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Abstract

Background: Treatment effect prediction (TEP) plays an important role in disease management by ensuring that the
expected clinical outcomes are obtained after performing specialized and sophisticated treatments on patients given
their personalized clinical status. In recent years, the wide adoption of electronic health records (EHRs) has provided a
comprehensive data source for intelligent clinical applications including the TEP investigated in this study.

Method: We examined the problem of using a large volume of heterogeneous EHR data to predict treatment effects and
developed an adversarial deep treatment effect prediction model to address the problem. Our model employed two auto-
encoders for learning the representative and discriminative features of both patient characteristics and treatments from EHR
data. The discriminative power of the learned features was further enhanced by decoding the correlational information
between the patient characteristics and subsequent treatments by means of a generated adversarial learning strategy.
Thereafter, a logistic regression layer was appended on the top of the resulting feature representation layer for TEP.

Result: The proposed model was evaluated on two real clinical datasets collected from the cardiology department of a
Chinese hospital. In particular, on acute coronary syndrome (ACS) dataset, the proposed adversarial deep treatment effect
prediction (ADTEP) (0.662) exhibited 1.4, 2.2, and 6.3% performance gains in terms of the area under the ROC curve (AUC)
over deep treatment effect prediction (DTEP) (0.653), logistic regression (LR) (0.648), and support vector machine (SVM)
(0.621), respectively. As for heart failure (HF) case study, the proposed ADTEP also outperformed all benchmarks. The
experimental results demonstrated that our proposed model achieved competitive performance compared to state-of-the-
art models in tackling the TEP problem.

Conclusion: In this work, we propose a novel model to address the TEP problem by utilizing a large volume of
observational data from EHR. With adversarial learning strategy, our proposed model can further explore the correlational
information between patient statuses and treatments to extract more robust and discriminative representation of patient
samples from their EHR data. Such representation finally benefits the model on TEP. The experimental results of two case
studies demonstrate the superiority of our proposed method compared to state-of-the-art methods.
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Background
Defined as the operations and medication delivered during
hospitalization, treatments have a significant impact on the
prognosis of patients. Are the treatment interventions ap-
propriate to be conducted on an individual patient given
his or her specific clinical status? Will the delivered treat-
ments achieve the expected effects on patients during their
hospitalization? Traditional approaches to addressing such
questions have mostly relied on evidence-based medicine
[1], which urges healthcare professionals to make treatment
decisions according to the best evidence from systematic
research on both the efficacy and efficiency of various
therapeutic alternatives [2]. Ideally, healthcare professionals
compare different treatment options by referring to ran-
domized, double-blind, head-to-head clinical trials [1],
evaluate the resulting treatment effects in a prospective
manner, and then select the best one to be conducted on
individuals according to their specific clinical status [3].
Although valuable, there are two typical limitations to

randomized controlled trial (RCT) studies [1, 4–8]. The
first is that participants in RCTs are strictly selected and
tend to be a “pretty rarefied population”, which is not
representative of the real-world population that the
scheduled treatments will eventually target [5, 6]. The
second is that existing approaches are almost from a re-
active perspective, in that they allow healthcare profes-
sionals to identify inappropriate interventions only after
they have occurred, rather than supporting them in pre-
venting unexpected treatment effects in advance [7, 8].
Electronic health records (EHRs), with their increas-

ingly widespread adoption in clinical practice, provide a
comprehensive source for treatment effect analysis to
augment traditional RCT studies [9–15]. An EHR con-
tains large amounts of clinical data generated as a bypro-
duct of treatment activities [10]. A wide variety of data
types are available in EHRs, including patient demo-
graphics, symptoms, vital signs, laboratory test results,
and other data types that can be used to describe a pa-
tient’s clinical status, and therefore subsequent treat-
ments (for example, drugs, injections, surgery, and care
activities) performed on the patient conditioned on his
or her clinical status [14, 15]. In this regard, the different
aspects of medical information recorded in EHR data are
highly correlated and thus provide significant potential
for exploitation, for example, to extract representative
and discriminative features for treatment effect predic-
tion (TEP), which is the main objective of this study.
TEP is vital for efficiently managing disease care and ther-

