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Abstract

Background: A pandemic affects healthcare delivery and consequently leads to socioeconomic complications.
During a pandemic, a community where there lives an asymptomatic patient (AP) becomes a potential endemic zone.
Assuming we want to monitor the travel and/or activity of an AP in a community where there is a pandemic.
Presently, most monitoring algorithms are relatively less efficient to find a suitable solution as they overlook the
continuous mobility instances and activities of the AP over time. Conversely, this paper proposes an EDDAMAP as a
compelling data-dependent technique and/or algorithm towards efficient continuous monitoring of the travel and/or
activity of an AP.

Methods: In this paper, it is assumed that an AP is infected with a contagious disease in which the EDDAMAP
technique exploits a GPS-enabled mobile device by tagging it to the AP along with its travel within a community. The
technique further examines the Spatio-temporal trajectory of the AP to infer its spatial time-bounded activity. The
technique aims to learn the travels of the AP and correlates them to its activities to derive some classes of point of
interests (POls) in a location. Further, the technique explores the natural occurring POls via modelling to identify some
regular stay places (SP) and present them as endemic zones. The technique adopts concurrent object feature
localization and recognition, branch and bound formalism and graph theory to cater for the worst error-guaranteed
approximation to obtain a valid and efficient query solution and also experiments with a real-world Geol ife dataset to
confirm its performance.

Results: The EDDAMAP technique proofs a compelling technique towards efficient monitoring of an AP in case of a
pandemic.

Conclusions: The EDDAMAP technigue will promote the discovery of endemic zones and hence some public
healthcare facilities can rely on it to facilitate the design of patient monitoring system applications to curtail a global
pandemic.
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Background

In recent decades, the attention of the public health-
care setting is drawn to the eradication of a global pan-
demic. During a pandemic, health officials develop an
interest in knowing the health status of patients. By so
doing, the patients are made to undergo health moni-
toring [1] by either visiting a health facility or using a
GPS-enabled mobile health information system, etc. Usu-
ally, the monitoring is done by recording the whereabouts
of the patients as well as their routine activities [2, 3], such
as a visit to health centre, theatre, tourist attraction, mar-
ket, shopping mall, restaurants, and other public facilities
and functions. Moreover, nowadays, the activity records
[4, 5] of patients have become very useful in public health-
care settings for management purposes. This is because
the activity records can be used for planning and deci-
sion making. For instance, inferencing the whereabouts of
patients [6] by considering their activity records in real-
time will considerably contribute to an informed decision.
And thus the public healthcare facilities can derive some
key information from the activity records to support man-
agement decisions on the derail of the spread of chronic
diseases that can cause a pandemic. Researches show that
there is an increasing number of patients with chronic
health conditions over the years [7]. Therefore, managing
chronic diseases has considerably become a global issue
and continues to place pressure on patients in particu-
lar and the healthcare setting as well as the society in
general [8]. Let’s take a look at an asymptomatic patient
(AP) as an example. The AP is usually diagnosed with a
chronic disease but has no noticeable symptoms and for
that matter, it appears equally as active as any healthy
individual. Therefore, it becomes quite a challenge and/or
not ordinary to recognise the AP (i.e. without adequate
health or laboratory test and/or a medical examination)
so that ordinary people can isolate themselves to avoid
close contact (i.e. a mechanism to prevent infestation).
Despite the health education that is provided to the AP,
it continues as a threat of the spread of contagious dis-
eases. In this paper, our research motivation is based
on the advances in patients health monitoring strategies
[4] which make it common for some individuals to wear
clothes that are equipped with sensors and/or global posi-
tion system devices to check their health status [8] on
the run (i.e. relatively at any place and everywhere when
travelling and/or moving from one place to another).
Nonetheless, researches show that the performance of
existing monitoring systems continues to deteriorate over
time, and this is due to some extent the use of inappro-
priate and/or under-explored design techniques [4] and
the challenges with the tracking of continuous mobil-
ity instances and activities of outdoor mobile objects. As
a result, it is prudent for researchers to develop some
compelling techniques and/or algorithms to support the
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design, development and management of health infor-
mation systems that will generally focus on monitoring
outdoor mobile patients to curtail a global pandemic. This
paper regards the foregoing problem as a maximise range-
sum problem [9]. This is because, in spatial databases,
the concept of finding the spatial position of objects con-
cerning their location and time (e.g. spatial data stream)
involves the fact that the positions of mobile objects need
to be recorded over a range in a time frame. For exam-
ple, Amagata and Hara [9] proposed the G2 algorithm as
a maximised range-sum technique for monitoring spatial
data streams. The G2 algorithm refers to a Graph in Grid
index and consequently addresses the Maximizing Range
Sum (MaxRS) monitoring problem [9]. The G2 algorithm
is used to update the spatial dynamics of moving objects
database incrementally, and thus with respect to time. In
this paper, we seek to propose an algorithm and try to
compare it with the existing G2 algorithm, to particularly
enable us to attest to the validity and performance of our
algorithm which is intended for monitoring the continu-
ous mobility instances and the activities of an AP in case of
a pandemic. Comparatively, the contribution of our pro-
posed technique and/or algorithm to that of the G2
algorithm includes the continuous monitoring instances
incorporated into the traditional moving object database.
There seems to be a pressing issue when dealing with
real-time monitoring of continuous moving objects, with
which the existing spatial query methods and/or algo-
rithms can only cater for static objects and/or instanta-
neous monitoring of moving objects. For that matter, they
are not scalable to continuous streaming environments
and hence cannot relatively offer a suitable solution. As a
way forward, this paper exploits a compelling technique
and/or algorithm that is purposely used for the efficient
monitoring of continuous MaxRS. Moreover, our future
work will consider much more existing related algorithms
that are key on temporal attributes, and not only instan-
taneous but continuous moving object database scenarios
and make some comparisons to improve on the perfor-
mance validation of our proposed algorithm. Even though,
when you compare our technique to other existing ones,
there is much more resemblance in terms of the method-
ology. For instance, aside from the G2 algorithm, there are
some other proposed algorithms in references [10] and
[11] which are not compared due to the resource con-
straint of the present study. In this paper, however, our
focus is to evaluate the validity of the proposed tech-
nique and/or algorithm and reserve a deeper comparison
of it with the other existing algorithms as future work.
Moreover, our proposed technique relies on the analysis
of Spatio-temporal trajectory pattern where the core man-
date is to detect the point of interest (i.e. not necessarily
the point being a hotspot).



