.769–0.828) 13.569 (11.453–15.771) 36.000 (30.580–41.630) < 0.001(< 0.001- < 0.001)

RF-Platt 0.800 (0.769–0.828) 12.122 (9.999–14.068) 28.700 (22.500–35.800) 0.101 (0.022–0.284)

RF-IsoReg 0.777 (0.748–0.811) 8.871 (6.431–11.491) 28.600 (19.575–41.075) 0.185 (0.005–0.606)

RF-RPR 0.788 (0.753–0.816) 10.070 (7.989–11.932) 26.550 (20.200–33.275) 0.198 (0.042–0.464)

SVM 0.792 (0.762–0.821) 13.225 (11.390–15.112) 32.100 (25.420–39.970) 0.014 (0.001–0.102)

SVM-Platt 0.792 (0.762–0.821) 11.514 (9.373–13.996) 27.100 (21.650–34.170) 0.133 (0.026–0.352)

SVM-IsoReg 0.743 (0.676–0.784) 11.744 (8.644–15.926) 31.350 (21.975–47.525) 0.034(< 0.001–0.331)

SVM-RPR 0.788 (0.751–0.816) 10.893 (8.880–13.453) 26.300 (20.300–34.320) 0.140 (0.025–0.418)

FNN 0.813 (0.780–0.845) 9.211 (7.075–10.391) 23.500 (17.675–28.925) 0.329 (0.113–0.585)

FNN-Platt 0.813 (0.780–0.845) 9.990 (7.925–11.745) 23.600 (17.975–30.025) 0.243 (0.074–0.496)

FNN-IsoReg 0.731 (0.663–0.776) 14.090 (9.810–19.200) 46.000 (28.400–63.400) < 0.001(< 0.001–0.079)

FNN-RPR 0.809 (0.776–0.838) 9.910 (7.540–11.020) 23.500 (17.600–28.900) 0.287 (0.103–0.531)
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the frequencies were 204, 219, 221 and 238 for the 4 
ensemble models that did not undergo probability cali-
bration. See Fig. 3b for the results.

Discussions
We predicted 2-year mortality in patients with DLBCL 
at the individual level. The proposed method that 
applied probability calibration to ensemble learning per-
formed satisfactorily in terms of both discrimination and 
calibration.

We used 5 variables (gender, stage, IPI, KPS, and rituxi-
mab) to predict the 2-year mortality of patients with 

DLBCL. Most of the 5 variables have been proven to 
affect the prognoses of patients with DLBCL. The devel-
opment of rituximab is a breakthrough in the treatment 
of DLBCL, and current research indicates that rituximab 
can improve the clinical outcomes for almost all DLBCL 
subgroups [41–44]. IPI is a recognized prognostic indi-
cator of DLBCL, and high IPI values are associated with 
poor prognoses of patients [45, 46]. An advanced disease 
stage has been reported to be a poor prognostic factor of 
DLBCL, and it is associated with a low overall survival 
rate and a short disease-free survival time [46]. Although 
there is no research about the relationship between KPS 

Fig. 3 The frequency of achieving good calibration performance in 300 experiments
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and the prognoses of patients with DLBCL, the statuses 
of patients [47] affect treatment options and, perhaps, 
patient outcomes.

Although the discrimination abilities of the 5 base 
models are very similar, the differences in calibration 
are obvious. The logit and FNN models can accurately 
predict the 2-year mortality of DLBCL patients. How-
ever, the errors of the initial probabilities of the NB, RF 
and SVM models are large. These results are consistent 
with those of several reports [18–23]. The logit and FNN 
models return well-calibrated predictions because they 
directly optimize the log-loss of probability [23]. For the 
NB classifier, the output is often pushed to 0 or 1 because 
the required conditional independence assumption may 
not be valid in reality [21–23]. Inversely, the output of the 

RF algorithm is often pushed away form 0 and 1 because 
it is difficult to obtain identical predictions from all deci-
sion trees [18, 20, 23]. Furthermore, the SVM also pushes 
the prediction away from 0 and 1 and induces a sigmoid-
shaped distortion. Although the magnitude of the output 
can be taken as a measure of confidence in the predic-
tion, these values are often poorly calibrated [19, 23].