apy, owing to its usefulness in capturing actionable know-
ledge to assist healthcare professionals in selecting among
the many therapies claimed to be efficacious for treating a
patient within a specific clinical status [16–19]. As a funda-
mental problem of precision medicine with a wide range of
applications, such as treatment recommendation [20, 21]

and medical error avoidance [22], TEP can generate non-
trivial knowledge with dual benefits. Not only can it demon-
strate comprehension regarding patient treatment adoption,
but it can also serve as an efficient and proactive indicator of
medical errors before they actually occur.
To address the challenges of TEP, EHR-driven models

are generally required to be capable of capturing repre-
sentative and discriminative features of patient charac-
teristics and subsequent treatments in an integrated
manner and from a large volume of EHR data. In this
study, we use deep learning tactics to leverage the poten-
tial of EHR data to anticipate treatment effects. Specific-
ally, we propose a novel adversarial deep learning model
for treatment effect prediction (ADTEP) based on the
auto-encoder (AE) [23, 24] and adversarial learning [25].
In detail, we employ two AEs, which encode the physical
condition and treatment information of patient samples
into latent robust representations. In addition to the
treatment decoder, treatments can be generated based
on the latent representation of the patient status, under
the manipulation of the actual treatment effect, so as to
regularize the latent features and capture correlations
between patient characteristics and treatments. To align
the generated treatments with the actual performed
treatments, we adopt an adversarial learning scheme and
use a discriminator to differentiate the fake generated
treatments from the real performed treatments docu-
mented in the EHR data. With this adversarial learning
strategy, not only the patient characteristics and subse-
quent treatments, but also the correlational information
between them are encoded in the latent representation,
making the generated features sufficiently representative
to convey the essential and critical information in the
EHR data. Note that the latent representations of patient
samples and the treatment effect predictor are jointly
trained, making the representations discriminative and
optimized for TEP. We conducted experiments to evalu-
ate the effectiveness of the proposed model on two real
clinical data sets collected from the Cardiology Depart-
ment of the Chinese PLA General hospital. The experi-
mental results demonstrate that our proposed model
outperforms other state-of-the-art models.
The remainder of this paper is organized as follows.

We review the related work in Section 2. Section 3 for-
mulates the problem and presents our proposed ap-
proach in detail. The experimental setup and results
using a real clinical dataset are presented in Section 4.
Finally, we conclude the paper in Section 5.

Related work
TEP models [16–18, 26–33] have been proposed to pre-
dict the treatment effects of patient individuals following
the performed treatment. The gold standard approach to
addressing the problem of TEP is clinical RCTs, which
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aim to avoid bias when testing new treatments [5]. Al-
though valuable, RCTs exhibit several serious limitations
[6–8]; for example, they require strict inclusion and ex-
clusion criteria, the causal conclusions from RCT studies
cannot be applied to other localities automatically, and
most importantly, RCTs are sometimes infeasible owing
to ethical issues.
In recent years, the increased availability of EHRs has

demonstrated significant potential for improving the per-
formance of various clinical applications [9–15, 34, 35].
EHRs regularly document various care and treatment be-
haviors, such as procedures, diagnoses, and laboratory
tests and measurements, of patients within the context of
large healthcare systems [9, 10], capture the characteristics
of heterogeneous populations of patients receiving care in
their current clinical setting [11], and therefore form a
large volume of clinical observational data sources. As an
essential source of clinical observational data, and an effi-
cient and alternative channel for TEP, EHR data have been
gradually incorporated into estimating treatment effects
[36, 37]. For example, Rosenbaum and Rubin proposed a
classical propensity score matching model to reduce selec-
tion bias for estimating treatment effects [2]. Wager and
Athey [26] proposed a variant of random forests, known
as causal forests, to measure the propensity scores for
treatment effect estimation.
Although valuable, two main limitations exist when using

