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Abstract

Background: Prediction of drug response based on multi-omics data is a crucial task in the research of
personalized cancer therapy.

Results: We proposed an iterative sure independent ranking and screening (ISIRS) scheme to select drug response-
associated features and applied it to the Cancer Cell Line Encyclopedia (CCLE) dataset. For each drug in CCLE, we
incorporated multi-omics data including copy number alterations, mutation and gene expression and selected up
to 50 features using ISIRS. Then a linear regression model based on the selected features was exploited to predict
the drug response. Cross validation test shows that our prediction accuracies are higher than existing methods for
most drugs.

Conclusions: Our study indicates that the features selected by the marginal utility measure, which measures the
conditional probability of drug responses given the feature, are helpful for drug response prediction.

Keywords: SIRS, Drug response, ISIRS, CCLE

Background
A major goal in cancer research is to select an efficacious
drug or drug combinations for each individual patient based
on their genomic and transcriptomic profiles [1]. To get a
much more comprehensive understanding of the potential
genetic makeup of a patient, researchers have tried multi-
omics data including protein concentration, gene expres-
sion and genetic mutations. However, the methodology of
translating the genetic measurements to predictive models
for assisting therapeutic decisions is still a challenge.
Researchers have tried many methods to find bio-

markers and predict drug sensitivity. These methods are
mainly based on gene expression measurements.

Staunton et al. proposed a weighted voting classification
strategy to classify each cell line as sensitive or resistant
for each drug based on the NCI-60 gene expression data
[2]. Riddick et al. developed a novel multistep regression
model for drug response using Random Forest [3]. How-
ever, the biomarker of a certain drug for different cancer
types may be different because of the heterogeneity of
different cancers, so it is more realistic to focus on some
specific type of cancers. Lee et al. developed a genetic al-
gorithm termed as “coexpression extrapolation”, which
can accurately predict drug sensitivity of bladder cancer
cell lines and clinical responses of breast cancer patients
treated by commonly used chemotherapeutic drugs [4].
Holleman et al. used 14,500 probe sets to identify differ-
entially expressed genes in drug-sensitive and drug-
resistant acute lymphoblastic leukemia (ALL) [5]. Be-
sides gene expression, some researchers paid attention
to the related factors including epigenetic modifications,
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chemical description of the drugs and so on. Shen et al.
used bisulfite PCR to assess DNA methylation and
employed the methylation markers to predict drug sensi-
tivity [6]. Chen et al. proposed a graph matching with
multiple network constraints model to accurately iden-
tify gene-drug modules [7]. Wang et al. used elastic net
regression to report the relationship between the
lncRNA pharmacogenomic landscape by integrating
multi-dimensional genomic data and drug response data
[8]. Additionally, Menden et al. [9] developed a machine
learning model to predict the response of cancer cell
lines to drug treatment based on both the genomic fea-
tures of cell lines and chemical properties of the consid-
ered drugs. In spite of the success in finding some drug
biomarkers, these kinds of approaches still suffer from
the typical problem of “high-dimension but low sample
size” problem in statistical learning, i.e., compared with
the large number of expression genes and chemical com-
pounds (p), the number of samples (n) is very limited.
In a recent study, researchers from the Broad Institute

