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Abstract 

Background:  Knowledge is often produced from data generated in scientific investigations. An ever-growing 
number of scientific studies in several domains result into a massive amount of data, from which obtaining new 
knowledge requires computational help. For example, Alzheimer’s Disease, a life-threatening degenerative disease 
that is not yet curable. As the scientific community strives to better understand it and find a cure, great amounts of 
data have been generated, and new knowledge can be produced. A proper representation of such knowledge brings 
great benefits to researchers, to the scientific community, and consequently, to society.

Methods:  In this article, we study and evaluate a semi-automatic method that generates knowledge graphs (KGs) 
from biomedical texts in the scientific literature. Our solution explores natural language processing techniques with 
the aim of extracting and representing scientific literature knowledge encoded in KGs. Our method links entities and 
relations represented in KGs to concepts from existing biomedical ontologies available on the Web. We demonstrate 
the effectiveness of our method by generating KGs from unstructured texts obtained from a set of abstracts taken 
from scientific papers on the Alzheimer’s Disease. We involve physicians to compare our extracted triples from their 
manual extraction via their analysis of the abstracts. The evaluation further concerned a qualitative analysis by the 
physicians of the generated KGs with our software tool.

Results:  The experimental results indicate the quality of the generated KGs. The proposed method extracts a great 
amount of triples, showing the effectiveness of our rule-based method employed in the identification of relations in 
texts. In addition, ontology links are successfully obtained, which demonstrates the effectiveness of the ontology link-
ing method proposed in this investigation.

Conclusions:  We demonstrate that our proposal is effective on building ontology-linked KGs representing the 
knowledge obtained from biomedical scientific texts. Such representation can add value to the research in various 
domains, enabling researchers to compare the occurrence of concepts from different studies. The KGs generated 
may pave the way to potential proposal of new theories based on data analysis to advance the state of the art in their 
research domains.
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Background
Knowledge evolves over time, often fostered by new find-
ings or by changes in adopted reasoning methodologies. 
Even by chance, new facts or evidences may become 
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available, leading to new understandings about complex 
phenomena. This is particularly true for the medical 
domain, where scientists continuously work on finding 
new methods for diagnosis, treatment, and possibly, cure.

Regardless of the medical subarea, facts and findings 
about diseases have been documented extensively, open-
ing new opportunities for knowledge acquisition and 
expansion. Examples include research outcomes written 
and published, for instance, in theses, dissertations, arti-
cles, reports, among other textual formats utilized in the 
scientific literature.

Scientific investigations generate a massive amount 
of data, from which new knowledge may be produced. 
This formidable increase of the amount of data available 
makes it now almost impossible for scientists to properly 
understand and extract new knowledge without help. We 
claim that the use of effective computational methods for 
creating knowledge representations is a suitable alterna-
tive to support scientific investigations in the medical 
domain. As an example, such representations could pro-
vide a way to correlate a concept from a specific work 
with other concepts from the same study, as well as with 
concepts from similar investigations. By observing such 
relations, researchers might be able to formulate new 
hypotheses or draw new conclusions, advancing there-
fore the state of the art in a research domain.

The building of such representations requires deter-
mining the facts that may be either explicit or even 
implicit in diverse portions of a scientific text. Facts can 
be extracted from sections, paragraphs, sentences, or 
even in parts of sentences. For instance, consider the 
sentence Alzheimer’s Disease causes dementia. One may 
observe from the sentence, that: (1) There is a disease 
named Alzheimer’s Disease; (2) This disease causes a 
condition named dementia; (3) Alzheimer’s Disease and 
dementia are entities; (4) There is a relation between such 
entities denoted by the verb cause. In this sense, knowl-
edge may be represented by a set of facts considering a 
set of relations among entities. Considering the above 
observations, we came up with the following research 
question: Is it possible to represent knowledge obtained 
from scientific texts, identifying biomedical entities associ-
ated with well-known concepts in the biomedical domain, 
and determine how such entities relate to each other?

In this research, we propose the use of Knowledge 
Graphs (KGs) to represent knowledge extracted from 
scientific texts in natural language in the biomedical 
domain. KGs define the interrelations of entities in facts 
[1], modeling knowledge using the Resource Descrip-
tion Framework (RDF) [2] representation, relying on 
Linked Data principles [3]. Such principles play a central 
role in the in standardization and dissemination of the 
knowledge for several purposes. The key aspect is that 

RDF datasets must define links to external resources. 
Linked data technologies have become increasingly rel-
evant for semantic interoperability and knowledge dis-
covery in life sciences  [4]. RDF datasets in life sciences, 
such as Bio2RDF [5], MeSH [6], and AGROVOC [7] are 
part of the Linked Open Data (LOD) cloud, following 
the Linked Data principles. Bio2RDF refers to one of the 
largest networks providing linked data in life sciences. 
It has been used, for instance, as a knowledge retrieval 
tool that supplies information about the Human Immu-
nodeficiency Virus (HIV)  [8]. The representation of life 
sciences’ knowledge in a linked data perspective has also 
derived several research topics and advancements. Some 
examples include the usage of KGs to integrate multi-
ple types of life sciences’ data through queries in disease 
networks  [9], creation of an Ebola centered Knowledge 
Base  [10], challenges on using commercial data with 
linked data in pharmacological context for the discov-
ery of new drugs  [11], and the development of a linked 
dataset to aid doctors in choosing the best clinical treat-
ment for patients  [12]. In this sense, the computational 
representation and description of disease information by 
means of KGs might add great value to the analysis and 
understanding of diseases [13].

The generation of KGs from unstructured text through 
a completely automated procedure is still an open 
research problem. Considering biomedical scientific texts 
as input imposes further challenges to this problem. In 
such type of texts, we may find, among others, long and 
complex sentences containing implicit relations, abbre-
viations, and co-references to entities (through preposi-
tions). The recognition of entities may require specific 
previous knowledge in the domain, turning it difficult for 
computational tools and techniques to perform such task 
automatically.

In this paper, we define and develop KGen, a KG gener-
ator from natural language texts from biomedical scien-
tific literature using Natural Language Processing (NLP) 
techniques. We propose a semi-automatic method, in 
which an human (with specific domain expertise) may 
interfere with the process when required, ensuring the 
generation of suitable graphs.

In our method, KGs are generated by first identify-
ing sentences from within a chunk of unstructured text, 
resolving abbreviations, co-references, and later simplify-
ing sentences to obtain a set of small and cohesive sen-
tences. For each sentence in the set, our solution detects 
and extracts information in form of RDF triples, consti-
tuted of a subject, a predicate, and an object. Such con-
stituents are linked to classes, properties, and attributes 
from a biomedical ontologies. Finally, we build a graph 
representation by combining the set of triples with the 
set of obtained links.
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This work extends and advances the investigation 
started by Rossanez and Dos Reis [14] in the following 
aspects: We improve the information extraction from 
textual sentences, in a way that not only the main, but 
also secondary information is extracted from sentences, 
resulting in a greater amount of RDF triples. The rec-
ognition of biomedical entities was improved. For this 
purpose, we link such entities to the Unified Medical 
Language System (UMLS)  [15]. We refined the tech-
nique for Ontology linking using the obtained UMLS 
links as an intermediate step to acquire the final links 
for ontologies available in the NCBO bioportal  [16]. 
Such novel aspects are incorporated into the KGen 
software tool, available at https​://githu​b.com/rossa​nez/
kgen (As of Jan. 2020). In addition, we report further 
experimental results to assess the quality of the KGs 
generated from our proposal.

Performed validation considers the scenario of 
handling information about degenerative diseases. 
Degenerative diseases are the result of a continuous 
debilitating process in cells, that ends up affecting tis-
sues and organs, becoming worse over time [17]. They 
may interfere with balance, movement, breath, and 
even the heart function  [18] in an individual. One 
example of such degenerative diseases is the Alzhei-
mer’s Disease  (AD). AD is one of the leading causes 
of death throughout the world, especially among indi-
viduals aged 65 and older [19]. It is estimated to begin 
manifesting at least 20 years before the initial symp-
toms are noticeable [20]. Such symptoms examples are 
memory loss and language difficulties, which increase 
over time, up to a point where the individual is said to 
present dementia caused by AD [21]. The disease is not 
yet curable.

We conduct an evaluation involving physicians, keen 
to scientific texts on the biomedical domain related to 
AD. We handed them abstracts from scientific papers 
on AD, and asked them to manually extract triples from 
such texts. We then compared their triples to the ones 
extracted using our proposed method. Physicians were 
involved in carrying out a qualitative assessment of the 
generated KGs from our solution. In addition, we com-
pared the ontology linking results from our previous 
work against the specific linking method that we present 
in the current work. The results show that, through our 
method, a significant amount of triples is extracted in 
comparison with the manually extracted ones. The pro-
posed linking method in this work is capable of finding 
more links than the method described in our previous 
work. Experimental results indicate the quality of the 
KGs generated.