EHR data for TEP: (1) treatment selection bias inevitably
exists in clinical practice [16, 17], that is, similar patients al-
ways receive the same treatments based on the recommen-
dations from certain pre-existing clinical guidelines or
protocols, and thus, EHR data are typically biased as they
faithfully documents the actual treatment behavior and do
not contain all possible outcomes for all treatments; (2)
only the factual outcomes of the assigned treatments are
observed, and counterfactual outcomes of alternative treat-
ments are not observed [26–29, 33, 36, 37]. Note that the
treatment outcomes of patients are never the same, and
therefore, the learning process must provide an under-
standing of how the current patient is similar to previous
patients [30]. This learning problem is further complicated
by the fact that the data include only the received treatment
outcomes, and - not the potential outcomes of the alterna-
tive treatments, namely the counterfactuals [27].
To overcome these limitations, numerous studies have

proposed creating a balance by re-weighting samples
with their inverse propensity score (IPS) and formulating
the problem of counterfactual inference as the domain
adaption problem [28, 29]. For example, Swaminathan
and Joachims proposed a direct estimation model to
minimize the “corrected” loss function, using IPS cor-
rected by a regularization term over the linear stochastic
policy class [28]. As a further study, Swaminathan and
Joachims developed a variant of the IPS estimator, that

is, a self-normalizing estimator, to learn the counterfac-
tuals [30]. Jordan and Schaar proposed combining the
direct and IPS methods and generate more robust coun-
terfactual estimates [30]. In particular, they used a novel
AE network to reduce bias by learning a representation
map to control the trade-off between the bias reduction
and information loss [30].
In recent years, deep learning has attracted consider-

able interest in various research fields for achieving im-
pressive performance. Shifting to the clinical domain,
deep learning tactics have been receiving increased at-
tention for solving the TEP problem [17, 27, 30, 32]. For
example, Louizos et al. [16] proposed the causal effect
variational AE to learn the latent variables for estimating
individual treatment effects. Atan, Jordan and Schaar
[30] proposed a deep-treat model to estimate the treat-
ment policies on the transformed data learned from an
AE. Lee et al. [31] developed a novel adversarial learning
framework to conduct unbiased treatment effect estima-
tion using noisy proxies. Yoon et al. [17] employed a
generative adversarial network (GAN) to estimate indi-
vidual treatment effects. Alaa et al. [33] proposed multi-
task deep counterfactual networks for treatment effect
estimation by learning shared representations for treated
and control outcomes and reducing the impact of selec-
tion bias in observational data by means of a propensity-
dropout regularization scheme. Although valuable, it
must be mentioned that most of these deep learning
models have assumed that only binary actions or a few
treatment options exist, namely treat and do not treat,
while in most situations, various treatment combinations
are possible.
In comparison with state-of-the-art models that simply

tackle binary or several treatment options, our proposed
ADTEP elegantly deals with various treatment combina-
tions by extracting representative and discriminative fea-
tures from observational data. Moreover, the proposed
model is capable of extracting correlational information
between patient characteristics and treatments from EHR
data, which is essential for treatment effect estimation but
somehow neglected by numerous existing models.

Methods
(x: patient feature vector, y: outcome, a: treatment vec-
tor, hx: latent feature vector of patient features, ha: latent
feature vector of treatments, x′: reconstructed feature
vector of patient features, a′: reconstructed feature vec-
tor of treatments, ~a: fabricated vector of treatments, Ex:
patient feature encoder, Ea: treatment intervention en-
coder, Gx: patient feature decoder, Ga: treatment de-
coder, Gxa: treatment generator, Da: treatment
discriminator, Cy: logistic regression layer for TEP, lx:
patient feature reconstruction loss, la: treatment
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reconstruction loss, lGAN: adversarial loss, lpred: treat-
ment outcome prediction loss.)
We consider a typical clinical study of TEP, in which the

EHR data record patient features, treatment interventions,
and achieved treatment outcomes. For each patient sample
u, we observe a set of patient features xu, a set of treatment
interventions au conditioned on xu, and the achieved treat-
ment outcome yu. The EHR dataset can be described as,