Adu-Gyamfi et al. BMIC Medical Informatics and Decision Making

On the other hand, Zhang et al [10] proposed an algo-
rithm which depends on Spatio-temporal clustering anal-
ysis and that is based on analysis of hotspot (i.e. point
not necessarily a regular interest of the objects). And thus
where the objects are always clustered in a region in a
time frame. This kind of approach is a better fit for text
classification and analysis and thus based on the tradi-
tional range queries, and other queries that use similar
methodology such as the range query, skyline, k-nearest
neighbour, reverse nearest-neighbour and so forth. It is
worth noting that, these aforementioned approaches con-
sider the number of object points and/or higher dimen-
sionality objects related to a specified region (i.e. hotspot)
[12]. Moreover, pattern and clustering analyses are consid-
ered important theories and/or techniques in trajectory
data mining and they can apply to construct the behaviour
dynamics of moving objects. Furthermore, aside from
finding the semantic context and association rules that
exist in trajectory data, Qiu et al [11] developed a gen-
eralized framework to identify the various activities of
users about their trajectory records. The approach applies
to analyse the everyday lifestyle of mobile users which is
far-reaching to determining instantaneous mobility con-
ditions of outdoor mobile users. The foregoing approach
is very similar to our work, but the difference may lie
on where our approach is centred on the continuous
mobility instances of outdoor mobile users and their activ-
ities along with their travel. Furthermore, the approaches
utilise a sample of a real-world GeoLife dataset produced
by the Microsoft Asia Beijing for the validation of the
techniques and/or algorithms. Moreover, the Zheng et al
[13] technique considers a user behaviour prediction via
collaborative filtering strategy and that is based on rank-
ing the user’s preference. Also, it does not try to find
the accurate prediction value for the user’s activities in a
location, but it rather approximates the prediction value
based on user preferences, and thus by making it relevant
in practice. Furthermore, their study obtains user pref-
erences based on the locations and activities history by
ranking the locations and activities of the user for ser-
vice recommendation purposes. However, using human
labellers (i.e. labelling is done by a human being) to parse
the user-generated comments whenever a user is found
in a certain location to get the activity labels seems not
an ideal concept to explore. Moreover, the user com-
ments are in text format and automatically the activities
of the user can be detected based on text classification
and analysis. Comparatively, rather than relying on the
activity history in a specific location, our proposed tech-
nique is making use of the specific time and the duration
or time frame that a user spends in a location to contin-
uously determine the possible activity and/or behaviour
of the outdoor mobile asymptomatic patient (i.e. emu-
lated as an ordinary mobile user). Thus knowing the
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location of the asymptomatic patient (i.e. a user) through
the location coordinates in real-time and that of the spe-
cific time and duration used on travelling and/or visiting
the location can provide relevant knowledge to predict
its behaviour, rather than depending solely on the posted
text comments [13] which may potentially be misleading
due to issues with privacy, etc. Similarly, finding and/or
predicting the exact location of the outdoor mobile user
and/or asymptomatic patient will practically not be very
necessary and hence the location estimation is usually
approximated based on user preferential value which is
considered as a user tolerance. Our proposed technique
considers a correlation analysis of the location and activ-
ity of the user. This approach can reveal some relevant
knowledge on the behaviour of the user and thus making
it useful in the design of state-of-the-art outdoor mobile
recommendation systems. Besides, Smyth [4] conducts
a comparative study on sensors and real laboratory data
and consequentially reveal that it is much easier to pre-
dict the health status of patients via sensor data. Also,
El-Sappagh el al [7] prove how easier it is to track the fit-
ness of patients using sensor data. Notwithstanding, Or
et al [14] propose that most of the modern health infor-
mation systems have under-explored design technique
challenges [5]. Moreover, Rajkumar et al [15] propose an
improved software intelligent system towards enhancing
the performance of a hearing impairment system to pro-
vide a solution to audiological problems. Whereas, Singh
et al [16] introduce a deep learning model towards human
activity recognition such that without prior knowledge the
model can be used to classify human activities. However,
Singh et al model [16] will heuristically not be suitable to
deploy practically to investigate a continuous moving out-
door user such as an AP. For instance, it is important to
obtain a prior knowledge on the initial health status of
the AP follow by monitoring the activities of the AP as
the stance of the present paper. Furthermore, Nogueira
et al [5] propose a biofeedback system technology that
can be used to evaluate the quality of life of patients.
Whereas Crepaldi et al [1] evaluate health information
systems based on software engineering metrics by empha-
sising on the system methods and designs and further
propose that a lot of the existing approaches for manag-
ing the health records of patients are not efficient as a
result of overuse of resources. Wu et al [17] identify two
peculiar issues when dealing with monitoring the mobil-
ity of objects. The first issue considers how to correlate
the spatial and temporal information about the location
of the objects to enhance predictions. The second issue
considers how to develop effective and efficient large scale
practical-oriented predictive systems e.g. health informa-
tion decision support systems. Considering these two
aforementioned issues, it is quite harder to find a readily
available solution. However, once again this paper strongly
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derives motivation from the ubiquitous built-in Global
Positioning System (GPS) mobile devices and/or appli-
cations [18]. Using GPS-enabled mobile devices and/or
applications coupled with other wireless technologies can
improve the solution to monitoring problems. This is
because the GPS-based devices can acquire the position
and/or location data of an outdoor mobile user on the run
[19]. Similarly, it is relatively inexpensive to find the geo-
graphical location, the spatial position, the time stamp and
the place of interests (POlIs) of patients (or outdoor mobile
users) by exploiting a GPS-enabled mobile application.
Furthermore, monitoring an outdoor mobile patient can
be defined as the continuous (or periodic) measurement
and analysis of an outdoor mobile patient bio-signals from
a distance by employing mobile computing, wireless com-
munications, and networking technologies [20]. Suppose
that we want to monitor the various places in a specific
community where the AP will visit in future. Particularly,
let’s try to reveal those places where the AP will mostly
stay. It is not trivial to achieve a solution to this problem.
For instance, a continuous moving AP can exhibit some
dynamics and/or varying degree of interests with regards
to its behaviour. This property contributes to the basic
functional attributes of almost every continuous moving
object database. Therefore, it can be emphasised that the
behaviour of the AP is subjected to location influences
by either inherent or acquire properties of the location.
Therefore, tagging the AP with a particular interest and
doing so in an incremental fashion and continuous-time
intervals (i.e. streaming data instances) becomes a chal-
lenging task. This is because the process will require
excessive computation [19] and a lot of software and hard-
ware resources. Nonetheless, with the aid of ubiquitous
GPS-enabled mobile devices and available methods of
computing the position and location of objects, the task
can relatively be executed efficiently with less troubles.
Therefore, among the benefits of carrying out this rele-
vant task is to reveal the whereabouts of AP in real-time to
facilitate the derail of a global pandemic. To reiterate, the
focus of this paper is mainly to propose EDDAMAP which
is referred to as an Efficient Data-Dependent Approach
for Monitoring Asymptomatic Patient. The objective of
EDDAMAP is to facilitate to detect the stay place (SP)
of AP to ensure proper and efficient monitoring of AP
within a community. We consider the POIs based on the
Spatio-temporal trajectories [21] of the AP. Thus when
an AP is visiting some interesting places and engaging in
certain activities in a community within some time inter-
vals. It is worth noting that there exist two categories
of SP [21] when dealing with object monitoring. These
are single-point location (SPL) and multi-point location
(MPL). The SPL refers to a location where AP has vis-
ited and spent an inordinate amount of time, and this is
illustrated in Fig. 1. Whereas MPL refers to a location
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where AP has visited and spent relatively a short time and
this is also illustrated in Fig. 1. These two categories of
SP significantly contribute to trajectory analyses towards
objects location monitoring and prediction problems [21].
Given a set of POIs, unit weight and user specified-sized
rectangle r, we aim to find an enclosing r with max-
imised weighted-sum of POIs and locate a centroid as SP.
Assuming a prior knowledge of AP, we employ similar
algorithmic design from work [9] and concurrent locali-
sation and recognition, branch and bound formalism and
multi-object instance methods from work [22] by con-
sidering the AP and its current time-stamp position in a
location under general monitoring. The Spatio-temporal
trajectories of the AP that consist of POIs are generated
in a continuous-time interval to support the design of
grid-based index data structure and algorithm towards
achieving a valid and efficient solution for detecting an
SP. The SP information can serve as relevant knowledge
to the public healthcare facilities to inform the potentials
of an AP on spreading contagious diseases. This paper is
particularly relevant to the public healthcare settings and
computing communities as it provides an overview of the
technicalities involved in monitoring a mobile patient and
also highlights issues related to the design of monitor-
ing systems. The propose EDDAMARP technique and/or
algorithm can be utilised by the healthcare settings to
improve the features, design and development of prospec-
tive health information system applications for monitor-
ing an outdoor mobile patient in case of a pandemic.
On the other hand, the computing community and the
related fields of study will gain a broader view of the novel
techniques for the design and development of large scale
health information system applications on outdoor mobile
patients monitoring.

