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Abstract

Background: Parkinson’s Disease (PD) is a clinically diagnosed neurodegenerative disorder that affects both motor
and non-motor neural circuits. Speech deterioration (hypokinetic dysarthria) is a common symptom, which often
presents early in the disease course. Machine learning can help movement disorders specialists improve their
diagnostic accuracy using non-invasive and inexpensive voice recordings.

Method: We used “Parkinson Dataset with Replicated Acoustic Features Data Set” from the UCI-Machine Learning
repository. The dataset included 44 speech-test based acoustic features from patients with PD and controls. We
analyzed the data using various machine learning algorithms including Light and Extreme Gradient Boosting,
Random Forest, Support Vector Machines, K-nearest neighborhood, Least Absolute Shrinkage and Selection
Operator Regression, as well as logistic regression. We also implemented a variable importance analysis to identify
important variables classifying patients with PD.

Results: The cohort included a total of 80 subjects: 40 patients with PD (55% men) and 40 controls (67.5% men).
Disease duration was 5 years or less for all subjects, with a mean Unified Parkinson’s Disease Rating Scale (UPDRS)
score of 19.6 (SD 8.1), and none were taking PD medication. The mean age for PD subjects and controls was 69.6
(SD 7.8) and 66.4 (SD 8.4), respectively. Our best-performing model used Light Gradient Boosting to provide an AUC
of 0.951 with 95% confidence interval 0.946–0.955 in 4-fold cross validation using only seven acoustic features.

Conclusions: Machine learning can accurately detect Parkinson’s disease using an inexpensive and non-invasive
voice recording. Light Gradient Boosting outperformed other machine learning algorithms. Such approaches could
be used to inexpensively screen large patient populations for Parkinson’s disease.
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Background
Parkinson ‘s disease (PD) is a neurodegenerative disorder
of largely unknown cause [1]. After Alzheimer’s disease,
it is the second most common neurodegenerative disease
[2]. In 2010, there were approximately 680,000 people
over 45 years old with PD in the US in 2010 and this
number is expected to rise to 1,238,000 in 2030 [3]. By
the time PD becomes clinically apparent, more than 50%
of dopaminergic neurons in the substantia nigra have

been lost, with a corresponding 80% decline in striatal
dopamine levels [4, 5]. Thus, early identification of
disease is essential if neuroprotective therapies are to be
implemented.
Diagnosis of PD currently relies on clinical examin-

ation. The current gold standard is based on motor signs
and symptoms (bradykinesia, resting tremor, rigidity,
postural reflex impairment) and response to dopamin-
ergic drugs [6, 7]. In addition to the classic motor signs
and symptoms, PD is well-recognized to also affect non-
motor neural circuits [6, 8, 9] . However, the accuracy of
PD diagnosis in practice is only around 80% [10, 11], im-
plying that a large population with PD is undiagnosed or
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misdiagnosed [12]. Hence, identification of novel motor
or non-motor markers of PD or improving the accuracy
of currently available diagnostic tools is important,
particularly in early disease. Noninvasive speech tests
have been explored as a marker of disease [11, 13], since
deterioration of speech is consistently observed in
patients with PD [14–16]. Naranjo et al. [17, 18] previ-
ously showed that patients with PD could be identified
with moderately high accuracy using acoustic features
extracted from a speech test. In this study, we imple-
mented machine learning methods, specifically Light
[19] and Extreme Gradient Boosting [20], to significantly
improve PD detection accuracy from acoustic features
extracted from voice recordings.

Methods
Data
We utilized “Parkinson Dataset with Replicated Acoustic
Features Data Set” that was donated to University of
California Irvine Machine Learning repository by
Naranjo, et al. [17] in April 2019. The publicly available
data we used in this study were first presented by Goetz,
et al. [21], and other than sex, individual-level descrip-
tors are not publicly available. However, they reported
that the dataset includes patients with early-stage PD
not taking medication. A follow-up study [11] reported
that PD duration was 5 years or less for all subjects, with
a mean Unified Parkinson’s Disease Rating Scale (UPDRS)
score of 19.6 (SD = 8.1). The dataset available to us [17]
included 44 acoustic features extracted from voice record-
ings of 40 patients with PD and 40 controls. Recordings of
a sustained phonation of the vowel /a/ for 5 s were
repeated three times (three runs). Digital recordings were
implemented at a 44.1 KHz sampling rate and 16 bits/
sample [17].
The 44 acoustic features extracted from voice record-

ings comprised five categories: pitch and amplitude local
perturbation, noise, special envelope, and nonlinear
measures. Four pitch local features (jitter relative, jitter
absolute, jitter RAP (relative absolute perturbation)),
jitter PPQ (pitch perturbation quotient), and five ampli-
tude perturbation measures (shimmer local, shimmer
dB, APQ3 (3 point Amplitude Perturbation Quotient),
APQ5 (5 pint Amplitude Perturbation Quotient), and
APQ11(11-point Amplitude Perturbation Quotient))
were extracted using a waveform matching algorithm.
As measures of relative level of noise in speech [17], five
different variants of harmonic-to-noise ratio (HNR)
corresponding to different frequency bandwidths (HNR05
[0–500 Hz], HNR15 [0–1500Hz], HNR25 [0–2500Hz],
HNR35 [0–3500Hz], HNR38 [0–3800Hz]) [22]. Glottal-
to-Noise Excitation Ratio (GNE), which quantifies the
amount of voice excitation, was also calculated. Since PD
is known to affect articulation [23], 13 Mel Frequency