D ¼ xu; au; yuð Þju ¼ 1;⋯;NDf g ð1Þ

We propose the ADTEP model to address the afore-
mentioned problem. The ADTEP inherits the loss func-
tion of traditional classification models, and takes
advantage of the adversarial learning scheme to extract
representative and discriminative features, which not
only semantically encode the essential and critical infor-
mation contained in the patient EHR, but also provide
the benefit of achieving high accuracy for TEP.
As illustrated in Fig. 1(A), during the training process,

the proposed ADTEP contains seven components: a pa-
tient feature encoder Ex, a treatment intervention en-
coder Ea, a patient feature decoder Gx, a treatment
intervention decoder Ga, a treatment intervention gener-
ator Gxa, a treatment intervention discriminator Da, and
a logistic regression layer for TEP Cy. In detail, given a

patient sample (x, a, y), two encoder layers Ex and Ea are
first employed to extract the latent features hx and ha
from x and a, respectively. The reconstructed features x′

and a′ can then be estimated from the latent features hx
and ha, using the decoders Gx and Ga. Note that Ex and
Gx form an AE for patient feature observations, and for
Ea and Ga to reconstruct treatment interventions. Both
AEs Ex- Gx / Ea- Ga are adopted to capture robust and
discriminative patient feature/treatment representations
in the latent feature vector hx / ha. Consequently, the la-
tent feature vectors hx and ha are concatenated to form
the input of Cy for TEP.
As treatment interventions are performed conditioned

on patient features in clinical practice, we feed the latent
patient features hx into another generator Gxa to yield
treatment interventions ~a, conditioned on the treatment
outcome y of the patient sample ~a¼Gxaðhx; yÞ, and then
use a discriminator to distinguish whether or not the
generated treatment interventions ~a and original ones a
originate from the same treatment distributions. The use
of the generator Gxa allows us to learn the latent correla-
tions between patient features and treatments. This
learning strategy can regularize the latent features hx to
encode most of the information shared between the pa-
tient characteristics and subsequent treatments. The de-
tails are as follows.

Fig. 1 Adversarial deep treatment effect prediction (ADTEP) model
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Encoder-decoder
We employ two AEs, namely Ex- Gx, and Ea- Ga, to learn
the latent representations of patient characteristics and
treatments, respectively. A simple form of an AE is a feed-
forward and non-recurrent neural network [24, 38], consist-
ing of an input layer, an output layer and one or multiple
hidden layers in between. The AE attempts to reconstruct
the input from the corrupted data. Formally, given an M-
dimensional input patient feature vector x ∈ℝM, it is
mapped to the code vector hx with the encoding function
Ex(Wex + be), and subsequently during the decoding step, it
maps the code vector hx to the output vector x′, which re-
constructs the input vector with the decoding function
Gx(Wdhx + bd), where We ∈ℝ

K×M and Wd ∈ℝ
M×K are

weighted matrices, be ∈ℝ
K and bd ∈ℝ

M are the correspond-
ing bias terms, Ex(·) and Gx(·) are nonlinear activation func-
tions, and K is the number of nodes in the hidden layer.
Similar to the AE Ex- Gx, the treatment encoder Ea takes

the treatment vector a as input and generates the latent
treatment vector ha, which is subsequently fed into decoder
Ga to generate the reconstructed treatment a′. Both Ea and
Ga constitute a treatment AE, which aims at reconstructing
the treatment behavior from the patient EHR data.
It is very challenging to generate the treatment vector

~a of a patient sample from his or her clinical status rep-
resentation x:Pð~ajxÞ, owing to the large appearance vari-
ations in the treatment selections given the patient
characteristics in clinical settings. To address this prob-
lem, we use the patient feature encoder Ex and treatment
generator Gxa to form an AE. Specifically, given a patient
feature vector x and the known treatment effect y, Ex is
adopted to extract the latent feature vector hx = Ex(x).
The feature vector hx is expected to encode the correl-
ational information between the patient characteristics
and treatments after adversarial training, and the treat-
ment vector ~a can be estimated from the latent feature
vector hx, using Gxa conditioned on the obtained treat-
ment effect y : ~a¼Gxaðhx; yÞ.