of Harvard and MIT generated a large scale genomic
data for cancer cell lines (termed as the Cancer Cell Line
Encyclopedia, CCLE). Coupling with pharmacological
profiles for 24 anticancer drugs across 479 cell lines, this
dataset could allow identification of genetic, lineage, and
gene-expression-based predictors of drug sensitivity [10].
In this paper, the authors first screened all genomic fea-
tures by their marginal correlation with drug response,
and then predicted drug sensitivity by elastic net regres-
sion. However, the interaction between genomic features
also influences drug sensitivities, so the importance of
features may change after adding other features into the
model. In order to incorporate the important features
with weak marginal correlation and remove the margin-
ally strong but jointly unimportant features, Fang et al.
applied an iterative sure independence screening (ISIS)
to CCLE dataset and improved the accuracy for drug
sensitivity prediction [11]. However, the feature screen-
ing based on Pearson correlation coefficient (PCC) is
sensitive to outliers and needs the assumption of elliptic-
ally symmetric distribution in theory [12]. Considering
the existence of outliers and asymmetric distribution for
most drug sensitivity data in CCLE, we exploited the
sure independent ranking and screening (SIRS) [13] that
measures the conditional distribution of drug response
given genomic features. Note that Zhu et al. [13] pro-
posed a model-free feature screening approach SIRS to
select important features. The SIRS method used the re-
sidual of remaining features to do the iterations. To pre-
dict the drug response through using the identified
important features, we exploit the linearity assumption
in modeling drug response and use the residual of re-
sponse instead of the residual of remaining features to
do the iterations.

In this paper, we propose the iterative SIRS (ISIRS) to
predict the drug response and apply it to the CCLE data-
set. By using the iterative procedure of ISIRS, strong fea-
tures with marginally weak utility measures can have
chance to be recruited, and the weak features with mar-
ginally strong measures can be removed. The cross-
validation tests showed that the prediction accuracies of
our method outperformed ISIS, STF and SIRS for most
drugs in CCLE dataset. Compared with ISIS, the feature
importance by PCC showed that ISIRS is robust to out-
liers and releases the assumption of symmetric distribu-
tion. Additionally, we also detected some new drug
response related genomic features.

Methods
Datasets
The drug response and cancer genomic data used in this
present paper are available from the Cancer Cell Line
Encyclopedia (CCLE). This dataset contains copy num-
ber alteration, gene expression and mutation status for
947 human cancer cell lines, as well as 8-point dose-
response curves for 24 chemical compounds across 479
cell lines. We used the area under dose-response curves
(termed as Activity area in [10]) instead of EC50 and
IC50 to measure the sensitivity of drug for a given cell
line. It has been extensively exploited because of its effi-
cacy and potency of characterize a drug [14].

Screening procedure
For each cell line, expression profile of 20,069 genes,
mutation status of 1654 genes and copy number status
of 16,045 genes are integrated as the primary feature
vector. The dimension of primary feature vector is too
high compared with the sample size. In this paper, the
sure independent ranking and screening [13] was intro-
duced to marginally select drug response-related
features.
Let Y be the drug response value and x = (X1,…, Xp)

T

be the vector consisting of all candidate features. With-
out loss of generality, we assume that E(Xk) = 0 and
var(Xk) = 1 for k = 1, …, p after scaling. As suggested in
reference [13], we denote the conditional distribution
function of Y given x by E (y | x) = P (Y < y |x) and de-
fine Ω(y) = E{xE(y| x)}. Let Ωk(y) be the k-th element of
Ω(y) and ωk is defined as

ωk ¼ E Ω2
k Yð Þ� �

; k ¼ 1;…; p:

In the present paper, we take ωk as the marginal utility
measure. The predictor Xk is called active predictor if E
(y | x) functionally depends on Xk, and the one which E
(y | x) does not relate with is referred as inactive pre-
dictor [13]. Due to the consistency in ranking, the mar-
ginal utility measure ωk can always rank an active

An et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 8):224 Page 2 of 9



predictor above an inactive predictor. This guarantees
that we can select the active predictors and exclude all
inactive predictors [13]. Thus we used ωk for feature
screening. For real data, the sample counterpart of ωk is
obtained as follows.
Let {(xi, Yi), i = 1,…, n} be a random sample of {x, Y}.

First, we normalized the sample predictors such that
n − 1Pn

i¼1Xik ¼ 0 and n − 1Pn
i¼1Xik

2 ¼ 1 for k = 1, …, p.
Then the sample estimator for ωk is.