In summary, this work presents the following 
contributions:

•	 A new semi-automatic method that generates KGs 
linked to biomedical ontologies, from unstructured 
biomedical scientific texts;

•	 A rule-based technique that extracts the main rela-
tion from a sentence, based on the main verb and its 
arguments. The technique derives secondary rela-
tions from the same sentence, seeking compositions, 
adjectives, and modifying relations. This results in a 
more detailed KG representation;

•	 A technique that finds links in biomedical ontologies 
through SPARQL queries [22] with the use of UMLS 
mappings;

•	 A software tool developed and available to generate 
such linked KGs, by fully implementing the proposed 
method and techniques.

Studies dealing with KG building from unstructured 
text generally subdivide such main task into smaller sub 
tasks. At first, identifying or extracting valuable informa-
tion from text, and then modeling such information into 
RDF triples, constituted of a subject, a predicate, and an 
object. Another task refers to link concepts or entities 
represented in triples into knowledge bases for the gen-
eration of linked KGs. The following subsections describe 
and discuss existing techniques and studies addressing 
such issues.

Information extraction
The information extraction from text is an important and 
challenging task. Several NLP tools  [23] and techniques 
are usually employed in this process, e.g., Part of Speech 
(PoS) taggers, constituency and dependency parsers, and 
Named Entity Recognition (NER).

A common approach on information extraction con-
sists in identifying entities and verbs in a sentence. These 
would be the subject, object, and predicate candidates of 
an RDF triple. Verbs are identified by PoS tagging a sen-
tence. Entities, on the other hand, may be identified using 
NER. This technique identifies entities within a sentence, 
and it is usually implemented using a classifier [24] that 
assigns the entities into categories (e.g., person, organi-
zation, etc.). Such classifier requires a trained model 
to identify the named entities. This way, it is domain-
dependent. Using it in biomedical text requires a model 
trained in that domain, for which it is necessary to have a 
considerable amount of manually annotated text.

A possible strategy for extracting information relies 
on the use of open information extraction systems. Such 
systems rely purely on the identification of lexical and 
syntactical patterns in text sentences. Some examples 
of open information extraction systems are ReVerb  [25], 
OLLIE  [26], Stanford OpenIE  [27], and ClausIE  [28]. 
One advantage of such systems is that, since they rely 
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on sentence patterns, they are not domain-dependent. 
However, on the other hand, they may fail on identify-
ing important information, or even identifying erroneous 
relations in case of complex sentences (e.g., containing 
conditionals), or in passive voice sentences.

Semantic Role Labeling (SRL) [29] is a technique widely 
used in information extraction. It identifies the semantic 
roles of a verb in a given sentence (e.g., Agent, Patient, 
and Theme). For instance, in the sentence Rosie eats veg-
etables, the verb eat has two arguments, Rosie and vegeta-
bles. Such arguments assume the two semantic roles of 
the verb eat: an Agent (Rosie), and a Patient (vegetables). 
The roles are determined by consulting manually built 
lists of verb role sets for the English language, such as 
VerbNet [30], PropBank [31], and FrameNet [32].

Other approaches rely on machine learning techniques 
to identify entities and their relations within NL texts. 
Collobert et al. [33] employed neural network models in 
the SENNA system, which integrates PoS, NER, and SRL 
tasks. In most of the machine learning (or deep learning) 
approaches used for relation extraction, the identification 
is handled as a classification problem (i.e., determining 
the probabilities of a given relation from a sentence for 
a set of predefined relation types). Several neural net-
work types have been used in these investigations, such 
as Recurrent Neural Networks (RNN) [34], and Convolu-
tional Neural Networks (CNN) [35].

Li et al. [36] evaluated different neural models for bio-
medical entities and relation recognition. Such models 
present a great effectiveness in performing their job, but 
they require several amount of textual data to be prop-
erly trained in a particular domain. Furthermore, there 
are several hyper-parameters (e.g., number of hidden lay-
ers, and number of neurons in each layer) that need to be 
tuned, aiming at producing optimal outputs. For that, a 
significant amount of time and hardware power may also 
be required.

Knowledge bases and ontology linking
A relevant task refers to linking extracted RDF triples to 
entities and concepts represented in ontologies to turn 
the semantic encoding of RDF resources formal and 
explicit. There are several well-known bases that are fit 
for such task. For instance, DBpedia  [37], which con-
tains structured information extracted from Wikipedia. 
It provides a SPARQL endpoint, as well as REST APIs, 
allowing queries to its structured dataset. Similar bases 
that may be used for the same purposes are, for instance, 
Babelfy [38], and TagMe [39].

Considering the biomedical domain, the National 
Center for Biomedical Ontology (NCBO)  [16] pro-
vides an endpoint to access multiple biomedical ontolo-
gies, e.g., National Cancer Institute Thesaurus (NCIT), 

or Alzheimer’s Disease Ontology  (ADO). It provides 
an annotator for natural language sentences, helping to 
identify mappings from concepts and entities to existing 
ontologies; as well as SPARQL and REST API endpoints. 
They have employed a recommendation service that sug-
gests which ontology might contain the higher amount 
of matches for a given text. Their mapping service sup-
ports the alignment of concepts and properties between 
ontologies. Furthermore, each concept from ontologies 
contain a Concept Unique Identifier (CUI) field, mapped 
to the Unified Medical Language System (UMLS) [15], a 
semantic network that connects a concise collection of 
controlled vocabularies in the biomedical domain.

KG building studies
We analyze literature studies that aim at building KGs 
and linking them to knowledge bases. Martinez-Rodri-
gues et  al.  [40] combined open information extraction 
systems and SRL to extract triples by means of a tech-
nique that considers noun phrases in the identification 
of entities. The identified entities are mapped to multi-
ple knowledge bases, such as DBpedia [37], Babelfy [38], 
and TagMe  [39]. Exner and Nugues  [25] interconnected 
the extracted information to DBpedia [37], using a rule-
based approach. In such investigations, if there is not 
an exact match for any of the triple’s constituents in the 
knowledge bases, such are left unmapped.

Exner and Nugues [41] considered NER combined with 
SRL techniques to assign the named entities as either 
subject or object, using the identified verb roles. This 
is very helpful, for instance, in passive voice sentences, 
where the subject and the object may have their orders 
changed in the RDF triples if using open information 
extraction systems, for instance.

Similarly, T2KG tool  [42] explored a hybrid of a rule-
based approach and a vector-based similarity metric to 
identify similar mappings to DBpedia  [37] in case of a 
missing exact match.

FRED tool [43] generates its own ontology from a text, 
mapping existing entities and concepts to other existing 
knowledge bases, such as DBpedia [37]. It uses SRL com-
bined with frame semantics [44] to extract relations from 
the text and build a graph.

PIKES  [45] extracts information using SRL combined 
with a rule-based strategy to generate RDF triples, adding 
links to concepts found in bases such as DBpedia [37].

Other software tools have been proposed for the pur-
pose of KG building. For instance, IBM provides a tool 
for the information extraction from plain text to ulti-
mately build a KG integrating input documents [46]. The 
tool integrates a set of their services (e.g., Watson  [47] 
and Cloud [48]).
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KGs in the biomedical domain
Knowledge graphs have been extensively exploited in 
the biomedical domain. Existing initiatives range from 
the proposal of new approaches to support knowledge 
acquisition through user interaction [12, 49] to the use of 
learning mechanisms to support the creation of effective 
classification and search tasks [50, 51].

The work of Ruan et  al.  [12], for example, introduced 
QAnalysis, a question-answering tool to support the 
analysis of large volumes of medical data. Users may 
define information needs in natural language, and the 
system translates input queries into triple-based searches 
on knowledge graphs. Results are later presented in 
tables and charts. The work of He et al.  [49] focused on 
the proposal of a new graph-based information visualiza-
tion tool, named ALOHA, to support the identification of 
relevant information related to dietary supplement.

Classification and search tasks on knowledge graphs 
have been benefiting from advanced machine learning 
approaches recently developed. In the work of Sousa 
et  al.  [50], for example, the goal was to combine effec-
tively semantic similarity features. The main novelty 
relied on the use of a genetic programming framework to 
discovery the best combination function. In the work of 
Li et  al.  [51], the focus was on the classification of dis-
eases based on imperfect knowledge graphs, i.e., those 
that, for instance, lacks enough labeled data to support 
the creation of training models. Their solution exploited 
multiple vector representations (e.g., bag-based) and 
SVM classifiers.