Patient feature reconstruction loss
In this study, we measure the reconstruction perform-
ance for patient feature x conducted by the encoder Ex
and decoder Gx. For efficient learning of the encoder-
decoder, standard practice is to use the Euclidean dis-
tance between the input and the generated output to
minimize the patient feature reconstruction loss, that is,

Lx ¼ Ex;a;y∼Pdata x;a;yð Þ x−Gx Ex xð Þð Þj jj j22 ð2Þ

Here, the encoder Ex maps the input patient feature
vector x into the latent one hx, and then, the decoder Gx

reconstructs the feature x′ from hx.

Treatment reconstruction loss
The reconstruction performance for treatment vector a is
measured by means of the encoder Ea and decoder Ga. Simi-
larly to the patient feature reconstruction loss Lx , the treat-
ment reconstruction loss La can be measured as follows:

La ¼ Ex;a;y∼Pdata x;a;yð Þ a−Ga Ea að Þð Þj jj j22 ð3Þ

Minimizing Eqs. (2) and (3) aids us in determining a
representative latent feature space for the patient clinical
characteristics and subsequent treatments.

Discriminator
As a popular learning formulation for deep learning, adversar-
ial learning is similar to a competition game, in which a dis-
criminator judges a data sample as real or fake; in contrast, a
generator attempts to produce indistinguishable samples with-
out being detected [17, 25, 39]. Inspired by adversarial learning
and based on the common sense whereby treatments are con-
ditioned on patient characteristics in a clinical context [10], we
encourage the reconstruction of treatments from discrimina-
tive patient features that are similar to real ones, so that the
prediction performance can be enriched.
To this end, we design a treatment discriminator Da to

differentiate the reconstructed treatment vector ~a from
the true observed treatment a. In particular, we employ
a binary classifier to categorize the given input as “real”
if the input is the actual treatment vector performed on
patients, and “fake” otherwise. Da enables the proposed
model to learn a hidden treatment representation ha
from the EHR data. Meanwhile, Da causes the latent pa-
tient features hx to be treatment specific. As a result, it
improves the discriminative capability of the learned fea-
tures, and makes them particularly optimized for TEP.

Adversarial loss
LGAN is optimized to train the encoder Ex, decoder Gxa,
and discriminator Da. The encoder Ex is trained to gen-
erate the treatment-specific patient feature hx, while the
decoder Gxa is trained to generate treatments condi-
tioned on hx manipulated by the treatment outcome
label y. The discriminator Da attempts to distinguish the
actual treatment vector a as real and the reconstructed
one ~a as fake. We define the adversarial loss LGAN as:

LGAN ¼ Ex;a;y∼pdata x;a;yð Þ logDa að Þ½ �
þ Ex;a;y∼pdata x;a;yð Þ log 1−Da Gxa Ex xð Þ; yð Þð Þð Þ½ �:

ð4Þ

Treatment outcome predictor
Given a testing patient sample with patient feature vec-
tor x, treatment vector a conditioned on x, and an un-
known treatment outcome label y, we can learn the
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representative and informative features hx and ha with
respect to the patient characteristics, and subsequently
the treatments performed on the patient, respectively,
and then concatenate these as [hx, ha] to be fed into the
treatment effect predictor Cy, so that treatment effects
can be estimated for the target patient.

Treatment outcome prediction loss
Lpred . In this study, we employ a logistic regression layer
for the treatment outcome prediction, in which the input
is the concatenation of the latent patient feature vector
hx and treatment vector ha. This is used to estimate the
treatment effect of patient samples given their clinical
conditions and performed treatment interventions. The
loss can be measured using cross-entropy as follows:

Lpred ¼ 1
ND

XND

u¼1
L Wpred; bpred; xu; au; yu
� �

¼ 1
ND

XND

u¼1
yu logy

0
u þ 1−yuð Þ log 1−y

0
u

� �� �
;

ð5Þ

where y′ is the predicted treatment outcome.