In summary, this paper seeks to derive a compelling
monitoring technique towards advancing the health infor-
mation technology industry by proposing a trajectory data
mining oriented design technique and/or algorithm for
the continuous monitoring of the travel, activities and
health of an outdoor mobile asymptomatic patient in case
of a pandemic. Trajectory data mining and/or Spatio-
temporal trajectory mining is not entirely a new research
area in computing. The domain has been explored in
the recent past to find a solution to several real-world
and multi-facet problems [23-27]. Thus, the proposed
technique and/or algorithm will improve the design and
management of state-of-the-art outdoor mobile patient
monitoring system applications. The experiment result
evaluation validates the proposed EDDAMAP technique
as robust and easy to implement and can also support the
design of existing patient health monitoring systems. Fur-
ther, the public healthcare settings can rely on the tech-
nique to improve patient monitoring system applications
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Fig. 1 Category of Stay place (SP). Showing SPy: single-point location (SPL), and SP: multi-point location (MPL) of patient based on POIs. Ui
represents user identifier for AP, p and t denote the spatial position (POIs) and time-stamp respectively

as well as to make an informed decision on a global
pandemic.

The remainder of the paper is as follows. The
method underlying the propose EDDAMAP technique
is detailed in “Developing the algorithm” section. In the
“Evaluating the algorithm” section, we present a graph of
the simulation results of the propose EDDAMAP algo-
rithm and the result discussions with possible improve-
ment. Finally, in the “Conclusions” section, we present the
conclusions of the paper with some future work.

Method

Developing the algorithm

Trajectory

First of all, we define trajectory as a sequence of tuple
given by P = {(xl,yl,tal,tsl),..., Xk Yk tag, tsk)}. Such
that ta; < tay <, .., < tay and ts; < tsy <, .., < tsg.
Where P is referred to as any spatial position of outdoor
mobile user or object, x and y represent the location coor-
dinates, ta and ts denote the respective arrival time and
stay time of a user who is in a specified location. It is
essential to also note that P is subjected to a unit positive
weight including other location features such as altitude.
However, the altitude is insignificant so far as trajectory
analysis is concerned [21].In this paper, we refer to the
Spatio-temporal trajectory as the time-bounded spatial
activity of continuous moving outdoor mobile user such
as AP.

Trajectory monitoring instances
Assume that P(n) has countably-infinite POIs. If p(i) is any
identified POlIs then it follows that p(i) = {«,y, w}. Such

that p(i) * w € R" and p(i) € P(n). Where x and y are spa-
tial position coordinates and w is a positive weight which
is defined by features of the monitored location where the
outdoor mobile user (e.g. AP) is positioned. Our ques-
tion is how to find stay place SP of an AP who is loitering
around any outdoor location. Motivation is being derived
by computing for the most visited and stay place of the AP
within the monitored location with the aid of GPS data on
the AP. Hence we regard the monitored location as a com-
munity where the AP will live, stay and/or travel and at the
same time engaging in various routine activities such as
dining, shopping. spotting, visiting, adventuring, and a lot
more. Suppose that m represents a search space and # rep-
resents an entire monitored location. Using the Eq. 1 we
can obtain p(i) such that i = 1, ..., m and m < n. This will
imply that if m1 = n then no relevant task to execute due
to the search space being equal to the entire monitoring
location. Moreover, if m > n then the task is not practical
to merit execution.