ω̂k ¼ 1
n

Pn
j¼1f1n

Pn
i¼1XikI ðY i < Y jÞg2; k = 1, …, p,

where Xik is the kth component of xi. According to the
descending order of ωk, all the candidate predictors (fea-
tures) can be ranked and the top ones are recruited.

Feature selection through iterative sure independent
ranking and screening
All feature screening methods based on marginal utility
measure suffer from an inherent drawback that they
may miss the predictors that are marginally insignificant
but jointly related with the response. Based on this ob-
servation, we further propose the scheme of iterative
sure independent ranking and screening (ISIRS) as
follows.
First, we rank all features by sorting ω̂k as above in de-

scending order and select the top K1 features as A1.
Then we carry out the lasso regression based on a linear
model for variable selection and get a subset M1 of A1.
That is, we minimize the objective function

L β0; βk;k∈A1

� �
¼

Xn

i¼1
Y i − β0 −

X
k∈A1

βkXik

� �2

þ λ
X

k∈A1

j βk j;
where Xik is the k-th component of the feature vector xi,
Yi is the i-th observation of drug response, β0 and βk are
lasso estimators, n is the sample size and λ is the penalty
tuning parameter. Lasso regression gives shrinkage esti-
mates and some βk can be estimated exactly as zero. The
features with nonzero coefficients will be retained with
the indices set denoted by M1. We use the notation
∣M1∣ to mean the numbers of features in M1. Conse-
quently, we fit the drug response over the features in M1

by a linear regression model and obtain the residuals.
Then we take the residuals as a new response and em-
ploy SIRS to select the indices set A2 from the remaining
features with the indices {1, 2,…, p}\M1. In the next step,
for the features in the union of A2 and M1, we use the
lasso regression again and get a subset of features, de-
noted by M2. Assume that we aim to select d features,
the process of feature screening and selection is repeated
until ∣Ms ∣ = d or |Ms| = ∣Ms − 1∣. To make sure this
procedure not stop at the first iteration, we set K1 = ½2d3 �
as suggested in [9]. Besides, the consistency in both

variable selection and parameter estimation cannot be
achieved by lasso at the same time. So similar to Fang
et al. [11], we fit a linear regression model based on the
selected features by ISIRS and predict drug response by
the estimates of ordinary least squares (OLS).

Cross-validation and evaluation
In statistical prediction, the cross-validation method is
often adopted to test the effectiveness of a predictor
[15]. In this paper, we performed 10-fold cross-
validation to validate our algorithm. In detail, in each
fold, all cell lines treated by one drug were divided into
ten roughly equal groups, one of which was processed as
the test dataset and the rest nine groups were as the
training set to train the model. The average performance
across all ten folds was chosen as the final predictive
value of drug response.
The Pearson correlation coefficient (PCC) between the

average of predicted values and the observed response
was used to evaluate the predicting performance, which
has been widely used in the literatures [16]. Besides the
criterion of PCC, we also calculated the mean squared
errors (MSE) of the averaged predicted values from the
10-fold cross validation to assess the predicting perform-
ance of ISIRS.

T-test for the significance of regression coefficients
As we know, all features explain the response (drug sen-
sitivity) collectively in the multiple regression models
and the explanatory effect is not just the simple summa-
tion of the marginal explanatory effects. It is possible
that some features may have weak marginal importance
but jointly related to the response.
In order to examine the importance of these margin-

ally weak features, the t-test approach was applied to test
the significance of the corresponding regression coeffi-
cient. If the coefficient is significantly different from
zero, it means that the feature is important jointly with
other features. Therefore, the testing problem can be de-
scribed as follows:

H0 : β j ¼ 0; H1 : β j≠0:

Combining the regression model, the above testing
problem is essentially equivalent to the testing model,

H0 : Y i ¼ β0 þ β1Xi1 þ…þ β j − 1Xij − 1 þ β jþ1Xijþ1

þ βdXid;

H1 : Y i ¼ β0 þ β1Xi1 þ…þ βdXid:

When we reject H0, it means that the model in H1

with Xij can explain the response Yi better than the
model in H0 without Xij, and the existence of the feature
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Xij is significant. In this paper, the significance level was
set to be 0.01.