Model learning
As demonstrated in the section above, our training is de-
fined by four loss functions: 1) loss of GAN LGAN , loss
of patient feature reconstruction Lx , loss of treatment
reconstruction La , and loss of treatment outcome pre-
diction Lpred . In summary, the objective function of the
ADTEP is expressed as:

min
Ex;Ea;Gx;Ga;Gxa;Cy

max
Da

Lpred þ α Lx þ Lað Þ
þ βLGAN ; ð6Þ

where α and β are trade-off parameters for balancing the
importance of the corresponding components.
The learning algorithm of the proposed model can be

formulated as follows:

1. Update the parameters of the patient feature
encoder and decoder fΘEx ;ΘGxg by minimizing the
patient feature reconstruction loss Lx. Note that the
encoder Ex and decoder Gx are trained to
reconstruct patient characteristics. Moreover, the
encoder Ex is regularized to generate treatment-
specific patient characteristics, as it also needs to
generate treatments, as discussed previously.

2. Update the parameters of the treatment encoder
and decoder fΘEa ;ΘGag by minimizing the
treatment reconstruction loss La.

3. Update the discriminator parameter {Θd} to
optimize LGAN by maximizing the adversarial loss
max
D

LGAN .

4. Update the treatment effect predictor {Θc} by
minimizing the prediction loss min

C
Lpred .

Note that the above objectives are optimized in an it-
erative manner. Specifically, Ex, Ea, Gx, Ga, Gxa, Da, and
Cy improve one another during the alternative training
process. With Da being more capable of distinguishing
the generated fake treatment vector and real one, Gxa

encourages the generation of fake treatments which
based on patient feature to compete with the discrimin-
ator Da. To this end, the encoder Ex and decoder Gx are
driven to encode the representative patient features into
the latent feature vector hx. Thereafter, the treatment
generator Gxa learns how to map the latent patient fea-
ture hx to conditioned treatments ~a corresponding to
the input patient feature x. This process makes the fea-
tures particularly optimized for TEP.
Fig. 1 (B) presents the flowchart of the TEP test

process. In particular, the AEs Ex- Gx and Ea- Ga are
used to generate the latent feature representations hx
and ha, which are then concatenated as the input of Cy

to predict treatment outcomes for the test patient
samples

Treatment effect analysis for target outcome
To analyze the association between the treatment and
clinical outcome in an interpretable manner, we com-
pute the effect of each treatment for the target outcome
following training. We firstly compute the mean loss
Lpred over the training samples. Thereafter, for each
treatment k, 1 ≤ k ≤ K, and for each patient sample u, 1 ≤

u ≤ND, we let âðuÞ¼aðuÞ and then set âðuÞ
k ¼ 0. Based on

the adjusted âðuÞ, we compute the mean loss, as follows:

Lk
pred : Lpred

¼ 1
ND

XND

u¼1
L Wpred; bpred; xu; â

uð Þ; yu
� �

; ð7Þ

and then compute the effect of treatment k for the target
outcome:

ef fk ¼ Lk
pred−Lpred ð8Þ

Note that the calculated value of effk discloses the rele-
vant treatment for the target variation, which is helpful
for physicians to understand whether the performed
treatment has an effect on the target outcome, and the
means by which the black-box deep learning-based TEP
model operates in a reasonable and trustworthy manner.
We argue that the analysis results can provide certain in-
sights for the formation of treatment effects on the tar-
get clinical outcomes.
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Experiments
We conducted two clinical case studies in cooperation
with the Cardiology Department of the Chinese PLA
General Hospital. The first investigated major adverse
cardiac event (MACE) prediction after acute coronary
syndrome (ACS), while the second focused on one-year
readmission prediction for heart failure (HF) patients, as
detailed in the following subsections.
Note that categorical features, such as gender, oper-

ation, medicine and complication, are represented as
binary values. Meanwhile, continuous features, such as
age, BMI and lab test values, are categorized into three
levels: lower than normal, normal and higher than nor-
mal, according to the clinical protocol adopted by the
hospital, and represented as one-hot vectors with three
dimensions.
All experiments were conducted on a Microsoft Sur-

face Pro 5 Compatible PC with an Intel Core i7-7660U
CPU 2.50 GHz and 8 GB of main memory, running on
Microsoft Windows 10. The proposed model was imple-
mented in Python, and the source code is available at
https://github.com/ZJU-BMI/treatment. Prior approval
for conducting the study was obtained from the data
protection committee of the hospital. We wish to make
it clear that the patient data were anonymized in this
study and in this paper.