Concerning KGs and AD, Lam et  al.  [52] converted 
information from different neuroscience sources to RDF 
format, making it available as an ontology. AlzPharm [53] 
used RDF to build a framework that integrates neuro-
science information, which also includes Alzheimer, 
obtained from multiple domains. The goal was to unify 
the neuroscientists’ queries into a single ontology.

The method proposed in this work differs from the 
related work in some aspects. We propose a preproc-
essing of the unstructured text, to identify co-refer-
ences and abbreviations. It is important to remove such 
elements from sentences, in a way to refrain from hav-
ing, for instance, pronouns and abbreviations on the 
graphs vertices. We also propose in the preprocess-
ing, the simplification of long sentences, where long 
sentences are replaced by at least two smaller and 
more cohesive sentences, to ease the work of extract-
ing relations and entities from them. We propose the 
use of the SRL technique to obtain the main relations 
(those related to the main verbs of the sentences), in 
conjunction to a technique based on the dependency 
parsing output, to obtain secondary relations (related 
to the nouns of the sentence). For obtaining ontology 

links, we propose a method that combines named enti-
ties recognition through UMLS concepts, and SPARQL 
queries that find mappings from UMLS to the targeted 
ontology.

The remainder of this paper is organized as follows: 
“Methods” section describes and formalizes our pro-
posed solution; “Results” section reports on the experi-
mental evaluations conducted for assessing our proposal 
whereas “Discussion” section discusses the obtained find-
ings. Finally, “Conclusion” section presents the conclu-
sions and future work.

Methods
This section describes our proposal for generating ontol-
ogy-linked KGs from unstructured texts, obtained from 
the biomedical scientific literature.

In formal terms, a Knowledge Graph KG = (V , E) can 
be represented as a regular graph, containing a set of 
Vertices V and Edges E . The vertices express entities or 
concepts, and the edges express how such concepts and 
entities relate to each other.

A RDF triple refers to a data entity composed of 
a subject (s), predicate (p) and an object (o), repre-
sented as t = (s, p, o) . In KGs, the edges are, then, 
a set of predicates, such that E = {p0, p1, ..., pn} . 
The vertices are, in turn, a set of subjects and 
objects, such that V = {s0, s1, ..., sn, o0, o1, ..., on} . 
In this work, a KG is represented as a set of RDF 
triples, such that, KG = {t0, t1, ..., tn} , where 
t0 = (s0, p0, o0), t1 = (s1, p1, o1), ..., tn = (sn, pn, on).

An ontology describes a real-world domain in terms of 
concepts, attributes, relationships and axioms [54]. For-
mally, an ontology O is represented as a set of classes CO 
interrelated by directed relations R , and a set of attrib-
utes AO , i.e., O = (CO ,RO ,AO).

In this sense, we may consider an ontology-linked 
knowledge graph KG′ = (V ′, E ′) = {t ′

0
, t ′
1
, ..., t ′n} , having 

some of its constituents as instances of classes, relations, 
and attributes of a given ontology O′ = (CO′ ,RO′ ,AO′) . 
A given predicate p′ ∈ E ′ may be an instance of a relation 
r′ ∈ RO′ . A given subject s′ ∈ V ′ and an object o′ ∈ V ′ 
may be instances of, either a class c′ ∈ CO′ , or an attribute 
a′ ∈ AO′.

We introduce our KGen (a shorthand for Knowledge 
Graph Generation) method and tool implementation to 
generate ontology-linked KGs. Figure 1 presents the key 
components in KGen represented in a pipeline, subdi-
vided into steps. Each step performs modular tasks.

We describe in details each step of the pipeline in the 
upcoming subsections. Implemented Tool subsection 
describes the implementation and architectural aspects 
of the developed KGen software tool.
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Preprocessing
In the preprocessing step, the unstructured text goes 
through four sub-steps, as shown in Fig. 2, before gener-
ating the preprocessed output.

The initial sub-step is the sentence splitting, 
where sentences are identified from the unstruc-
tured input text. Let us consider the input text (I) as 
a set of tokens (t), i.e., I = {tk0, tk1, ..., tkn} . In this 
context, we consider tokens as words, punctuation, 
numbers, and other special characters (e.g., paren-
theses). The input text is also represented as a set of 
sentences (s), i.e., I = {s0, s1, ..., sm} , in a way that each 
sentence is a subset of tokens from the input text (e.g., 
s0 = {tk0, tk1, tk2}, s1 = {tk3, tk4, tk5, tk6}, ..., sm = {tkn−2, tkn−1, tkn}) . 
The sentence splitting determines how many sentences 
exist in the input text, and which tokens, from the whole 
input text set belong to each sentence.

This subtask is performed using two NLP tools. The 
first one is a tokenizer, which breaks the entire text into 
tokens. Then, the second tool, a sentence splitter, iden-
tifies where sentences begin and end through specific 
tokens, such as punctuation. Of course, not all punctua-
tion marks indicate the ending of a sentence (e.g., in an 
abbreviation). For such reason, sentence splitters are 
often implemented considering a set of rules, or even 
trained models obtained from huge amounts of texts 
where sentence boundaries are usually annotated manu-
ally. Tokenizers and sentence splitters are available in the 
most common NLP toolkits (e.g., Stanford CoreNLP [23] 
and NLTK [55]).

The second sub-step identifies and resolves co-
references in the text. Let us take the set of sen-
tences obtained, and the tokens that constitute such 
sequences. A co-reference is determined when a token 
(e.g., a pronoun) refers to other token, or set of tokens, 
in the same, or another sentence. Consider the follow-
ing two sentences: This study confirms the high preva-
lence of poststroke cognitive impairment in diverse 
populations. It also highlights common risk factors. The 
first token in the second sentence, {It} , is a clear co-
reference to the following subset of tokens in the first 
sentence: {This, study} . Our technique replaces the first 
token in the second sentence by the identified subset of 
tokens, resulting in: This study confirms the high preva-
lence of poststroke cognitive impairment in diverse pop-
ulations. This study also highlights common risk factors.

Co-reference resolution is performed by observ-
ing sets of rules that consider the Parts of Speech of 
the tokens, as well as syntactical and lexical patterns. 
Similarly to tokenizers and sentence splitters, the most 
common NLP toolkits provide co-references resolution 
utilities.

The third sub-step identifies and resolves abbre-
viations. Like the co-references resolution, abbrevia-
tions can be identified by observing specific subsets 
of sequential tokens within the sentences. A token (or 
sequence of tokens) representing an entity, followed 
by another sequence of tokens that begins and ends 
with parentheses can determine the introduction of an 
abbreviation in a text.

Fig. 1  KGen (knowledge graph generation) pipeline. The unstructured text (input) goes through four key steps. An ontology-linked knowledge 
graph is generated at the end

Fig. 2  The first key step: preprocessing. The unstructured text (input) goes through four sub-steps. A preprocessed text is generated as output
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Page 7 of 24Rossanez 	

In this sense, considering a sentence s = {... , tke0 , tke1 , 
..., tken , (, tkabbr , ), ...} , one may notice that tkabbr can be 
determined as an abbreviation, being delimited by two 
specific tokens representing parentheses, and because 
either the preceding token ten , or the preceding finite 
sequence of tokens te0, te1, ..., ten represents an entity. 
For instance, consider the following two sentences: This 
study confirms the high prevalence of poststroke cognitive 
impairment (PSCI) in diverse populations. Prevention 
strategies are required to reduce the prevalence of PSCI. 
Clearly, PSCI is an abbreviation of poststroke cognitive 
impairment.

Abbreviation identification, therefore, is achieved by 
observing patterns over sequences of tokens. Once an 
abbreviation is identified, it is resolved in the text by 
changing the abbreviation occurrences by the referred 
term or expression (e.g., This study confirms the high 
prevalence of poststroke cognitive impairment in diverse 
populations. Prevention strategies are required to reduce 
the prevalence of poststroke cognitive impairment). Pat-
terns over sequences of tokens are able to be recognized 
by NLP tools such as Stanford’s TokensRegex [56]. Other 
tools, such as ScispaCy [57], provide an abbreviation 
detection utility for biomedical terms.

The last sub-step is sentence simplification. A common 
sentence can be subdivided into phrases (comprised of 

subsets of the sentence tokens), i.e., s = {p0, p1, ..., pn} , 
where p0 = {tk0, tk1, ..., tkn}, p1 = {tkn+1, tkn+2, ..., tkn+m} , 
and so on. Typically, complex sentences are composed of 
several phrases, that may start with a noun phrase, fol-
lowed by verb phrases. Such phrases may, in turn, be sub-
divided into other phrases (e.g., prepositional phrases, 
further verb phrases, and even other noun phrases). Such 
phrases are commonly bound by conjunctions (e.g., and, 
but, or, nor, etc.). The job of the sentence simplification 
sub-step is to detect conjunctions and phrases bounda-
ries and to derive smaller sentences, e.g., s′ = {p0, p1} , 
s′′ = {p0, p1}.