P(i)yw = XP@i) xw (1)

Suppose that R is a community and r is a specific loca-
tion (e.g. neighbourhood) in R such that r € R. Heuris-
tically, we can monitor r continuously to obtain any POIs
which will represent the point of interest of the AP. Let
p(i) € p(n) denote weighted-sum of the POIs. To ensure
that any p(i)’s are maximised in r we heuristically estab-
lish the objective function in Eq. 2 to handle such query.
Where p(i)(w) denotes any identified weighted POIs. As a
result, monitoring the r(w) will be the same as the SP. The
process is simplified as shown in Fig. 2.
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Concurrent localisation and recognition of POIs

This section presents how to locate, recognise and instan-
taneously monitor an AP when it is travelling and/or
visiting interesting places in a given community such that
we can explore the POIs to discover an SP. Of course, the
SP is going to serve as a source of relevant information
for the health setting to support decision making, because
the AP can be a potential spreader of contagious disease
and for that matter can cause a pandemic. Assuming there
are # location features and p(,) models which define the
labels of the location. We adopt concurrent localization
and recognition technique [22] to find a bounding rectan-
gle r (i.e. achieving localization of the AP) that will enclose
the various POIs. Also, we try to identify a model p;) that
will maximise a prediction score L for the POIs (i.e. achiev-
ing recognition of the AP). When predicting the POIs,
there will be L(; score (i.e. obtaining any partial score)
which can either be an output of support-vector machine
(SVM) classifier (i.e. achieving identification of the POIs)
or tree-based index (i.e. achieving categorisation of the
POIs). Alternatively, the prediction score which is denoted
as L can be obtained by accumulating the partial scores
denoted as L(;) which are obtained from the various POIs.
For that matter, we proceed by computing the prediction
score L in an incremental fashion, and thus whenever a
new POlIs is discovered and/or a POIs is obsoleted and/or
discarded. Assume that an anticipate prediction score is

ing evolution). We compute a p(x, by creating an upper
bound of the monitored location. Therefore, we employ
that of the branch and bound formalism and/or technique
[22, 28] which can handle worst error-guaranteed approx-
imation to obtain an arg maxy p() by considering all the
POIs data. Furthermore, the plane-sweep mechanism [22,
28] is adopted as a suitable strategy to create an interval
that will capture all the POIs data. Thereafter, we iterate
the POIs within the location to split the location interval
into two disjoints sets. Using the two disjoint intervals, we
apply bounding strategy to decide on the next location for
the POIs. As a result, the iteration is terminated where k
becomes a singleton. We then consider that stage or state
of the iteration as the point of optimal location for the
POlIs.

Expressing n location features given by the triplets,
F::{(axk, by, cLy) |k : 1, ..., n} as any input, where x and y
are the location coordinates and L is the location feature
which is an M-dimensional vector. Whereas a, b, and c are
constant coefficients and L(;) denotes i — th element of
Ly where i < k. We can find the partial scores L;) with
which the various POIs will contribute to the total pre-
diction score L and establish the optimization objective
in Eq. 3. It follows from Eq. 2 that F(,, will represent the
POlIs that are spatially bounded by the r. Therefore, com-
puting for the L;:, it implies that the POIs can equally be
obtained. This will imply that we can have more than one
neighbourhoods within one community such that the AP
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Fig. 2 A derived stay place SP showing the trajectory of asymptomatic patient AP based on POIs. SPs and SPr are obsolete and update (or new)
centroid respectively which indicate any SP. Base station represents the centre that is responsible for the acquisition, storage and management of
the GPS data that are acquired via the monitoring device and/or system application of the AP
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can be continuously monitored whenever it is travelling or
moving from one neighbourhood to another in the com-
munity and by so doing visiting places of interests in the
community.

% .
arg max Z L (i) 3)
keF(r)

Suppose that we want to train SVM classifier for any
POIs. The POIs can be taken as input to evaluate the SVM
classifier margin by comparing any testing sample to each
of any training sample. We can compare the weighted
POIs that have support vector with any other aggregated
partial scores to obtain a set of similarity scores. We
can sum up the similarity scores by considering a chosen
SVM offset values §; and then express the margin as the
weighted-sum of the POIs (i.e. considering all the partial
similarity scores). This approach is not far from the one
that is used in existing work [22] and thus if not the same.
Denoting the ;7; as any vector with support vector weights
for the pth training set of the POIs data, such that w € w.
Assume that the ith element of pth training POIs denotes
the weight of the ith SVM. If p is denoted as any identified
POIs, then [, and ¢, will be the model label and feature
score respectively. Therefore, the anticipated partial score
can be computed via Eq. 4. It can be noted that h(-) will
evaluate to 1 whenever the function is true (i.e. represent-
ing a true solution) and then it evaluates to O for false (i.e.
representing no solution).

Lin@ =Y € wyhlly = Deplip() (@)
p

Branch and bound formalism

Drawing on the concept of the branch and bound formal-
ism [22], we ensure that search space is disintegrated into
disjoint subspaces. Through that, we discover the optimal
value to represent the POIs. Heuristically, we assume wg
and w; as maximum weighted-sum POIs and weight of
monitored location respectively. Let to/ denotes the user
error-tolerance, we conjecture that wy > wy (1 — tol).
Therefore, there will be a trade-off between query effi-
ciency and tol. However, the tol can always be fine-tuned
such that it will be slightly higher than an actual (or a
realistic ) error-rate.

Branch technique In this section, we discuss how our
algorithm applies the branching operation as given in
algorithm 1 to find the optimal location as the POIs. Let
d be a subspace, and d; and d5 be any two smaller sub-
spaces. Base on upper bound estimation, and thus by
considering the x and y coordinates of the general mon-
itoring location (i.e. R) and m object models, we obtain
Zy and Z, as two subsets of equal-size (i.e. as candi-
dates). We transform the subspace d as given by d; =:
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{(—x(i), -i-x(,‘)) s (—x(,‘), +x(i)) s WI(I‘)}, such that i = 1, 2 (i.e.
binary) and y is split as d; (i.e. points in Z; are removed
from —y as well as all x7).

Bound technique In this section we discuss how our
algorithm applies the bounding operation to determine
the largest and smallest bounding locations. This can be
done by considering a given subspace d using the —x,
+x, —y, +y and m parameters. Considering the x and
y extremities, we obtain +b (i.e. +L;;) and —b (i.e. -L;;)
as the largest and smallest rectangle (i.e. location) sizes
respectively. Let a represent label for object model m,
such that a € m. Using the dimension of 4, we consider
—b and +b intervals, and locate a space which includes
as many positive weighted POIs (i.e. Z((a)>0 ), and thus
excluding as many negative weighted POIs (i.e. Z((a)<0).
At this stage, the Eq. 2 can heuristically apply. Consider-
ing the POlIs, if there are more positive values than +b,
and few negative values than —b in the rectangle (i.e. loca-
tion), then it is assumed that an optimal solution is found.
Otherwise, it is irrelevant to compute or search for a new
rectangle ( i.e. as an optimal or best location for the POIs).
We can heuristically compute the upper-bound say +/ via
Eq. 5. Similarly, lower-bound say —/ can be computed via
Eq. 6, and thus by adding many negative values, and sub-
tracting many positive values. Both of the +/ and —J are
assumed to have object model a as a function of subspace
d.

o = Y. +h(Zew)+ Y -h(Z@) 6)

jed(+b) jed(—b)
Jud = Y +h(Z@)+ Y. —h(Z@) ©
jeS(—b) jed(+b)

Where +/(x) and —h(x) are functions. If x is positive
then +/(x) is evaluated. On the other hand, if x is negative
then —/(x) is evaluated. Otherwise, the function will eval-
uate to 0 when x is neither positive nor negative. Finally,
we compute the overall upper bound +/J and lower bound
—J for the subspace, 4 as given in Egs. 7 and 8. Therefore,
any SVM classification problems can be trained by adjust-
ing the bounding estimates using offset values, say §, of
the respective SVM classifier via Eq. 7.