Results and discussion
Determination of the number of selected features
To determine the number of selected features d, we ex-
plored the predictive performance for each drug with
different top features selected by ISIRS. Pearson correl-
ation coefficient between predicted and true response
values does not show significant improvement when the
selected features are more than 50. This could be that
the increased number of features also increases the
noise. Therefore we consider the selected features less
than 50 for each drug. The PCCs based on 10-fold cross
validation for four example drugs are shown in Fig. 1
and the results of the rest drugs are shown in Fig. S1.
Now we set the evenly spaced grids {2, 4, 6,…, 50} for

d and performed 10 iterations of the 10-fold cross-
validation using the ISIRS scheme. The grid point corre-
sponding to the largest PCC between the observed drug
responses and predicted values via the 10-fold cross val-
idation was taken as the optimal choice for d. For each
drug, the final selected features are shown in Table S1.

Analysis of selected features in ISIRS model applying in
CCLE dataset
As shown in Table S1, many selected features have sig-
nificant overlap with those by elastic net regression. It is
also similar to elastic net regression that most selected
features are gene expression data rather than mutation
and copy number alteration status, which is expected
since expression profile constitutes the majority of ori-
ginal feature source. Most of the selected features are
widely accepted indicators for drug response. For ex-
ample, the selected mutation features for AZD6244 and
PD.0325901 include BRAF and NRAS, which are known
to be the predictor of sensitivity to MEK inhibitors. Mu-
tation of BRAF is also ranked as the top feature for
PLX4720 (BRAF inhibitor). SLFN11 expression corre-
lates with the antiproliferative activity of topoisomerase I
(Top1) inhibitors in the NCI-60 [17]. As we all know,
Irinotecan is DNA Topoisomerase I Inhibitor. These
powerful features are also successfully selected as predic-
tors of drug response by elastic net regression ENR [8].
The target of Paclitaxel is beta-tubulin and the mech-

anism of action is Microtubule-Stabilizing Agents. The
gene ABCB1 was selected as a strong feature by ISIRS.

Fig. 1 The PCCs between true and predicted drug sensitivities (DS) with different numbers of features
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The mechanisms of resistance to this class of com-
pounds include overexpression of the drug efflux pump
protein ABCB1, microtubule cytoskeletal changes, and
over expression of specific β-tubulin isotype and
microtubule-associated proteins. The microtubule-
stabilizing agents, such as epothilones, have demon-
strated similar activity in ABCB1-overexpressing cells
[18]. But ABCB1 was not selected as strong features by
ISIS and ENR. Nilotinib is a selective BCR-ABL tyrosine
kinase inhibitor. BCR-ABL1 is positive in adult acute
lymphoblastic leukemia (ALL). We selected gene IKZF1
as an active feature. It is reported that IKZF1 deletions
are likely to be a genomic alteration that significantly af-
fects the prognosis of Ph-positive ALL in adults [19].
AZD0530 is a potent Src family kinase (SFK)/Ab1 dual-
kinase inhibitor. It is reported that RSF1 is an amplified
gene in the highly aggressive ovarian serous carcinoma.
The increased RSF1 expression and thus excessive RSF
activity can induce chromosomal instability likely
through DDR [20]. Gene RSF1 was also selected in our
method for AZD0530. PHA.665752 is a c-MET Inhibi-
tor. For PHA.665752, ISIRS selects mutation of RHOA
as features, which could regulate the coendocytosis of
cadherin and c-Met [21]. We selected mutation feature
AURKC as an active feature for Panobinostat, which has
been used in combination with other chemotherapy for
children with relapsed AML. The AURKs are serine ki-
nases that are involved mainly in checkpoint regulation
in the cell cycle. And three mammalian AURKs have
been identified: AURKA, AURKB, and AURKC [22].
Some selective inhibitors of AUIKA and AUIKB have
been used in AML treatment. All these features have a
common characteristic that their ωk rankings are very