Performance comparisons
To demonstrate the effectiveness of our proposed model,
we compare the proposed ADTEP with: the proposed
model without adversarial learning, namely the DTEP
model. For the DTEP, we use AEs to generate the latent
representations of both the patient characteristics and
the subsequent treatments, concatenate the derived la-
tent features, and then feed the obtained feature vector
into a logistic regression layer, yielding a TEP model.
Note that DTEP does not consider the correlations be-
tween the patient state and the treatment. Moreover, we
compare the proposed model to benchmark models
using the experimental datasets, including logistic re-
gression (LR) and the support vector machine (SVM).
L2-regularization is used in LR, DTEP and ADTEP. We
search the best values of hyper-parameters with grid
search strategy and all the results shown in this paper
are obtained on the condition of the best settings.

Evaluation metrics
The performance was evaluated by the Area Under the
receiver operating characteristic (ROC) curve (AUC), ac-
curacy, precision, recall and F1 score. To estimate the
performance of the treatment effect estimation in a less
biased manner than single-round testing, we repeated
the experiments five times to validate the performance
of each model on the experimental dataset. Furthermore,

the five-fold cross-validation strategy was applied in each
run of the experiment. As a result, we obtained a group
of experimental results for each model, on which the
mean value and confidence intervals were calculated.

ACS case study
Data description
ACS refers to a group of conditions resulting from decreased
blood flow in the coronary arteries, whereby that part of the
heart muscle is unable to function properly or dies [40]. The
basic treatment principles are the same for all types of ACS;
however, several important aspects of treatment depend on
the specific characteristics of ACS patients. For example, the
comorbidities of ACS patients, presence or absence of eleva-
tion of the ST segment on the electrocardiogram, and differ-
ent treatment interventions may result in varying treatment
effects [41–43]. To this end, the ability to leverage a quantita-
tive paradigm for alleviating adverse treatment effects and
improving patient outcomes, in terms of both prediction and
prevention could potentially deliver significant benefits to
both patients and their families, as well as society. Regarding
the indicators of treatment effects for ACS patient samples,
we select the MACE after ACS as the label for treatment ef-
fects. MACE is a typical indicator of the treatment effect,
and it often occurs suddenly, resulting in high mortality and
morbidity [12, 44]. In clinical practice, MACE has a signifi-
cant impact on clinical decision-making for ACS patient care
and treatment.
To conduct the ACS case study, we collaborated with

the clinicians of the cardiology department, and ex-
tracted a collection of 3463 ACS patient samples from
the hospital EHR system. The dataset documented 326
patient features including demographics, operations,
medications, laboratory values and diagnosis, etc. Specif-
ically, for features with multiple measurement, like la-
boratory values, we kept the initial measurement on
admission. Preprocessing was conducted on the col-
lected ACS dataset. In particular, both patient samples
and variables with more than 30% of missing values were
excluded from the analysis. Other than this, no further
efforts were made to handle the missing data in the ex-
periments. As a result, 2930 patient samples with a me-
dian age of 62.27 years were obtained, among which
2080 (71%) were female. A summary of the statistics of
the dataset is provided in Table 1, where shows the in-
formation of several important patient characteristics se-
lected by our clinical collaborates. Note that the P-
values of features with continues values were calculated
by Mann-Whitney U test, while the P-values of features
with binary values were calculated by Chi-squared test.

Experimental results and analysis
Table 2 presents the TEP performance achieved on the
experimental ACS dataset. As can be observed from
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Table 2, the proposed model achieved superior perform-
ance compared to benchmark models on the experimen-
tal dataset. ADTEP performed slightly better than DTEP
in terms of both the AUC and F1. Although DTEP out-
performed ADTEP in terms of the average accuracy, the
performance gain was marginal. These findings indicate
that the incorporation of correlational information be-
tween patient characteristics and treatments by means of
the adversarial learning strategy was useful in predicting
the treatment effects of ACS patient samples. Figure 2 il-
lustrates the ROC curves for MACE prediction after
ACS, also demonstrating that the proposed ADTEP
achieved comparative performance with benchmark
models. In particular, ADTEP exhibited 1.4, 2.2, and
6.3% performance gains for MACE prediction in terms
of AUC over DTEP, LR, and SVM, respectively.
Figure 3 displays the measured Effk values of treatments on