+a=Ja+da (7)

_]a = ]a + Bﬂ (8)

Algorithmic pseudocode for POIs execution We con-
struct the algorithmic pseudocode for the POIs execution
as provided in Algorithm 1.
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Algorithm 1 EDDAMAP algorithm for POIs execution
1: function Loc.Records (P)
2 —x0, +%0, —Y0, +y0 <— the points in P // Obtaining
SubSpace

3: Sort out xs” and ys’ along coordinates x and y
4: ap <— labels of objects models

5. dy <— —x0, +x0, —Y0, +Y0, do

6: L <— a null priority queue initialize

7. L <— setdy

s: while V <— POP(L) do

9. ifV¥Z e V,|Z| =1 then

10: return V

11:  endif

12 (dy,dy) <— SPLIT(d)

13:  push d; to ] with key L, (d1)

14:  push dy to J with key L,,(d2)

15: end while

16: (—x,4+x) |J (=y,+y) U a «— the points in d
//Obtaining UpperBound

17: Let Z be the largest set of candidate

18: if Z = m then

190 Letd, «~— ((—x,4+x) J (—=y,+y») U m) w

20 wSortallm e ZbyL,, (dy)

21:  Zy <— push all m;) the top half

22:  Zy <— push all my;) the bottom half

23: else

24:  Z; <— map first half of all Z

25.  Zy <— map second half of all Z

26: end if

27: dy <— retrieve d copy with Z; removed

28: dy <— retrieve d copy with Z; removed

29: return (dq,d>)

30: end function

Graph analysis and index data structure

Graph theory and network topology [19] are used in
various domain of researches to find a solution to com-
plex and dynamic network-related problems. Thus, graph
base and topological data mining provide knowledge rep-
resentation base on graph analysis to construct novel
queries for the analysis of complex and dynamic network-
related problems. Such as analyses of network connec-
tivity behaviour [29], patterns and impacts of network
systems, continuous Spatio-temporal trajectory joins [30],
etc. Here we discuss the construction of a generalised
index data structure for processing the trajectory of AP
based on graph analysis.

Let’s consider Fig. 3 which is an illustration of track-
ing instances of POIs. Assuming there are ten positions
instances of the AP representing POIs enclosed within
rectangles A, ..., H (i.e. representing individual places of
visit or neighbourhood). As shown in 3, it can be seen that
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the red broken-line rectangle provides the optimal solu-
tion for having three of the total POIs as the maximised
weighted-sum.

Let G = (V, E) denotes a dynamic graph. Vertices V rep-
resent the position data leading to the discovery of POIs.
As shown in Fig. 3, vertices are further transcribed as
rectangles. An overlap of two vertices generate edges E.
Therefore, one-to-one mapping of vertices corresponds to
edges. As shown in Fig. 3, we transform the POIs into ver-
tices. As a result, we can now construct the dynamics of
monitoring POIs in continuous time intervals via graph
analysis. Following the dynamic process, we can derive the
trajectory instances of AP based on Fig. 4. Therefore, we
construct a tree graph to represent the dynamics of trajec-
tory instances of AP [31] based on POIs as shown in Fig. 5.
Further, we construct a tree data structure by concentrat-
ing on the core or usual trajectory of AP as shown in Fig. 6.
It should be noted that graph G = (V, E) is dynamic, hence
it can be reconstructed to reflect the dynamics of mobil-
ity. Therefore, if r; , r; € V is generated then by conversion
ri is older than r;. We present the relationship between
graph G = (V, E) in Table 1. We then apply the concept of
Origin-Destination (OD) matrix to construct a list adja-
cency matrix. By so doing, it is now possible to design
a generalised grid-based index data structure to cater for
the continuous evolution of POIs leading to the discov-
ery of SP. Thereby, we construct a grid-based index data
structure as shown in Fig. 7.

Drawing on the study of graph theory, three properties
can be defined based on Fig. 6 [9]. Firstly, if r;, rj € V,
then p; # p;. Thus, if and only if there exists an over-
lap between V(r;) and V(r;). For instance, where V (r;) is
older than V(r), then (V(ri), V(rj)) =1 = e; € E. Also, if
e; # ej, then NV(r;) # NV/(rj), making p; a subspace of
V(r;). Secondary, if P grid cells or spaces contain a set of
pi enclosed in r;, then Eq. (2) is verifiable. It means those
obsolete vertices are no longer needed to undergo main-
tenance as a result of the corresponding edges being held
by the existing vertices. Thirdly, if r; € V' then vertex r; is
considered as obsolete in circumstances where there are
older vertices, and hence any p; becomes the current posi-
tion of AP. When AP moves from one place to another,
the position data need to be updated, say R*. Therefore,
we R* compare with all the existing POIs to update the
gride cell or data structure accordingly. If m represents
newly generated POIs and # represents the rate, then the
time complexity for the process becomes O(mmn), which
is quite high. Therefore, we need to find a more suitable
solution to improve on the complexity. Consequently, we
modify G = (V, E) as illustrated in Fig. 5 to obtain G
= (Vi) EGi,)) as illustrated in Fig. 6. Thereby, cell g; or g
can be maintained in the graph G; . As a result, if m new
vertices are generated and added to G, then overlaps
need to be checked with the corresponding g; and gj to
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Fig. 3 Example of tracking position instance of asymptomatic patient. Showing the various instances of POIs in monitoring location or
neighbourhood identified by A, B, C, D, E, F, G and H. The neighbourhood D has the maximised weighted-sum of 3 POIs and it is classified as the
optimal solution (or neighbourhood) to represent SP of the patient. Base station ensures the acquisition, storage and management of the
monitoring data from the GPS device

update the grid cell data structure by a factor of G*(i).
Hence, at this stage, the time complexity will improve
from O(mn) to O(m) for the total overlap. Therefore,
the overall time complexity of the EDDAMAP algorithm
becomes O(|G*(i)|m*, n*), which is very reasonable and
a far-reaching efficient solution. Where m is the aver-
age number of vertices undergoing overlap, and # is the
average number of overlap. It should be noted that m*
<< m and n* << n. Hence, the cost of storage becomes

O (|V] + |E)) for all Gy = (V(,‘J),E(i,j)), and for every r;
to maintain p;. Also, the worst space complexity becomes
(0] (I V|2) for n rounds of overlap, and that is almost equal
to O (|O|2) which is quite impractical to evaluate as worst
space [9].