The Platt model is effective when the distortion of the 
prediction is sigmoid-shaped. In our study, the biased 
probabilities obtained by the NB, RF and SVM models 
achieved good correction effects by using the Platt model. 
IsoReg is a universal calibration method in which the 
only restriction is that the mapping function is isotonic 
(i.e. non-decreasing). However, the calibration errors of 
the NB and SVM models are still large after calibration 

Table 4 Performance of the ensemble model without undergoing probability calibration

SA-EN, ECE-EN, MCE-EN, and Stacking-EN represent the ensemble models obtained by combining NB, Logit, RF, SVM, and FNN models using simple averaging, 
weighted averaging by the ECE, weighted averaging by the MCE, and stacking method respectively

In each cell M  (P25 -  P75): M is the median,  P25 is the 25th percentile and  P75 is the 75th percentile of 300 performances. The best performance in each column is in bold. 
The secondary best performance in each column is underlined

NB Naïve Bayes, Logit Logistic regression, RF Random forest, SVM Support vector Machine, FNN Feedforward neural network

AUC ECE MCE P

NB 0.804 (0.773–0.839) 14.206 (11.646–16.880) 38.900 (31.675–46.575) < 0.001(< 0.001- < 0.001)

Logit 0.803 (0.773–0.835) 9.517 (7.909–11.415) 24.400 (18.875–31.900) 0.226 (0.055–0.486)

RF 0.800 (0.769–0.828) 13.569 (11.453–15.771) 36.000 (30.580–41.630) < 0.001(< 0.001- < 0.001)

SVM 0.792 (0.762–0.821) 13.225 (11.390–15.112) 32.100 (25.420–39.970) 0.014 (0.001–0.102)

FNN 0.813 (0.780–0.845) 9.211 (7.075–10.391) 23.500 (17.675–28.925) 0.329 (0.113–0.585)

SA-EN 0.812 (0.778–0.843) 9.695 (7.968–11.699) 26.100 (19.600–32.650) 0.130 (0.025–0.332)

ECE-EN 0.813 (0.778–0.844) 9.228 (7.382–11.307) 24.500 (18.750–30.450) 0.186 (0.040–0.458)

MCE-EN 0.812 (0.777–0.843) 9.317 (7.456–11.156) 24.200 (18.700–30.525) 0.204 (0.046–0.445)

Stacking-EN 0.806 (0.771–0.834) 9.866 (8.416–11.763) 24.850 (19.275–30.425) 0.225 (0.074–0.435)

Table 5 Performance of the ensemble model that underwent probability calibration

SA-EN-C, ECE-EN-C, MCE-EN-C, and Stacking-EN-C represent the ensemble models obtained by combining NB-RPR, Logit, RF-RPR, SVM-RPR, and FNN using simple 
averaging, weighted averaging by the ECE, weighted averaging by the MCE, and stacking method respectively

In each cell M  (P25 -  P75): M is the median,  P25 is the 25th percentile and  P75 is the 75th percentile of 300 performances. The best performance in each column is in bold. 
The secondary best performance in each column is underlined

NB-RPR Naïve Bayes calibrated by shape-restricted polynomial regression, Logit Logistic regression, RF-RPR Random forest calibrated by shape-restricted polynomial 
regression, SVM-RPR Support vector machine calibrated by shape-restricted polynomial regression, FNN feedforward neural network

AUC ECE MCE P

NB-RPR 0.794 (0.767–0.830) 9.514 (7.761–11.503) 23.800 (17.900–30.625) 0.257 (0.072–0.536)

Logit 0.803 (0.773–0.835) 9.517 (7.909–11.415) 24.400 (18.875–31.900) 0.226 (0.055–0.486)

RF-RPR 0.788 (0.753–0.816) 10.070 (7.989–11.932) 26.550 (20.200–33.275) 0.198 (0.042–0.464)

SVM-RPR 0.788 (0.751–0.816) 10.893 (8.880–13.453) 26.300 (20.300–34.320) 0.140 (0.025–0.418)

FNN 0.813 (0.780–0.845) 9.211 (7.075–10.391) 23.500 (17.675–28.925) 0.329 (0.113–0.585)

SA-EN-C 0.811 (0.777–0.842) 9.295 (7.634–11.199) 23.300 (17.800–29.650) 0.314 (0.131–0.536)

ECE-EN-C 0.811 (0.779–0.842) 9.027 (7.532–10.801) 22.350 (17.600–29.300) 0.351 (0.149–0.572)

MCE-EN-C 0.812 (0.777–0.842) 9.159 (7.456–10.862) 22.300 (17.100–28.700) 0.345 (0.161–0.566)