Cepstral Coefficients (MFCCs) associated with articular
position and 13 Delta Coefficients as time dependent
derivatives of MFCCs were also extracted. In addition,
Recurrence Period Density Entropy (RPDE), Detrended
Fluctuation Analysis (DFA), and Pitch Period Density
Entropy (PPE) were also extracted as non-linear measures
of voice recordings. Further details of the dataset can be
found in Naranjo et al. [17].

Features
Speech deterioration is one of the motor symptoms of
PD [14, 24–26]. Patients have reduced pitch variability
compared to controls as well as reduced intra-individual
variability [27, 28]. As described above, each acoustic
feature was calculated three times for different runs of
the speech test. Thus, in addition to testing the diagnos-
tic accuracy of our analytic approach, we were also able
to investigate intra-individual changes in response from
different runs of the test. We considered acoustic
features calculated for all three runs as individual predic-
tors. Moreover, for a given acoustic feature, we created
three artificial variables representing the change from
one run to another (Fig. 1). Therefore, our feature set
included 264 acoustic features and sex for 80 subjects.

Classification
We implemented gradient boosting algorithms to distin-
guish between subjects with PD and controls. Gradient
boosting is an ensemble machine learning consisting of
several weak models (shallow decision trees rather than
overfitting deep ones) and it can be used for both regres-
sion and classification problems [19, 20]. Because it uses
weak classifiers, it is more robust against overfitting
compared to a random forest, a similar method that al-
lows overfitting of individual tree predictors [20, 29, 30].
In our work, we mainly implement 4-fold cross valid-
ation to identify any overfitting by randomly splitting
data into four distinct folds. We also repeat this process
multiple times and present average results. We consid-
ered two gradient boosting machines Extreme Gradient
Boosting (XGB) and Light Gradient Boosting (LGB), and
for comparison, the more traditional machine learning
algorithms Random Forest (RF), Support Vector Machines
(SVM), K-nearest neighborhood (KNN), Least Absolute
Shrinkage and Selection Operator (LASSO) regression to
implement regularization, and a statistical approach,
Logistic Regression (LR).

Variable importance analysis, feature selection, and re-
classification
We first built the gradient boosting model using 265
features with four folds cross-validation and repeated
this process 100 times. At each run, for each model
built within 4-fold cross validation (4 × 100 models),
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we implemented a feature importance analysis that
calculates the relative contribution of each feature to
the corresponding model. A higher value of this
metric for a specific feature implies it as a more im-
portant feature than another feature that has lower
value of this metric [31]. By averaging the feature
importance obtained from 400 individual models, we
obtained a ranking of the 265 features. Next, we built
new classification models with 4-fold cross-validation
by incrementally adding the top 15 most important
features selected from the previous step into the
model with respect to their importance ranking. We
repeated each of these steps 100 times to better
estimate the effect of each feature on the model
performance when they are introduced into the
model. We then identified the step where the model
performance started diminishing or stopped increas-
ing. Finally, using the features introduced up to that
specific step, we rebuilt gradient boosting models with
4-fold cross validation and report various performance
metrics such as specificity, sensitivity, positive predictive
value, accuracy, F1 score, and area under the receiver
operating characteristics curve (AUC).

Results
Cohort
Our cohort included 40 subjects with PD (55% men) and
40 healthy controls (67.5% men). All subjects were over
50 years of age and the mean age and standard deviation
(SD) for PD subjects and controls was 69.6 (SD 7.8) and
66.4 (SD 8.4), respectively. PD diagnosis required at least
two of resting tremor, bradykinesia or rigidity [21], and
no evidence for other forms of parkinsonism.

Classification
We initially built the classification models with 4-fold
cross-validation using the entire set of 265 predictors.

We repeated each classification model 100 times by ran-
domly splitting the data into four folds. Various classifi-
cation performance metrics with their 95% Confidence
Intervals (CI) are presented in Table 1. LGB provided
the highest F1 score of 0.878 with 95% CI 0.871–0.884,
and AUC of 0.951 (95%CI 0.946–0.955).

Variable importance analysis
As described in the Methods section, using the total of
400 models obtained through 100 runs of 4-fold cross-
validation, we obtained variable rankings based on their
importance in classification in the LGB algorithm. The
top 15 variables are shown on the x-axis of Fig. 2.