Continuous monitoring of POIs Making use of Fig. 7,
we can perform real-time monitoring of POIs towards
achieving an SP. This is done by following the trajectory of

(r6,7)

Fig. 4 Transformation of POIs into rectangles. Showing rectangles ry ..., rg and intersection generated by p;; and p;,;
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the spatial position (POIs) and time-stamp respectively

the AP [32, 33]. We deduce the maximised weighted-sum
of POIs and obtain a centroid as SP. Knowing the SP at
some instance, we can compute newer SP by understand-
ing the mobility pattern of the AP [3, 34]. Let /(w) and
p(i) represent new SP and new POIs respectively. Suppos-
ing we have an existing cell g;; € G. If g;;w > [(w), then
all the vertices in V{; (i.e. R) do not contain /(w). There-
fore, it is not sufficient to compute the exact solution for
P, where r; € V(;;). Moreover, supposing cell g;; € G,
and assuming g;;w > I(w), where vertices (or rectangle)
ry € V. If (W) < p(i)w then ry does not contain p(i)w.
Hence, we do not compute the exact solution for p(i)w.
Consequently, Eq. 11 can be used to evaluate the evolv-
ing SP. Intuitively, we set k-th largest weight as threshold

Fig. 6 A tree data structure of POIs. Showing the core or usual
trajectory instances of AP based on POIs
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Table 1 A tabulated relationship of vertices, edges, and next
neighbour vertices based on graph G

Vertex (V) Edge (e)) Next neighbour Vertex(NV(,))
1 ele2 2,3

2 e3 3

3 e4 4

4 eb 6

6 e’/ 7

7 null null

upon continuously monitoring the top k of the POIs. Also,
it is important to bound any error-rate based on a defined
user-tolerance (tol). Heuristically, we establish the opti-
mization function as follows. Furthermore, we construct
the algorithmic pseudocode for monitoring the POIs as
given in Algorithm 2 and Algorithm 3.

k
Lw) = lw) + Y _ pli) 9)
k
Lw) = Lw) + ) 1(w) (10)
(11)

=arg max giiw
4 8 ,-,,-eGngL’/

Algorithm 2 EDDAMAP algorithm for monitoring
evolving POIs
1: Input R* // R* newly generated POIs
2: Map (R%)
3: G"(i) <— update cell g;; at m-rectangle overlap
4 G;j <— update (G"(i)) // Computing overlap for
rectangles

5: forV g;; € G*(i) do
6 forV Vi, eg...V;jwhennewe; <— rdo
i) <— Loc.L-Sweep (V(NV(y U Vi // Table 1
in-memory tree update, O(n) space, exec.(t) of
O(n log n)
l(w) <— l(w) = arg maxennr p(Hw
. end for
10: end for

11: return [(w)

Results

Evaluating the algorithm

In this section, our focus is to produce and evaluate the
results of the algorithm based on experimental obser-
vations. Therefore, we present the construction of the
proposed algorithm to localise, recognise and monitor the
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Algorithm 3 Training EDDAMAP algorithm for discov-
ery of continuous SP

Require: Execute Algorithms 1 & Steps: 1—8 in Algorithm 2

1: forVr e R* do
2 ifg;; <— rthen
3 GijW <— gijw +rw
4 Rij) <— R Ur

5. end if

6: end for

7. g <— gl,]|l € gij

8: if [ obsolete (g «— null) then

9. g<—arg maxgiJGGme(i)w

10: end if

11: ComputeOverlap (g)

12: [ «— ComputeExact.Weight (/, g)
13: forVg;; € G\gdo

14 if gj;w > [(w) then

15: ComputeOverlap(g; )
16: end if
17: end for

18: if g;;w > [(w) then

19:  I(w) <— ComputeExact.Weight (/, g;;)

20: end if

21: Compute top — k Weighted-sum (/(w)) // set [(w of
the k spaces maximum weighted-sum

22: Execute lines 1 — 6

230 G"(i) <— Vg | Aplwelw) € gij

24: if G*(i) = null (obsolete of all spaces in /(w)) then

25:  G¥(i) arg maXg, eGNR G“(i)

26: end if

27: ComputeOverlap(G*(i))

28: [(w) «— ComputeExact.Weight(/(w) ; G*(i))

29: forV g;j € G\ G*(i) do

30:  Execute lines 14 — 19

31: end for

32: return [(w)

AP. Furthermore, we discuss the performance of the train-
ing algorithm and produce the final algorithmic pseudo-
code. Also, we implemented the EDDAMAP algorithm
through rigorous simulations to attest to its validity in
terms of accuracy and query processing speed by consid-
ering the efficiency in monitoring the AP alongside with
the closely related G2 algorithm.

Experimental setup The EDDAMAP algorithm is
implemented on a personal computer (PC) install with
a Windows 10 operating system. The specification of
the PC includes Intel Core i5 CPU 4.1 GHz and 8.00 GB
RAM. Coding is done with Python and all the simulations
are done using the Pycharm community version 2.7
software. In the experimentation, we mount scientific
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software and packages such as Scikit library, Numpy,
Microsoft Visio, etc. Nonetheless, it is anticipated that
a PC with a higher specification will relatively speed up
the execution of the algorithm and produce a fast query
result. The training algorithm is deployed and tested with
a GPS-based real-world dataset known as GeoLife [35].
An ordinary mobile user is emulated as an Asymptomatic
Patient (i.e. AP) who stays in a neighbourhood within a
specified community. The AP is considered as performing
routine activities such as exercising, shopping, hiking,
sight-seeing, visit a place of interest and so on [6, 36]. In
our model, together with the AP, we try to monitor the
neighbourhood which is denoted as a rectangle r as the
specific location. And that of the community is denoted
as R representing the general location under monitoring.
The default size of the rectangle is 1000 x 1000 metres
squared and that is relatively a very short range to main-
tain the position accuracy upon executing some query
solutions. We define the other parameters in Table 2
and present the graphical results of the simulation in
Figs. 8, 9, 10, 11 and 12. The legends of the graphs show
the G2 and EDDAMAP algorithms as G2 and TMAXWS
respectively. Note that, monitoring the MaxRS and the
related problems are first introduced by Amagata and
Hara [9]. Hence, to the best of our knowledge, there are no
existing algorithms which can specifically and/or directly
handle the MaxRS monitoring problem. Therefore, in
this present study, we evaluate our proposed EDDAMAP
algorithm and compare it with the G2 algorithm only for
being a sufficient incremental approach.