Determining phrases and conjunctions in a sentence 
is a task achieved with the assistance of a NLP tech-
nique called constituency parsing. Figure 3 shows a con-
stituency parsing output (a parse tree) for the following 
sentence: This study confirms cognitive impairment in 
populations, and points to ethnoracial differences.

In a parse tree, the leaves denote the tokens and their 
parts of speech. The root of the tree denotes the sentence, 
and the intermediary nodes denote the phrases. Figure 3 
presents that there is a verb phrase subdivided into two 
other verb phrases, bound by a conjunction (and). Such 
construction is commonly found in long sentences on 
scientific texts, that could be reduced to smaller, and 
more cohesive sentences. For the given example, the 

Fig. 3  A parse tree. Tokens are the seen at bottom (leaves), with their corresponding parts of speech right above. The root level denotes the 
sentence, and the intermediary levels denote the phrases

et al. BMC Med Inform Decis Mak 2020, 20(Suppl 4):314
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long sentence is changed into two smaller sentences: This 
study confirms poststroke cognitive impairment in diverse 
populations. This study points to ethnoracial differences.

In summary, the preprocessing step identifies sen-
tences, resolves co-references, resolves abbreviations, 
and simplifies long sentences. Figure 4 shows an example 
of an unstructured text input, and the resulting preproc-
essed output.

Triples extraction
With the preprocessed text ready, the next key step in the 
method consists of extraction of triples. The input text 
goes through two sub-steps (cf. Fig.  5), outputting a set 
of triples.

Consider a simple sentence s = {np, vp} , composed of a 
noun phrase and a verb phrase. The verb phrase in turn, 
may be composed of a verb v, (the main verb of the sen-
tence) and another noun phrase, i.e., vp = {v, np′} . Such 
verb in the verb phrase denotes a relation between both 
noun phrases, considered the verb arguments. This rela-
tion can be represented by a triple t = (s, p, o) , where the 
predicate refers to the verb, the subject is the first noun 
phrase, and the object, the second noun phrase, i.e., 
t = (np, v, np′) . This triple denotes the main relation of 
the sentence.

Besides the main relation, our technique is suited to 
extract secondary relations from both noun phrases, 

which are, ultimately, sequences of tokens. A noun 
phrase is typically composed of a set of tokens, denoting, 
for instance, nouns, adjectives, and determiners. From 
such compositions, it is possible to derive secondary rela-
tions. The triples extraction step in our method requires 
two sub-steps: the first for extracting the main relations, 
and the second one for extracting secondary relations.

In the first sub-step, the SRL technique is applied to 
identify verbs and their arguments. Consider the fol-
lowing example sentence: This study confirms the high 
prevalence of poststroke cognitive impairment. The verb is 
confirm, and its arguments, per SRL, are A0: this study; 
A1: the high prevalence of poststroke cognitive impair-
ment. From this example, we build the following triple 
(removing determiners and other preceding stop words):

(“study”, “confirms”, “high prevalence of poststroke cog-
nitive impairment”).

Fig. 4  Preprocessing step’s input and output

Fig. 5  The second key step: triples extraction. The preprocessed text 
(input) goes through two sub-steps, generating a set of triples as 
output

et al. BMC Med Inform Decis Mak 2020, 20(Suppl 4):314
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In order to represent the information in a more meaning-
ful manner, the SRL technique considers the retrieval of 
the role names for the verb arguments, using VerbNet 
or PropBank resources. Such resources describe sets of 
roles (rolesets) that were manually put together by lin-
guists. A roleset describes a possible set of roles assumed 
by the verb arguments, in different contexts. Consider-
ing the example, the extracted verb and its arguments, 
SRL obtains the confirm.01 roleset as a match, which 
describes as role names A0:Agent, A1:Theme. In this way, 
we may use a different reification form, to represent the 
information in two triples:

(“confirms”, role:Agent, “study”)
(“confirms”, role:Theme, “high prevalence of poststroke 
cognitive impairment”)

The predicates in such triples are Universal Resource 
Identifiers (URIs), instead of literals. They are defined 
locally, and represent the role types. Figure 6 summarizes 
the designed procedure.

In the next sub-step, an NLP technique called depend-
ency parsing is performed in the sentence to determine 
secondary triples. The dependency parsing output is rep-
resented in a tree form (cf. Fig. 7).

The PoS tags are shown right above the tokens, 
whereas the dependencies are linked by types, through 
arrows. We observe that the nouns may have modi-
fiers (usually adjectives linked by modifier types), e.g., 

prevalence has the high modifier; impairment has both 
cognitive and poststroke modifiers. From such infor-
mation, we derive rules to build secondary triples. For 
instance, we consider some as sub-classes of others:

(“high prevalence”, rdfs:subClassOf, “prevalence”)
(“cognitive impairment”, rdfs:subClassOf, “impair-
ment”)
(“poststroke cognitive impairment”, rdfs:subClassOf, 
“cognitive impairment”)

We notice that there are nouns that modify other 
nouns, e.g., poststroke cognitive impairment modifies 
(through of) high prevalence. We consider rules to build 
triples that represent such information:

(“high prevalence of poststroke cognitive impairment 
in diverse populations”, local:of_poststrokecogni-
tiveimpairment, “high prevalence”)
(“high prevalence of poststroke cognitive impairment 
in diverse populations”, local:highprevalence_of, “post-
stroke cognitive impairment”)

Figure  8 formalizes the proposed procedure. The 
predicate in those triples are local resources represent-
ing the modifying types. The subjects are the same as 
the Theme identified in the main triple from the first 
sub-step, which properly links all the triples.

Figure  9 illustrates the entire step’s output, showing 
all the triples extracted from a given sentence.

Ontology linking
This step can be considered optional, as without it, a 
KG is still generated by the method. For our objective 
of generating a KG linked to a biomedical ontology, this 
step plays a key role. It takes as input the preprocessed 
text, which goes through sub-steps to generate a set of 
links, as illustrated in Fig. 10.

Entities and relations from a KG may be mapped to 
classes, properties, and attributes described in a com-
putational ontology. Considering the extracted triples, Fig. 6  Algorithm for extracting the main triples

Fig. 7  Dependency parsing output. At the bottom are the sentence tokens, with their corresponding parts of speech on top. The arrows show the 
labeled dependencies between the tokens

et al. BMC Med Inform Decis Mak 2020, 20(Suppl 4):314



Page 10 of 24Rossanez 

Fig. 8  Algorithm for extracting the secondary triples

Fig. 9  Triples extraction step’s input and output

et al. BMC Med Inform Decis Mak 2020, 20(Suppl 4):314
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relations are represented by the predicates, whereas 
entities are represented in subjects and objects.

Taking as an example a triple t = (s, p, o) , and con-
sidering s = {tk0, tk1, tk2} , p = {tk3} , and o = {tk4, tk5} . 
An entity e may be represented by subsets of tokens 
from the subjects or objects. Considering as examples, 
a possible entity e0 = {tk4, tk5} , and another e1 = {tk5} , 
also e2 = {tk1} , and perhaps e3 = {tk0, tk1, tk2} . In these 
examples, entities e0 and e3 correspond to the whole 
object o and the whole subject s of the triple t. Entities 
e1 , and e2 , on the other hand, correspond to parts of s 
and o

In this context, it is important to identify the named 
entities and the relations in the text, and find their 
respective links (i.e., classes, properties, or attributes) in 
target ontologies, for later matching such links to por-
tions of the KG (as further described in “Graph genera-
tion” section).

The first sub-step is the recognition of named entities 
in the given sentences, using a NER technique. Consid-
ering the usual example sentence (This study confirms 
the high prevalence of poststroke cognitive impairment in 
diverse populations), the following are examples of recog-
nized named entities: study, prevalence, impairment, cog-
nitive impairment, populations.

NER requires models that are trained to find suit-
able entities. Since we are working under the biomedi-
cal domain, it requires a model that has been properly 
trained to find biomedical entities. Such models are avail-
able, for instance, in the ScispaCy [57] library, as adopted 
in this investigation.

The following sub-step aims at matching the named 
entities and relations to UMLS. Relations are identi-
fied by searching for verbs, using a PoS tagger, and tak-
ing their lemmatized form. The ScispaCy library, besides 
identifying named entities, performs the matching of 
such entities and relations to a database containing 
UMLS’ Concept Unique Identifiers (CUIs), along with a 
UMLS description of the matched entries.

As we have all the CUIs for the UMLS-matched terms, 
we look for matches in a targeted biomedical ontology in 
the last sub-step. We retrieve the final ontology matching 
by performing SPARQL queries, similar to the template 
presented in Fig. 11. Such query finds classes containing 

the UMLS’ CUIs to ultimately link the named entities to a 
biomedical ontology.