Stacking-EN-C 0.820 (0.791–0.857) 8.983 (6.698–10.533) 21.265 (14.880–27.800) 0.350 (0.145–0.672)
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by IsoReg. This may be caused by an overfitting effect 
resulting from scarce data. A report by Niculescu-Mizil 
suggested that IsoReg may not be suitable for calibra-
tion with a small sample size, especially when the sample 
size is less than 1000 [23]. By comparison, RPR is more 
flexible and powerful. Unlike the Platt model, RPR can 
calibrate any classifier since it has no constraints on the 
distribution of the initial output. Compared with IsoReg, 
RPR uses polynomial regression as a calibration function 
so that it is continuous over the entire interval. In addi-
tion, RPR strictly satisfies the monotonicity requirement 
and can be solved conveniently by optimization tools 
such as CVXPY [39, 40]. RPR can theoretically fit any 
calibration function as the polynomial degree increases. 
Therefore, RPR was used to correct poorly calibrated 
classifiers in our study. According to the H-L test, NB-
RPR, RF-RPR and SVM-RPR had the highest frequencies 
of achieving good calibration in 300 experiments com-
pared with the results of the Platt and IsoReg models. 
Although the MCE of NB-Platt was lower than that of 
NB-RPR and the ECE of RF-IsoReg was lower than that 
of RF-RPR, we believe that RPR achieved better calibra-
tion for the NB, RF and SVM models than the other cali-
bration methods if we also consider the results of the H-L 
test.

Ensemble methods can obtain better performance than 
single models by combining multiple models, especially 
when the individual models are weak. Many theories in 
this field were initially proposed for weak models, such 
as the family of boosting models. Although aggregat-
ing weak models is sufficient for obtaining good perfor-
mance in theory, models with good accuracy are often 
used as the base model in practice, especially when few 
base models are available. In our work, we used probabil-
ity calibration to improve the accuracy of the base mod-
els’ probabilistic predictions to obtain strong ensemble 
performance. The results show that the calibration per-
formance of the ensemble model was improved by cali-
brating the base models first. In terms of both the ECE 
and MCE, the calibration errors of our 4 ensemble mod-
els (SA-EN-C, ECE-EN-C, MCE-EN-C, Stacking-EN-C) 
were lower than those of the 4 ensemble models (SA-EN, 
ECE-EN, MCE-EN, Stacking-EN) that did not undergo 
probability calibration. According to the H-L test, our 4 
ensemble models had the highest frequencies of achiev-
ing good calibration performance in 300 experiments, 
which were 270, 274, 272 and 272. However, they were 
204, 219, 221 and 238 for the 4 ensemble models that did 
not undergo probability calibration. For all models, the 
stacking method that first calibrated the base model by 
RPR performed best in terms of both discrimination and 
calibration (AUC = 0.820, ECE = 8.983, MCE = 21.265). 
By contrast, the NB classifier generates probabilistic 

predictions with the highest error (ECE = 14.206, 
MCE = 38.900). Overall, our model, which applies prob-
ability calibration to ensemble learning, achieves the 
desired results.

Our research has limitations. First, the bootstrapping 
method may be more appropriate for the model evalu-
ation of our study than the hold-out method. Since the 
sample size of this research is small, the model trained 
on the bootstrapped dataset, which has the same sam-
ple size with the training data, may be has lower esti-
mation error. Second, it may be possible to improve the 
maximum calibration error in our study. The probabil-
ity after calibration may not change significantly, as the 
calibration function has to ensure global monotonicity 
over the entire range. This means that the calibration 
error is largely influenced by misclassified samples. In 
the future, we will collect more feature information about 
DLBCL patients to improve the discrimination ability of 
the model, which may further increase the accuracy of 
its probabilistic predictions. Third, we only selected five 
common classifiers as the base models in our work. The 
impact of increasing or decreasing the number of base 
models or performing selective ensemble learning on 
the final prediction can be further investigated. Fourth, 
this research was based on the data provided by a certain 
hospital. Therefore, an external validation is required to 
evaluate the generalizability of the model.

Conclusions
In conclusion, we predicted the 2-year mortality of 
patients with DLBCL at the individual level. The pro-
posed method performs satisfactorily and has the poten-
tial to help clinicians improve the outcomes of individuals 
by providing accurate risk predictions. Furthermore, 
these promising results may indicate that our modeling 
strategy of applying probability calibration to ensemble 
learning is successful.
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