Dataset The GeoLife dataset is a continuous-generated
GPS-based trajectory dataset. We used GeolLife dataset
version 1.3 and it is collected by 182 users and/or GPS
loggers in more than five years, and thus from April 2007
to August 2012. The trajectories are recorded by differ-
ent GPS loggers and mobile phones and sampling rates
are in varying degree. The densely logged trajectories in
a location represent 91.5 per cent in every 1 to 5 sec-
onds and/or every 5 to 10 meters per point. Therefore, the
dataset has a broad range of outdoor movements of users
such as the usual travels to their residence and workplace.
Also, it consists of the activities of the users such as a
visit to recreational centres, restaurants, etc. Furthermore,
the trajectories are represented by sequences of points
with a time-stamp, where each of the points contains lati-
tude, longitude and altitude records of the users. However,
the altitude is not relevant in our trajectory analysis and
hence it is discarded. The number of trajectories is about
17,621 points with a total distance and duration of about
1,292,951 kilometres and 50,176 hours respectively. A rea-
sonable sample of the dataset is used to validate the test
for mobility pattern mining of the users and activity recog-
nition with our proposed technique and the related G2
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Fig. 7 A schematic view of data structure for maintaining any answers for a Patient’s POIs query in continuous case

algorithm, and that is due to the larger size and complexi-
ties of the dataset. And thus, the objects (or users) present
in the dataset existed over a wider range. Hence, most of
the object points, if not all that existed and/or appeared in
very sparse areas have to be removed (or ignored). For that
matter, we focused on those object points close to the cen-
tre of the dataset. The cardinality of the dataset is about
6,134,477 points, and hence the sorting of the objects in
the dataset is done based on the time in which they are
generated. Consequently, the range of each coordinate is
normalized to [0, 100000000] value, whereby the weight
of a given object point is randomly chosen from a range of
(0, 1000] value. The dataset is considered as a good choice
for the testing and evaluation with the algorithms and
thus because the proposed technique is aimed at the nat-
ural properties of monitoring continuous moving objects
in diverse locations. This is because, the dataset is not
only widely distributed in about 30 cities of the Peoples
Republic of China, but it includes data from the USA and
Europe. Furthermore, considering the trajectory pattern
that exists in the dataset, its mining and analysis fit well
with the aim of our proposed technique. Moreover, the

Table 2 Experimental parameters

Param Default Variables Indicators

500 100; 250; 500; 750; 1000 No. of position
d 1000 100; 500;1000; 1500; 2000 Rectangle sizes
m 100 50; 100; 200; 500; 800 Generation rate
tol - 0;0.10; 0.20; 0.30; 0.40 User tolerance
k - 10; 20; 30; 40; 50 Query answers

chosen sample dataset includes the number of points that
are generated in a location where the user travelled and/or
visited. Thereby, a reasonable sample of the object points
in the dataset is used to represent a user. Therefore, the
user is emulated as an ordinary mobile phone user and/or
an asymptomatic patient denoted as AP. GeoLife dataset
is a publicly available open-source dataset that is provided
by Microsoft Research Asia in Beijing. The details on how
to obtain the version 1.3 can be found in the reference [35].
Further details on the GeoLife dataset, including the dis-
tribution of the number of trajectories of each user, can be
obtained from the original researches [37, 38].
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Furthermore, we discuss the performance of the pro-
posed EDDAMAP algorithm together with the key related
G2 algorithm [9]. Consequently, we simulate both algo-
rithms and present their results as shown in Figs. 8, 9, and
10. The G2 algorithm consists of a general framework for
monitoring objects in spatial data streams. However, it is
noticed that moving objects exhibit a continuous change
in their locations over time. For that matter, the MaxRS
query solution for a certain time instant will not be a
solution at another time instant. Therefore, we present
the proposed EDDAMAP algorithm which possesses con-
tinuous monitoring property to handle the evolving data
streams environment and to serve also as an improved
version of the G2 algorithm. In that regards, the proposed
technique can specifically be incorporated into the pub-
lic health information systems to improve the efficiency