Feature selection and re-classification
To obtain a compact model, we repeated our 4-fold clas-
sification strategy 15 times by incrementally introducing
a new variable into the model based on the order of im-
portance. Figure 2 summarizes the accuracy metrics with
associated 95% CIs for each step of this re-classification.
Figure 2 shows that all accuracy metrics gradually

increase (F1-score of 0.878 (95%CI 0.871–0.884), AUC of
0.951 (95% CI 0.946–0.955), Overall Accuracy of 0.880
(95% CI 0.873–0.886), Sensitivity of 0.872 (95% CI 0.862–
0.882), Specificity of 0.887 (95% CI 0.877–0.896), Positive
Predictive Value of 0.892 (95% CI 0.884–0.901)) in the
first seven steps of the feature selection protocol and then
slightly decline in following steps. In other words, after
introducing the top seven variables - Delta3 (Run2),
Delta9 (Run3), Delta0 (Run 3), MFCC4 (Run 2), MFCC10
(Run 2), MFCC8 (Run 2), and HNR15 (Run 1) - into the
model, additional variables did not improve the classifica-
tion accuracy. We further implemented a grid search by
changing the learning rates and feature and bagging
fraction to identify whether the performance could be
improved. However, there was no significant difference in
AUC values of models with different parameter settings.

Fig. 1 Acoustic features used in modeling
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Independent sample two-tail t-tests showed that the
means of these top seven selected features significantly
(p < 0.05) differed for PD cases and controls. To identify
whether such differences exist for all three runs, we fur-
ther implemented t-tests for those seven features for all
runs. Our results showed the top seven acoustic features
significantly (p < 0.05) differ for PD cases and controls
across all three runs, however, the p-values are smaller
for the runs that were listed in top seven features.

Sensitivity analysis
The main reason for implementing 4-fold cross-validation
in our work was to make our results comparable to the
work of Naranjo et al. [17, 18], which is the original study
utilizing these data. However, using the top seven variables,
we also repeated our cross-validation on the compact
model for 5- and 10- fold cross-validation for the light
gradient boosting model and obtained F1-score of 0.879
(95%CI 0.872, 0.886) and 0.875 (0.867, 0.883), respectively.
The above models analyzed acoustic features from

three runs as individual predictors. In a sensitivity ana-
lysis we explored whether using the average of acoustic
features across the three runs might improve the model.
This classification approach performed more poorly,
with an F1-score of 0.819 (95% CI 0.812, 0.827) vs. 0.878
(95%CI 0.871, 0.884) for the individual predictor model.

Discussion
We were able to accurately classify persons with Parkin-
son’s disease by analysis of voice recordings using machine
learning. Acoustic features extracted from speech test
recordings offer a potential application for computerized
non-invasive diagnostic tools. The data we used in this

study included 44 acoustic features generated separately for
three runs of the same speech test task. In their original
studies on the same data, Naranjo et al. [17, 18] proposed a
statistical approach that treated the results of these runs as
repeated measures. The Light Gradient Boosting model
presented here outperformed the statistical approach in all
metrics: AUC 0.951 vs. 0.879; sensitivity 0.872 vs 0.765; spe-
cificity 0.887 vs 0.792; precision 0.887 vs. 0.806; and overall
accuracy 0.880 vs 0.779. Moreover, we could reach this
level of accuracy using only seven features.
As reported above, Delta3 (Run2), Delta9 (Run3),

Delta0 (Run 3), MFCC4 (Run 2), MFCC10 (Run 2),
MFCC8 (Run 2), and HNR15 (Run 1) variables were the
most important classifiers, and that these features were
indeed significantly different for PD cases and controls
across all three runs.
It is worth noting that only one of the seven acoustic

variables obtained from the first run of the speech test
was selected as a predictor in the final model. Four vari-
ables were from second run, and two from the third run.
None of the variables representing changes from one
run to another were selected as one of the top seven
variables.
This study demonstrates that machine learning can

assist clinicians in the accurate diagnosis of PD. Since
the PD subjects in this study were in their early stages of
disease, this approach may provide an opportunity for
earlier diagnosis of PD. Future work should investigate
whether such acoustic patterns exist during the pro-
dromal phase of PD.
Our study has several limitations. The most important

limitation is the small sample size. Despite the fact that
our carefully designed cross-validation yielded very high

Fig. 2 Feature selection and reclassification results for 4-fold cross validation using the LGB model
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accuracy, there is a need to repeat these analyses in a
larger cohort. Moreover, the small sample size may also
limit inferences of variable importance. Despite the fact
that our model performed with high classification accur-
acy, the feature importance analysis must be cautiously
interpreted since the ranks of importance may change
when the study is repeated in a larger cohort. Addition-
ally, all PD subjects in the dataset were drawn from a
single study. External validation is needed to test the
broader generalizability of our model. Another import-
ant limitation of our study is that our dataset includes
only subjects with PD and controls. It is unclear whether
our model can distinguish between subjects with PD and
those with other diseases that can affect speech.

Conclusions
Gradient boosting algorithms can be used to identify pa-
tients with Parkinson’s disease using a simple non-invasive
speech test. Further studies are required to determine
whether similar results can be obtained from records of
normal conversation or phone calls. This approach could
be used to screen large patient populations at different
stages of Parkinson’s disease. The value of this approach to
identify early prodromal PD remains to be determined.
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