low, but are significant according to the regression
model. So we can conclude that ISIRS could detect some
weak features that jointly correlate with drug response.
To verify the relationship between drugs and the se-

lected genes, we conducted functional enrichment ana-
lysis of the selected genes using online metascape tool
[23] by taking X17.AAG as an example. The results are
shown in Fig. 2. For X17.AAG, the selected 43 genes by
ISIRS are significantly enriched in six function terms.
The most significant GO term is regulation of steroid
biosynth, which contained the genes LBH and NADH.
As is reported, the steroid sulfatases convert the local in-
active estrogens to their active forms, thus support the
breast cancer cells growth [24]. LBH is considered an
oncogene directly regulated by the Wnt/β-catenin path-
way, and the overexpression of LBH leads to a more ag-
gressive basal differentiation of breast cancer [25]. The
gene NADH is known to halt the progression of breast
cancer cells. This is because that NADH supplies cellular
ATP and then cancer cells cannot grow in an ATP rich
environment [26]. And the efficacy of the inhibitor
X17.AAG was tested in breast cancer cell lines and
X17.AAG was shown to inhibit the growth of breast
cancer cells in vitro study [27].

Comparison with existing methods
To evaluate the performance of ISIRS model, we made
comparisons with iterative sure independence screening
(ISIS), sure independence screening (SIRS) and simple
top features (STF), by choosing the Pearson correlation
coefficients as the comparative measure. The Pearson
correlation coefficients between true and predicted drug
responses by ISIRS, ISIS, SIRS, and STF are reported in

Fig. 2 The functional enrichment analysis of the selected features for the drug Paclitaxel
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Table S2 and showed by a bar chart in Fig. 3. We could
conclude that our prediction was slightly better than
STF and almost the same as ISIS and SIRS. For instance,
the mean increase in Pearson correlation coefficients of
ISIRS was closer to 0.03 compared with STF. When
comparing with ISIS and SIRS, the overall increases are
about 0.014 and 0.011. Explicitly, the PCC of L.685458
has increased from 0.52 to 0.57, the increase is 0.12 for
Nilotinib (from 0.42 to 0.54), the increase is 0.05 for
Paclitaxel from 0.55 to 0.6 and the increase is 0.04 for
TKI258 from 0.42 to 0.46 when compared with ISIS.
The PCC of 17.AAG has increased from 0.40 to 0.48,
and the increase is 0.08 for Paclitaxel and 0.06 for
ZD.6474 when it is compared with SIRS. In addition, the
predicted correlation by ISIRS are higher than those by
STF, with the paired Wilcox-test (p-value = 7.09e-05).
Also, ISIRS gives higher predicted correlations than ISIS,
with the paired Wilcox-test (p-value = 0.02074), and the
performance of STF and ISIS is comparable as expected
with p-value = 0.02151 by paired Wilcox-test. Mean-
while, ISIRS can also give much higher predicted corre-
lations than ENR, with the paired Wilcox-test (p-value =
0.0004297). It is concluded that the ISIRS method could
identify some marginally weak features, and achieve bet-
ter results than other methods.
Besides the aforementioned criterion of PCC, we

also calculated the mean squared errors (MSE) of the
averaged predicted values from the 10-fold cross val-
idation to assess the predicting performance of ISIRS,
which are shown in Fig. 4 by a bar plot. From the
bar plot, we can observe that all the MSE of ISIRS is
lower than ISIS with the Wilcox-test (p-value = 5.96e-
08). And we can clearly observe that some of MSE
from ISIS are much higher than those from ISIRS. By
coincidence, we find that the distributions of the true
drug sensitivity of these drugs are all close to normal