Figure 12 summarizes the whole ontology linking pro-
cedure. The trained model for NER technique and the 
target ontology are excepted as input for the algorithm. 
The algorithm generates a set of links, which are added 
in the KG.

Figure  13 shows examples of entities/verbs identified, 
with intermediary UMLS mappings, and final mappings 
for the National Cancer Institute Thesaurus (NCIT) 
ontology [58]. We chose to use NCIT as the target ontol-
ogy in this example, as it is the ontology suggested by 
NCBO recommender service [59] for the used textual 
excerpt.

Graph generation
The final step in our method takes as input the set of 
triples (generated in step 2), and the set of links (gener-
ated in step 3). Such inputs go through two sub-steps to 
generate an ontology-linked KG. Figure 14 illustrates the 
expected inputs and outputs of this final step.

The first sub-step is the triple enrichment. This sub-
step performs tasks to combine the extracted triples and 
generate a KG. We create local URIs for all strings in the 
set of triples’ subjects and objects. Such resources are 
linked with its respective literal representations through 
new triples, using the rdfs:label predicate. The local URIs 

Fig. 10  The third key step: ontology linking. The preprocessed text 
(input) goes through three sub-steps. A set of ontology links are 
generated as output Fig. 11  SPARQL query example for mapping UMLS CUIs to the final 

ontology

Fig. 12  Algorithm for ontology linking
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are meant to generate a fully-connected graph, as much 
as possible, as we may reuse local URIs on different tri-
ples. New triples are created to bind the ontology map-
pings to their respective named entities and relations in 
the graph, through the owl:sameas predicate.

Finally, with the new set of triples generated in the 
previous sub-step, a content is generated in Terse RDF 
Triple Language (Turtle) format. This is the final output 
of the entire pipeline. Optionally, graphical representa-
tions may be generated from this Turtle file, mapping 
the triples constituents to edges (predicates) and vertices 
(objects and subjects).

Due to the amount of triples, such representation may 
be a bit overwhelming to explore. Figure  15 exemplifies 

this by presenting the graphical representation of the 
output generated for the following sentence: This study 
confirms the high prevalence of poststroke cognitive 
impairment in diverse populations.

In Fig. 15, we observe the main relation extracted from 
the SRL technique output at the top of the figure. URIs 
are represented by ellipses, whereas literals are repre-
sented by rectangles. The edges represent the predicates 
of the turtle file’s triples. Secondary relations obtained 
from the dependency parsing were derived from the 
main relation. Intermediary UMLS mappings and final 
NCIT mappings are also presented, represented by the 
nodes with the umls and ncit prefixes.

Implemented tool
This subsection describes resources and tools used in 
the implementation of a KGen tool, fully available at 
https​://githu​b.com/rossa​nez/kgen (As of Jan. 2020), 
using Python language. The implementation was a 
mean to validate our method. Figure  16 illustrates the 
tool’s architecture. The four key steps from the method 
(i.e., preprocessing, triples extraction, ontology linking, 
and graph generation) are implemented in four com-
ponents. All the third party tools/toolkits used in the 

Fig. 13  Ontology linking step’s output

Fig. 14  The final key step: graph generation. The sets of triples 
and links (inputs) go through two sub-steps before generating an 
ontology-linked knowledge graph as output

et al. BMC Med Inform Decis Mak 2020, 20(Suppl 4):314
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Fig. 15  Graphical representation. Ontology-linked knowledge graph generated from the following sentence: This study confirms the high prevalence 
of poststroke cognitive impairment in diverse populations. 

et al. BMC Med Inform Decis Mak 2020, 20(Suppl 4):314
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components implementation are represented at bottom 
of the figure, in a common layer that can be accessed 
by all components. Finally, the external services are 
represented at top. This is another common layer that 
contains wrappers used to intermediate the communi-
cation between the main components and the external 
services.

In the main components, Stanford CoreNLP  [23] is 
used for sentence splitting, co-reference resolution, 
tokenizing, PoS tagging, constituency parsing, and 
dependency parsing. Since it is a Java toolkit, a server 
was implemented in Python, to process such NLP tools 
requests and return the results. The default models for 
English language were used in all tools, except for the 
co-reference resolution. In this case, we chose Stanford’s 
neural co-reference model. It runs slower than the default 
model, but it presents better results for texts written in 
English language  [23]. We chose accuracy over running 
speed in this posed trade-off.

In the preprocessor component, the sentence sim-
plification uses iSimp  [60], a sentence simplification 
system that relies on models trained specifically for bio-
medical texts. Abbreviation identification is performed 
using ScispaCy tool [57], which implements a detection 
algorithm proposed by Schwartz and Hearst  [61]. As 
ScispaCy outputs a list of identified abbreviations, an 

additional implementation based on NLP tools is used 
to replace the identified abbreviations by their com-
plete form throughout the whole text.

In the extraction of triples, SENNA  [33] system is 
used to perform the SRL technique. SENNA has been 
chosen as it shows good accuracy in texts from the bio-
medical domain  [62]. We used NLTK’s VerbNet and 
PropBank corpus readers interfaces to determine the 
roleset and the verb argument role names. Lemmatiza-
tion is performed using NLTK.

In the ontology linker, ScispaCy [57] models are used 
in conjunction with NLTK to determine named enti-
ties, and to obtain UMLS CUIs. ScispaCy provides 
several models that are meant to adapt NLTK in pro-
cessing biomedical text. For this implementation, we 
chose the larger biomedical vocabulary available (As 
of Nov. 2019), encoded in 600K word vectors for the 
English language, namely, ScispaCy’s en_core_sci_lg 
model, enabling more biomedical entities to be rec-
ognized than the other available models. Once UMLS 
CUIs are obtained, we submit SPARQL queries to the 
NCBO SPARQL endpoint [22] to obtain the final ontol-
ogy mappings.

In the graph generator, the conversion of the turtle 
file contents to graphs edges and vertices are performed 
using Raptor  [63]. The graph image is generated from 
the set of edges and vertices using Graphviz [64].

Fig. 16  Implemented tool architecture. The four key KGen steps are implemented in four components, seen at the central portion. In the lower 
portion there are 3rd party components. In the upper portion, there are wrappers for external services
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Results
An evaluation was conducted to assure the quality of the 
KGs generated through our solution. To this matter, we 
conducted two experiments. Our objective is to guaran-
tee that the key steps from our method produce the most 
appropriate outputs. We aim to ensure that extracted tri-
ples from the sentences are similar to triples that would 
be manually extracted by domain specialists, and ulti-
mately, ensure that generated KGs make sense to special-
ists. In addition, we assess to which extent the proposed 
linking method improves the final output of our method.

The first experiment (cf. Experiment I: Evaluation of 
Triples subsection) involved two physicians who kindly 
volunteered to assist us in evaluating the quality of the 
triples extracted from biomedical texts. To the best of 
our knowledge, there are no gold standards in literature 
to evaluate triples extracted from unstructured texts 
from the biomedical domain. In this way, we have cho-
sen to invite subjects that are knowledgeable in this 
domain for this experiment. Both physicians have more 
than 10 years of working experience in their areas, and 
they attend international events regularly, thus, are used 
to read scientific papers from the biomedical domain. As 
a disclaimer, it is important to mention that, at any time 
preceding the experiment, neither of the physicians were 
told about the actual nature of this work, or what does 
our method achieves.

The second experiment (cf. Experiment II: Ontology 
links subsection) involved a comparison of the ontology 
links obtained from the current version of our method, 
in comparison with the initial version, as described in the 
work by Rossanez and Dos Reis  [14]. With this experi-
ment, we assess the difference between using a trained 
model to recognize biomedical named entities and their 
UMLS CUIs, to ultimately link with a final biomedical 
ontology, against using NCBO’s REST APIs to provide 
the final biomedical ontology links directly.

Experiment I: evaluation of triples
This experiment, as previously stated, involved two phy-
sicians, and consisted of two parts. The preamble of 
the experiment was to have each physician read three 
distinct abstracts (i.e., six distinct abstracts in total), 
extracted from medical papers related to Alzheimer’s 
Disease, from the Neurology journal. The abstracts of this 

journal follow the Objective, Methods, Results, and Con-
clusions format. We took the six first publications which 
resulted from a search for the Alzheimer’s Disease term, 
in the journal’s search engine, at https​://n.neuro​logy.org 
(As of Dec. 2019).

Extraction of triples analysis
A small introduction about RDF was given to the subjects 
in the first part of the experiment. We presented some 
examples of RDF triples (subject, predicate, and object) 
extracted from small sentences. We made sure that they 
completely understood the process before starting the 
main procedure of the experiment.