challenges that affect patient monitoring systems. As a
result of the massive size of the dataset and the comput-
ing resources, the test for requirement of the proposed
EDDAMAP algorithm has considered the execution time
and the space complexities only. Therefore, the algorithms
are designed to benefit from the novelty of maximised
range-sum problem and further apply to provide a solu-
tion to the monitoring problems in general. Heuristically,
we can propose that our grid index data structure as
provided in Fig. 7 is relatively proven efficient for mon-
itoring naturally occurring phenomena such as location
monitoring [24], whereby related approaches suffer from
overuse of resources and under-explored design tech-
niques as they usually do not consider the natural dynam-
ics of resources mobility, and for that matter continuous
streaming object databases. In this paper, we adopt the
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Fig. 10 A graph of running time against user generation rate.
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parameters #, d and m as shown in Table 2 for the overall
evaluation by varying them accordingly as per the features
of the position of the user in the dataset. The average com-
putation time is measured for each of the parameters and
the overall simulation results are presented in Figs. 8, 9,
10, 11, and 12. Moreover, in the experiment, the impact
of the number of spatial positions denoted as # in Table 2
(i.e. representing the POIs of the AP) has been tested. It
is observed that the computation time for finding each
position data increased linearly with increased in posi-
tion data. This resulted in several overlaps, whereby the
OverlapComputation(.) and ExactWeightComputation(.)
functions heavily overloaded on execution. This implies
that the larger the size of the monitoring location, the
more time is needed to produce all the position data to
identify the POIs. On the other hand, an increase in the
size of the monitoring location affected the speed of gen-
erating the POIs, as well as executing the queries for the
position of the AP in real-time. This is shown in the graph
of running time against user spatial positions size in Fig. 8.
The impact of rectangle size denoted as d in Table 2
is tested. This represents the monitoring location which
stands for the neighbourhood and/or community of the
AP. We observed a skewed distribution, as well as more
overlaps in the rectangle as the size increased. As a result,
we observed a corresponding increase in the running time
of the algorithms. Therefore, it is suggested that, the user
should appropriately monitor a sizeable location as pos-
sible based on the available resources of the monitoring
system. The simulation result which testifies this phe-
nomenon is presented as a graph of running time against
user rectangle size as shown in Fig. 9. Again, the impact
of the rate of generating position data with time which
is denoted as m in Table 2 is tested. Here, we generated
less than 50 position data as object points per second, and
hence the rate has to be increased further to examine the
execution time and space complexities of the algorithms.
The simulation result that testifies this phenomenon is
presented as a graph of running time against the user gen-
eration rate as shown in Fig. 10. Furthermore, the impact
of user tolerance which is denoted as to/ in Table 2 is eval-
uated by using the proposed EDDAMAP algorithm. This
is to observe the error-rate and computation time when
a user is executing the queries. Therefore, to validate the
user tolerance denoted as fol, the query time is approx-
imated based on the user preference. Consequently, the
running time is seen as indirectly proportional to tol
which suggested and/or confirmed that, there is always a
trade-off between the efficiency of query processing and
the quality of the query results. This also means that in a
practical case the user can adjust the quality of the query
results as per the expected outcome of the stay place of the
user. Again, the outcome of this phenomenon is presented
as a graph of running time against user tolerance as shown
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in Fig. 11. Also, the impact of generating a top — k (i.e.
representing the best POIs) position data is evaluated on
the average computation and/or execution time per space
that is required to update the results of the query. Here,
it is observed that upon increasing the top — k, the exe-
cution time proportionately increased. This suggests that
the top — k query is directly proportional to the execu-
tion time per the search space, and thus when we need
to obtain a new position as the POIs. We present the
results of the process as a graph of running time against
top — k position data as shown in Fig. 12. Therefore, the
outcome of the increase in the query execution time sug-
gests that the user does not need to examine the exact
query solution and/or results (i.e. identify the exact SP).
This will limit the time and space complexities so far as
practical application is concerned. Conversely, it is appro-
priate for the user to approximate the query results and
that should be done based on marginal error-rate which is
also known as user-tolerance tol or preference value. Fur-
thermore, when the user knows the approximated SP that
will be enough to an informed decision in practice, and
as to whether the AP will have the chance to spread the
disease or not. Moreover, it is evidenced that approxima-
tion is preferable to that of the exact solution when dealing
with real-world applications and/or databases dedicated
to streaming objects.

In summary, in this section, we provide the initial eval-
uation and discuss the proposed EDDAMAP technique
and/or algorithm based on complexities of time and space
only. Upon executing a query, the outcome of the sim-
ulation validates the proposed EDDAMARP technique as
having substantially improved the efficiency of moni-
toring continuous outdoor mobile patient such as the
AP in a vicinity. Furthermore, the proposed technique
is confirmed as an improved solution for the contin-
uous maximising range-sum problem by comparing it
to the key related G2 algorithm. However, some work
remain untouched in the present study, such as a test for
the scalability and performance with some other related
query techniques. Nonetheless, this comparative study is
reserved as future work and hence it is open for investiga-
tion. The objective of evaluating the algorithm, in terms of
the processing time is to validate its efficiency in acquiring
a continuously moving object data and to process queries
about the present location of objects (e.g. asymptomatic
patient) and/or obtaining the position of the object in real-
time. The other aspect of the requirement testing includes
the error-rate when querying for location and position of
objects in the continuous moving object database. Con-
sidering the test for the error-rate, the G2 algorithm does
not fall into the category of continuous query process-
ing and hence cannot be compared with our algorithm.
The objective of using only the real-world data aside the
limited resources employed for the study is to attest to
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the natural occurring property of our algorithm in which
the behaviour of the asymptomatic patient is regarded as
a key contributing factor to attest to the natural mobil-
ity instances and patterns that the asymptomatic patient
will have to exhibit along with its travel. Moreover, the
overall validation of our proposed algorithm is based on
the accuracy test. The accuracy is verified via simulation
by taking into consideration the test for the error-rate
when querying the present position and/or location of the
asymptomatic patient as previously discussed.

Conclusions

In this paper, we address a maximising range-sum prob-
lem and relate that to the challenges of monitoring the
travels of an outdoor mobile asymptomatic patient and
its activities in a community. As a contribution, we fur-
ther establish an EDDAMARP technique and/or algorithm
as a solution to the continuous moving object monitor-
ing problem in general. Our proposed technique deter-
mines the locations of a given rectangle denoted as R to
represent a community. Such that the number of posi-
tions of the outdoor mobile asymptomatic patient that
can be obtained from a GPS-based trajectory records will
be maximised in R. We derive another specific location
denoted as r for a sub-location to represent a neighbour-
hood in R. The r covers the positions of the asymptomatic
patient, and our algorithm is aimed to locate the cen-
troid of r as the place of interests denoted as POIs and/or
stay place denoted as SP, depending on the time and
nature of activities of the asymptomatic patient in that
location and/or neighbourhood. In contrast to the origi-
nal MaxRS problem, we look at continuous MaxRS query
where the query results change over time as the asymp-
tomatic patient keeps moving and/or visiting interesting
places over time. To match up with the query process-
ing time, we design a grid-based index data structure as
shown in Fig. 7 to ensure efficient continuous monitoring
of a change in position and/or location of the asymp-
tomatic patient in real-time. Furthermore, techniques
such as branch and bound, current object localisation and
recognition and graph theory are adopted to ensure the
validity of the proposed design technique and/or algo-
rithm. Our experiment using real-life dataset shows that
the proposed technique heuristically will enhance the
accuracy and efficiency in monitoring mobile objects in
general. Furthermore, it will also enable a significant speed
in the overall computation time per space for the upper
bound with respect to the location under searching or
monitoring. This will help satisfy the time and space
complexities problems by considering the location and/or
position in the continuous moving object database. The
proposed EDDAMAP technique and/or algorithm will
promote the discovery of endemic zones as far as a pan-
demic is concerned via the naturally occurring Spatio-
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temporal activities of an asymptomatic patient. Nonethe-
less, the public healthcare setting can also apply the
proposed algorithm to facilitate the design and manage-
ment of multi-modal health information systems such as
patient monitoring system applications to curtail global
pandemic.

In future work, we will look at the enhancement of
the theoretical analysis. We will also extend the practical
applications of the established technique to more multi-
modal monitoring systems. Thus, we aim to ensure that
the proposed algorithm can handle extra computation and
storage by considering the tight upper-bound of the max-
imised weighted range-sum of the POIs in every location.
In this manner, the EDDAMARP algorithm will be able to
handle queries of multiple instances to enhance its scal-
ability and performance. It is our extra hope to intensify
this burgeoning trajectory data mining technique in the
research community and the industry.
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