distribution. We found that the relationship between
the proportional reduction in MSE and skewness is
negatively correlated (Fig. 5). It is well known that
when the data distribution is gaussian distributed, the
results will be more reliable. Therefore, when the true
drug sensitivity values follow gaussian distribution,
the results of ISIRS will be better.
Next, we analyzed the correlations of predicted drug

responses between our ISIRS model and ENR, ISIS,
STF and SIRS (Fig. 6). Our predictions were in good
consistence with those by ENR model, given the over-
all correlation of 0.90. In particular, if we neglect the
only one outlier, Nilotinib, the overall Pearson correl-
ation will increase from 0.90 to 0.95. And our

Fig. 3 Comparison of ISIRS with ISIS, STF and SIRS in drug sensitivity
prediction. Pearson correlation coefficients between predicted and
true drug sensitivities by ISIS (red), STF (green), ISIRS (blue), SIRS
(light blue)

Fig. 4 Comparison of ISIRS with ISIS method in drug sensitivity
prediction. Mean square error between predicted (mean of 10
iterations of 10-fold cross-validations) and true drug sensitivities by
ISIRS (red), ISIS (green)

Fig. 5 Scatter plots of the skewness and proportional reduction in
MSE for all drugs
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predictions were in great consistence with those by
ISIS, STF and SIRS model, given the overall correl-
ation of 0.97. From Fig. 6, we can see that ENR
model brought a higher prediction correlation than
ISRIS for drug Nilotinib. Because Nilotinib is a special
compound for treating chronic myelogenous leukemia
(CML) [28], which was successfully selected as the
strongest feature for sensitivity of Nilotinib [8]. This
top feature in ENR model dominated the model
building and prediction, and brought a high predic-
tion correlation. Except this unique outlier, ISIRS ob-
tained higher predictive correlations by using fewer
features than ENR.
We claimed that our ISIRS approach could effi-

ciently eliminate redundancy among selected features.
The mean redundancy score (MRS) [29], measured by
the PCC and the mutual information (MI) [30], were
used to evaluate the redundancy between identified
features. In addition, we also implemented the simple
top features (STF) method by ranking the features
through the ωk, where the features in STF is the same
as that in ISIRS. The MRSs for the 24 drugs through
ISIRS and STF are listed in Table S3. If measured by
PCC, the MRSs by ISIRS and STF are 0.2138 and
0.4420 respectively. It is suggested that the feature

redundancy is significantly removed by ISIRS com-
pared with STF (p-value = 2.384e-07 by paired
Wilcox-test). Moreover, if measured by MI, the means
of MIs by ISIRS and STF for the 24 drugs are 0.0830
and 0.2042 respectively, also showing significant dif-
ference by paired Wilcox-test (p-value = 4.712e-07).
Details of the mutual information (MI) are shown in
Table S4. All above results confirm that ISIRS could
remove the redundancy between selected features.

Conclusion
Predicting drug response from genomic data including
gene expression, mutation status of genes and copy
number alteration is a very fundamental problem in
research of personalized medicine. In this paper, we
applied an iterative sure independence ranking and
screening (ISIRS) to select the features. Through cross
validation on the CCLE dataset, we reported that our
method could not only find numerous biomarkers
which were reported in previous literatures, but also
detect many marginally weak yet biologically import-
ant genomic features. These new detected features are
shown to have strong combination effects on drug re-
sponse. Based on the selected features, we performed
lasso regression model to predict the drug response

Fig. 6 Consistence between correlations of true and predicted drug responses by elastic net, ISIS, STF, SIRS and ISIRS. Dotted line indicates
equal predictions
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on CCLE dataset. The Pearson correlation coefficients
between predicted and true drug sensitivities showed
that our arithmetic got much higher correlations than
ENR, ISIS, STF and SIRS. In the future, we plan to
make an available web-server to implement the pre-
diction method ISIRS in the paper.
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