We asked them to only take into account the conclu-
sion section of the abstracts to manually create their own 
triples (graph) according to their interpretation of the 
text. Such sub-section contains, in general, one or two 
small sentences (e.g., This study confirms the high preva-
lence of poststroke cognitive impairment in diverse pop-
ulations, highlights common risk factors, in particular, 
diabetes mellitus, and points to ethnoracial differences 
that warrant attention in the development of prevention 
strategies.). No communication was allowed between the 
subjects or the subjects and the experimentalist, until the 
process was finished.

We ran our tool, which implements our KGen method, 
to extract triples from the same abstracts’ conclusions 
sub-sections handed to the subjects. Table  1 summa-
rizes the amount of triples extracted from the 6 abstracts, 
labeled from A00 to A05, by the subjects, and also, by our 
method.

As shown by Table  1, our method has extracted 
more triples than the subjects. This is achieved due to 
the amount of main and secondary relations that our 
method extracts from the sentences. The secondary rela-
tions are extracted using the dependency parsing tech-
nique, resulting in triples that relate nouns with their 
compounds and adjectives, as well as other nouns. This 
may result in a great amount of triples, depending on 
the amount of these parts of speech in the sentence. For 
instance, consider the following sentence: Ethnoracial 
differences warrant attention in the development of pre-
vention strategies. An example of manually extracted tri-
ple by one of the experts is the following:

Table 1  Comparison of extracted triples between experts and KGen results

Amount of triples extracted by the domain experts, and by KGen, for each abstract, labeled from A00 to A05

A00 A01 A02 A03 A04 A05

Experts 9 7 12 7 10 5

KGen 32 38 62 65 59 80
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(“Ethnoracial differences”, “warrant”, “attention in the 
development of prevention strategies”)

On the other hand, using our tool, the dependency pars-
ing technique resulted in the following set of secondary 
triples:

(“prevention strategies”, rdfs:subClassOf, “strategies”)
(“ethnoracial differences”, rdfs:subClassOf, “differ-
ences”)
(“development of prevention strategies”, local:of_pre-
ventionstrategies, “development”)
(“development of prevention strategies”, 
local:development_of, “prevention strategies”)

As for the main relations, extracted using the SRL tech-
nique, they result in at least two triples for sentence, 
depending on the number of verb arguments that are 
retrieved by the technique. Considering the same sen-
tence, our tool outputs the following set of triples from 
the SRL technique:

(“warrant”, local:AM-LOC, “development of preven-
tion strategies”)
(“warrant”, vn.role:Agent, “ethnoracial differences”)
(”warrant”, vn.role:Theme, “attention”)

The predicate of the first triple is an URI that indicates 
location. The predicates from the second and third triples 
are URIs representing the role that the object assumes in 
the original sentence. If we consider the SRL technique 
alone, without the proposed reification form, then we 
have the following triples, that are in a format that is sim-
ilar to the manually extracted by the experts:

(“ethnoracial differences”, “warrant”, “attention”)
(“ethnoracial differences”, “warrant attention in”, 
“development of prevention strategies”)

For a fair base of comparison, we ran our tool considering 
different configurations for triples extraction: (1) Extract-
ing only the main relations through the SRL technique; 
(2) Extracting only the main relations through the SRL 

technique, without considering the adopted reification 
form; And (3) extracting only the secondary relations 
through the dependency parsing technique. Table 2 sum-
marizes the differences in the results.

As another approach to compare KGen’s generated tri-
ples with the manually extracted ones, we used the Jac-
card similarity coefficient. This coefficient measures the 
similarity between finite sets, and it is defined as the size 
of the intersection divided by the union of the sets. Equa-
tion 1 shows how the Jaccard coefficient J(A, B) is calcu-
lated for two sets A and B.

The Jaccard coefficient ranges between 0 and 1. If both 
sets have the same elements, the value is 1. If there is no 
intersection between such sets, the value is 0. If both sets 
are empty, the Jaccard coefficient is defined as 1.

To obtain the Jaccard coefficient, we considered the 
sets of manually generated triples and KGen’s. From such 
two sets, we identified triples that were only found in the 
manual process, triples that were only found by KGen, 
and finally, triples that are found both manually and by 
KGen (i.e., the intersection between both sets). Table  3 
presents the obtained results.

We observe that, according to the Jaccard coefficient, 
the sets are not very similar, having a very little intersec-
tion. This is primarily due to the differences between the 
number of elements from the compared sets, i.e., KGen 
extracts much more triples than the specialists.

We already discussed that the manually extracted tri-
ples are more similar to the triples extracted from the 
SRL technique without the proposed reification form. In 
this way, we further compared the KGen triples extracted 
using the SRL without reification configuration. Such 
results are described in Table 4.

The analysis concerning the extraction of triples by 
KGen using the SRL without reification configuration, 
the Jaccard coefficient increases. The intersection com-
paring the amount of triples that were extracted only 
in the manual and only in KGen’s sets can be explained 
by some particularities that were found in the manu-
ally extraction of triples. One of such is the fact that the 

(1)J (A,B) =
| A ∩ B |

| A ∪ B |
=

| A ∩ B |

| A | + | B | − | A ∩ B |

Table 2  Comparison between KGen’s configurations

Number of triples extracted considering three distinct KGen configurations: semantic role labeling (SRL) only, SRL without reification form, and dependency parsing 
only

A00 A01 A02 A03 A04 A05

SRL 9 9 15 10 17 11

SRL w/o reification 5 5 9 6 9 6

Dependency parsing 23 29 47 55 42 69
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experts derived relations that are not explicitly in the 
sentences. For example, the first abstract contains the fol-
lowing sentence: This study confirms the high prevalence 
of poststroke cognitive impairment in diverse populations, 
highlights common risk factors, in particular, diabetes 
mellitus, and points to ethnoracial differences that war-
rant attention in the development of prevention strategies. 
Some of the triples the experts were able to extract are:

(“diabetes mellitus”, “is”, “risk factor”)
(“poststroke cognitive impairment”, “is prevalent”, 
“in diverse populations”)
(“development of preventions strategies”, “are”, 
“needed”)
(“prevalence of poststroke cognitive impairment”, 
“involves”, “ethnoracial differences”)

Although such triples make perfect sense, KGen is not 
able to build them given the employed techniques. This is 
mostly due to their predicates not being explicitly found 
in the text. It requires some logical thinking to build 
them, and in some cases, even a previous domain knowl-
edge (which is expected from such specialists).

Another example from the following sentence is in the 
third abstract: Results at 3 years after unilateral tran-
scranial magnetic resonance-guided focused ultrasound 
thalamotomy for essential tremor, show continued benefit, 
and no progressive or delayed complications. In this case, 
the specialists were able to distinguish essential tremor 
as the condition, and the (very large) treatment type uni-
lateral transcranial magnetic resonance-guided focused 
ultrasound thalamotomy, resulting in the following triple:

(“unilateral transcranial magnetic resonance-guided 
focused ultrasound thalamotomy”, “is”, “an option to 
manage essential tremor”)

In other cases, some triples were derived from complex 
sentences. This is handled by KGen in the preprocess-
ing step, ending up on avoiding such redundancies. 
For example, the following sentence from the second 
abstract: High-convexity tight sulci may confound clini-
cal and biomarker interpretation in Alzheimer’s Disease 
clinical trials. KGen extracted two triples in this case, 
whereas the expert extracted the following three triples:

(“High-convexity tight sulci pattern”, “may confound”, 
“clinical and biomarker interpretation in Alzheimer’s 
Disease clinical trials”)
(“High-convexity tight sulci pattern”, “may con-
found”, “clinical interpretation in Alzheimer’s Dis-
ease clinical trials”)
(“High-convexity tight sulci pattern”, “may confound”, 
“biomarker interpretation in Alzheimer’s Disease 
clinical trials”)

In this sense, we found that such triples represent a sec-
ondary knowledge that is derived from the primary 
knowledge obtained from the text, which is, in turn, rep-
resented by the triples extracted by KGen. Therefore, an 
important lesson learned is that, no matter what tech-
nique or method used to extract triples from texts in 
the biomedical domain, it is important to allow the later 
addition of manually generated triples from experts to 
the output. Such semi-automatic approach might enrich 

Table 3  Comparison between triple sets

Number of triples found only manually, only by KGen, and by both methods (i.e., the intersection between manual and KGen–this considers triples with the same 
subject, predicate, and object). Also, the Jaccard similarity coefficient for the sets of triples

A00 A01 A02 A03 A04 A05

Manually only 5 5 7 5 7 4

KGen only 28 36 57 63 56 79

Both 4 2 5 2 3 1

J(Man., KGen) 0.10 0.04 0.07 0.02 0.04 0.05

Table 4  Comparison between triple sets (KGen on SRL without reification)

Number of triples found only manually, only by KGen on SRL without the adopted reification form, and by both methods (i.e., the intersection between manual and 
KGen). Also, the Jaccard similarity coefficient for the sets of triples

A00 A01 A02 A03 A04 A05

Manually only 5 5 7 5 7 4

KGen only 1 3 2 4 6 2

Both 4 2 5 2 3 1

J(Man., KGen) 0.40 0.20 0.31 0.22 0.18 0.57
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the knowledge representation, both in terms of explicit 
knowledge from the text, but also, in terms of derived 
knowledge that is rather implicit in the text. Another 
possibility is to include a new sub-step, or post-process-
ing sub-step, in which we could automatically attempt to 
derive triples from the obtained triple set, similar to the 
ones manually obtained from the subjects, through infer-
ence reasoning.

Knowledge graph analysis
Once the first part of the experiment was finished, we 
started the preparation for the second part. Both sub-
jects were explained the concept of Knowledge Graphs. 
They were instructed about the graphical representation 
of RDF triples in a KG (i.e., edges representing the predi-
cate, while subjects and objects are represented either by 
ellipses in case of URIs, or by rectangles in case of liter-
als). Once again, we made sure that the concepts were 
completely understood by them, before moving further.

Each subject was then presented a sentence extracted 
from one of the abstracts’ conclusions subsection, along 
with a simple KG generated for that sentence. The pre-
sented KG was a simpler version of the KG generated by 

our method, as it did not present any ontology link. This 
was meant to remove the extra complexity that such fig-
ure may present and become very large. Figure  17 pre-
sents one of such graphs.

With those KGs in hand, we asked the subjects to ana-
lyze them and freely provide any comments they might 
have. It is important to mention here that neither of the 
subjects were told that such KGs were generated by a tool 
which implements our method, to avoid any kind of bias 
in their judgements.

Both subjects found such an interesting form to visually 
describe the sentences from the conclusion subsection of 
the abstracts. They agreed that the starting point of the 
graph with the main verb (cf. Fig. 17) is a good starting 
point as it represents the principal information from the 
sentence. This reflects the idea of a main relation, repre-
sented by the main triples extracted from the SRL tech-
nique. This binds the secondary information, represented 
by the secondary triples extracted from the dependency 
parsing technique. This binding is well represented by the 
local URIs that make the graph fully connected.

The subjects agreed that breaking down larger objects 
and subjects (e.g., common risk factors into risk factors 

Fig. 17  Reduced knowledge graph example. Knowledge graph generated for the triples extracted from the following sentence: This study 
highlights common risk factors, in particular diabetes mellitus. 
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and then, into factors) into smaller and more cohesive 
terms makes it easier to find a specific concept in the 
representation. In practical terms, this could allow a 
SPARQL query performed in the KG on finding if a spe-
cific concept is present in the graph. Such task would be 
harder to accomplish if this concept should be embedded 
into a graph node that represents a more specific concept 
(e.g., common risk factors), rather than a more generic 
concept (e.g., risk factors).

Still regarding the breakdown of larger nodes into 
smaller ones, one point of improvement was indicated by 
the subjects. When, for instance, breaking down common 
risk factors into risk factors, and in turn, into factors, some 
terms are left aside, such as common, and risk. Represent-
ing such terms could enrich the knowledge representa-
tion, especially because they could also be considered in 
a SPARQL query. In practical terms, they could be linked 
to ontologies, as further discussed in Experiment II (cf. 
“Experiment II: Ontology links” section). One possible 
way to represent such terms, would be to add new triples 
to the existing set, using local URIs that would represent 
those as part of the initial specific concept, such as the 
ones represented in bold below:

(“common risk factors”, rdfs:subClassOf, “risk fac-
tors”)
(“common risk factors”, local:hasAdjective, “com-
mon”)
(“risk factors”, rdfs:subClassOf, “factors”)
(“risk factors”, local:hasCompound, “risk”)

Another point of improvement suggested by the experts 
concerns specifically the graph from Fig.  17. In this 
graph, we observe that the diabetes mellitus concept is 
dealt as a specific concept of the generic mellitus con-
cept. This is not true, as diabetes mellitus represents a 
concept (a disease). It is not supposed to be broken down 
as the result obtained by our technique. This happened 
because the dependency parser from Stanford CoreNLP 
toolkit considered both diabetes and mellitus as separate 
nouns. Also, diabetes is a compound linked to mellitus. 
In practice, this could be mitigated by incorporating a 
biomedical named entity recognizer (NER) to the tech-
nique. If such NER identifies diabetes mellitus as a whole 
entity, there would be no break it down. Another option 
would be using a dependency parser trained in biomedi-
cal texts, that would prevent such an issue.

Most models used in NLP tools and techniques are 
trained in a very large, but finite set of texts. Due to new 
findings and investigation works, the biomedical domain 
evolves quickly and new entity names are introduced 
to the vocabulary. For this reason, the trained models 
require timely updates to catch up to the state of the art. 

Therefore, most NLP tools and techniques may always 
fail in some aspect, being it either recognizing named 
entities, identifying parts of speech, or generating parse 
trees. This enforces the use of a semi-automatic method, 
where such limitations on tools and techniques may be 
overcame by manual interaction when required.

Furthermore, there may be minor human errors in the 
texts (e.g., wrong punctuation, ambiguous sentences, etc.) 
that may also interfere with the output of NLP tools and 
techniques. Such erroneous outputs might interfere with 
the generation of RDF triples, and in consequence, gen-
erate erroneous KGs. For this reason, a semi-automatic 
approach is valuable, as an expert might be able to review 
the method’s overall and intermediary outputs, and 
interfere with the process, so that we may have the most 
appropriate outputs.

Experiment II: ontology links
In this evaluation, we compared the ontology links 
obtained from the same unstructured input text, between 
KGs generated using the ontology linking method from 
our previous work  [14], against the updated linking 
method proposed and implemented in this work.

The previous method consists on retrieving the anno-
tations generated from the National Center for Biomedi-
cal Ontology (NCBO) bioportal, by means of their REST 
APIs, where we passed in as parameters, the actual text 
to be annotated, and a target ontology, from which the 
links should be obtained.

The new method, on the other hand, consists in using 
a trained model able to recognize biomedical named 
entities, and a NLP Part of Speech (PoS) tagger to rec-
ognize verbs. The model is able to provide UMLS CUIs, 
for the given recognized entities and verbs. Then, by 
using NCBO bioportal’s SPARQL endpoint, we query the 
corresponding matches for such concept IDs in a target 
ontology.

The comparison of both methods used the same con-
clusions sub-sections of the abstracts used in Experiment 
I, labeled from A00 to A05. The target ontology selected 
is NCIT, the same ontology from the examples in Section 
. NCIT is the most suitable ontology, as it is suggested 
by NCBO recommender service [59] for all the abstracts 
texts. The trained model, which provides NER and UMLS 
CUIs, was obtained from the ScispaCy project [57].

We first compared the amount of links obtained using 
both methods, in terms of number of links generated. 
Table  5 summarizes the results. We observe that for all 
abstracts, the new method shows better results in obtain-
ing links.

Considering the difference between the links obtained 
in both methods, we have links that were added (i.e., they 
did not exist in the previous method), links that were 
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maintained (i.e., they exist in both the previous and the 
new method), and links that were removed (they exist 
in the previous method, but no longer exist in the new 
method). Table 6 presents such cases.

The amount of links found for the new method in 
Table 5 considers the links obtained in the target ontol-
ogy. As already explained, before obtaining the final link, 
the method first identifies the term (a named entity or a 
verb), then obtains a UMLS CUI, and finally, obtains the 
target ontology link through a SPARQL query. Therefore, 
there may be some cases where: (1) the term is identified 
and there is no UMLS match; (2) the term is identified, 
a UMLS CUI is found, but there is no match in the tar-
get ontology; and (3) the most successful case, where the 
term is identified, a UMLS CUI is found, and a match 
in the target ontology is also found. Such cases are pre-
sented in Table 7.

The numbers presented in Table  7 indicate that if we 
choose a different target ontology, we may find differ-
ent results, as the final link is obtained through an exist-
ing mapping between the target ontology and UMLS. If 
we still consider the same target ontology, one possible 
direction to improve the results would be combining the 
results for both methods, i.e., adding the target ontology 
links obtained from the previous method (NCBO anno-
tator) that are not found through the UMLS method 

to the output. The results may also be possibly further 
enhanced if we specifically search for the identified 
terms, that neither have a corresponding UMLS CUI, nor 
an annotated result in the target ontology.

We updated our KGen tool to incorporate and evaluate 
this combined approach to further enhance the results. 
Table 8 shows the updated results when performing this 
approach. We found a positive outcome, as the number 
of links increased.

Discussion
This investigation defined, developed, and evaluated 
KGen, a semi-automatic method to generate KGs from 
natural language texts from biomedical scientific lit-
erature using NLP techniques. The method advances 
the state of the art in extracting not only the main rela-
tions from sentences and representing them as RDF tri-
ples, but also secondary relations, using the output of a 
dependency parser. We introduced a technique to link 
entities and relations from the KG to concepts and prop-
erties in biomedical ontologies. Our technique explored a 
trained model that recognizes biomedical named entities 
that are mapped to concepts and properties in the UMLS 
semantic network. Such concepts and properties are, in 
turn, mapped to the ones from a targeted ontology by 
means of SPARQL queries. The benefit of this mapping is 

Table 5  Comparison between ontology linking methods

Amount of links found for the previous method (retrieved from the NCBO annotator), and the new method (obtained through ScispaCy trained model and UMLS 
SPARQL queries)

A00 A01 A02 A03 A04 A05

Previous method 4 3 6 5 4 6

New method 6 8 11 10 9 9

Table 6  Analysis of changes in links provided by the through ScispaCy trained model and UMLS SPARQL queries

Amount of links added, maintained, and removed, when comparing the previous method and the proposed method

A00 A01 A02 A03 A04 A05

Added 4 6 6 8 5 7

Maintained 2 2 5 2 4 2

Removed 2 1 1 3 0 4

Table 7  Steps in generating links in the new method

Number of terms identified (named entities and verbs), UMLS CUIs that are found for these terms, and links to a target ontology obtained for these UMLS CUIs

A00 A01 A02 A03 A04 A05

Terms identified 17 17 21 21 18 26

UMLS CUIs found 11 10 14 14 11 18

Target Ontology links 6 8 11 10 9 9
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to enable the direct comparison of concepts on different 
KGs, bringing them to a common basis of comparison.

We conducted experiments to evaluate the quality of 
the proposed ontology linking method, and the quality 
of the RDF triples generated by KGen. The triples evalu-
ation involved two physicians, who manually generated 
triples from six abstracts from papers related to the Alz-
heimer’s disease. From the same six abstracts, we ran our 
tool that implements KGen method. We discovered that 
KGen is able to extract more triples than the physicians, 
due to the main and secondary relations that it identifies 
and extracts from the text sentences. The comparison 
was performed using the Jaccard similarity coefficient. It 
can be seen as a proxy to an accuracy assessment, which 
cannot be directly performed due to the lack of a gold 
standard in the current stage of this research. The Jac-
card coefficient denotes how similar are the sets of triples 
extracted by KGen, in comparison to the sets manually 
extracted by the physicians.

Although the lack of a gold standard and a direct accu-
racy assessment is a limitation of our work, as direct 
measurements could lead to more robust conclusions, 
the use of the Jaccard similarity coefficient shows promis-
ing results regarding the utilization of our approach.

The physicians did not directly verify the triples gen-
erated by KGen nor performed any comparison against 
their manually-generated triples. All the analyses were 
conducted by the authors. Our analysis identified that 
physicians were able to extract non-trivial triples from 
texts, which involves logical thinking and previous 
knowledge in the area. The semi-automatic nature of 
KGen approach enables to combine both the automati-
cally extracted set of triples with the manually extrac-
tion. The benefits in this approach refers to the ability in 
generating an enriching KG that combines the explicit 
knowledge represented in the text with experts’ implicit 
knowledge suited to derive from the same text.

In addition, the fact that the involved physicians in 
this study are surgeons, and not AD specialists, also 
represents a limitation of our work. We believe that the 
involvement of AD experts could, of course, enrich and 
strength our conclusions. However, the ultimate objec-
tive of our proposed method is to generate a knowledge 
representation of texts, that is expected to be useful 

not only for experts in a particular domain, but also for 
researchers, physicians, and even students with back-
ground knowledge in related areas. The involvement of 
the surgeon physicians in this study is therefore aligned 
to our objective. As the subjects considered in our study 
have a broader knowledge about the target domain, we 
believe that their assessments are still valid in our attempt 
to confirm that our approach leads to relevant knowledge 
representations of texts in the biomedical domain.

The ontology linking evaluation involved a direct com-
parison between the proposed ontology linking approach, 
and the annotations generated by the NCBO webportal. 
Our refined proposed linking approach showed better 
results in terms of the amount of links found. We found a 
small overlap in terms of links detected by both methods. 
In a few cases, though, there are links found by the anno-
tator, which are not detected by the proposed method. 
We noticed that it is possible to combine links generated 
by both methods to produce an enhanced result, which 
further increases the overall amount of links obtained for 
a target ontology.

The language employed on scientific papers, espe-
cially those in the degenerative diseases domain, poses 
a great difficulty for techniques and tools involved in the 
method. Furthermore, texts may also present problematic 
constructions, in terms of punctuation, spelling, or even 
ambiguous sentences. For this reason, a fully automated 
method is still an open research challenge. Although 
our method is able to run to completion without human 
intervention, the method allows a domain specialist to 
review and manually change the intermediate artifacts, 
i.e., the preprocessed text, triples, ontology links, and the 
RDF representation of the KG. In the KGen tool, such 
intermediary artifacts are represented by text files. When 
they are manually changed, the tool is able to reconsider 
those intermediary files and update the resulting graphs.

In the current implementation of KGen tool, we used 
python programming language, and a variety of NLP 
tools and models combined for tasks. For instance, 
named entity recognition explored ScispaCy’s models 
that are targeted for biomedical texts. Although such 
models and tools showed satisfactory results in the 
processed texts considered in the current evaluation, 
it is important to mention that our solution provides 

Table 8  Further comparison between ontology linking methods

Amount of links found for the previous method (using the NCBO annotator), the new method (obtained through ScispaCy trained model and UMLS SPARQL queries), 
and a combination of both methods

A00 A01 A02 A03 A04 A05

Previous method 4 3 6 5 4 6

New method 6 8 11 10 9 9

Combination 8 11 12 12 11 13
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flexibility for changing the models used, or even the tools 
employed. That will be explored in future evaluations.

An aspect that could be further investigated is an auto-
matic approach to generate RDF triples more similar to 
the ones generated by domain experts. Obtaining rela-
tions that are rather implicit in the text sentences could 
rely on logical inferences. Such inferences could be 
derived from the main and secondary automated triples, 
by using, for instance, machine learning approaches. Tri-
ples that require a previous knowledge to be generated, 
on the other hand, could be harder to derive. A possible 
investigation would be by using other KGs generated 
from texts in the same area, as well as ontologies in the 
domain. SPARQL queries could be employed for finding 
related concepts or properties, and, thus, further enrich 
the primary triple set. Another possibility lies on using 
inference reasoning in the primary triple set to derive a 
secondary triple set.

Another interesting venue of research lies on the inter-
mediary UMLS mappings for the entities and relations 
represented in the graph. SPARQL queries using the 
UMLS CUIs could be of great assistance when compar-
ing KGs that linked to different ontologies. The UMLS 
CUIs could be used as a common ground in such com-
parison, or even be used to generate additional mappings 
to more than one ontology, enabling a fair comparison 
between such different KGs.

The analysis performed by comparing KGen’s triples to 
the triples manually extracted by experts brings another 
possible venue for future investigations. We plan inviting 
other domain experts in the biomedical domain to manu-
ally extract triples from similar texts and help us on gen-
erating a comparison baseline for methods that aim on 
generating ontology-linked KGs.

Conclusion
The generation of ontology-linked KGs from unstruc-
tured texts is still an open research challenge. When 
considering texts from the biomedical scientific litera-
ture, and computational ontologies in the biomedical 
domain, additional challenges are imposed. Ontology-
linked KGs can benefit further integration and under-
standing of research findings by turning possible 
queries over structured data. In this article, we pro-
posed a method to semi-automatically generate ontol-
ogy-linked KGs from texts in the biomedical scientific 
literature. The method extracts main and secondary 
relations from text sentences, representing them in 
form of triples. Biomedical named entities and relations 
are identified and linked to concepts and relations from 
ontologies in the biomedical domain. We conducted 
experiments involving domain experts to evaluate the 

quality of the generated RDF triples. We carried out 
direct comparison between ontology linking methods 
to ensure that the mappings to target ontologies are 
properly achieved in the KG generation. The results 
showed that the method successfully achieves its objec-
tives in identifying and representing relations obtained 
from text sentences. Ontology-linked KGs were prop-
erly obtained containing ontology links, thus, affirma-
tively answering our research question. Future work 
involves the study and comparison of temporal KGs, 
i.e., ontology-linked KGs generated from scientific texts 
in different time stamps.
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