the ACS dataset. Two of the three most relevant treatments
for MACE prediction were found to be: antiplatelet and lipid
lowering therapy, which are consistent with existing medical

knowledge as major interventions for ACS [45, 46]. The most
irrelevant treatment for MACE was found to be coronary
angiography. This finding is also reasonable, because coronary
angiography is not a specific treatment for relieving the symp-
toms of ACS, but rather a procedure to determine how blood
flows through the arteries in the hearts, and thus, is less rele-
vant to influencing the occurrence of MACE after ACS. Sur-
prisingly, we found that hypoglycemic therapy had the
strongest correlation with MACE, while nitroglycerin had a
less significant correlation. This is inconsistent with clinical
guidelines as hypoglycemic therapy is mainly adopted for the
treatment of type II diabetes, while nitroglycerin is recognized
as a major treatment for preventing ischemic events after
ACS. These findings may contain suggestive hypotheses that
could be validated by further clinical investigations.

HF case study
Experimental setup
HF is a complex clinical syndrome that affects at least
40 million people globally and is increasing in prevalence

Table 1 Baseline characteristics of experimental ACS dataset

Characteristics No. of participants (n = 2930) MACE
(n = 752)

Non-MACE (n = 2178) P-value

Age (years), mean (SD) 62.27 ± 12.11 67.12 ± 11.95 60.60 ± 11.71 < 0.001

Female sex (T/F) 2080/850 528/225 1552/625 0.573

Hypertension (T/F) 1981/949 537/215 1444/734 0.011

Diabetes mellitus (T/F) 1986/803 482/224 1504/439 < 0.001

Hypercholesterolemia (T/F) 2362/568 623/129 1739/439 0.082

Previous PCI (T/F) 816/2114 214/538 602/1576 0.701

Previous CABG (T/F) 86/2844 38/714 48/2130 < 0.001

ST-segment elevations ECG (T/F) 106/2824 27/725 79/2099 0.947

BMI (kg/m2), mean (SD) 25.90 ± 11.30 25.50 ± 12.73 26.03 ± 10.76 0.333

CCR (ml/min/ m2), mean (SD) 78.73 ± 38.19 85.36 ± 48.30 76.41 ± 33.65 < 0.001

CKMB (umol/L), mean (SD) 9.49 ± 14.95 9.30 ± 11.45 9.56 ± 16.09 0.715

Treatment

Coronary angiography (T/F) 993/1937 270/482 723/1455 0.191

Nitroglycerin (T/F) 904/2026 292/460 612/1566 < 0.001

Vasodilator (T/F) 951/1979 305/447 646/1532 < 0.001

Antihypertensive therapy (T/F) 1375/1555 385/367 990/1188 < 0.001

Hypoglycemic therapy (T/F) 451/2479 127/625 324/1854 0.208

Lipid lowering therapy (T/F) 511/2419 129/623 382/1796 0.854

Blood transfusion (T/F) 91/2839 28/724 63/2115 0.312

Quick-acting rescue (T/F) 796/2134 236/516 560/1618 < 0.001

Aspirin (T/F) 730/2200 204/548 526/1652 0.114

Antiarrhythmia (T/F) 114/2816 45/707 69/2109 < 0.001

Anti-angina (T/F) 1216/1714 376/376 840/1338 < 0.001

Antiplatelet (T/F) 933/1997 255/497 678/1500 0.172

BMI: body mass index; CABG: coronary artery bypass grafting; CCR: Creatinine clearance; CKMB: creatine kinase MB; ECG: electrocardiogram; PCI: percutaneous
coronary intervention; SD: standard deviation
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[47]. Although not all conditions leading to HF can be
reversed, treatments can improve the signs and symp-
toms of HF and help patients to live longer. Usually, sev-
eral HF-specific treatments are available, such as
angiotensin converting enzyme inhibitor (ACEI)/angio-
tensin receptor blocker (ARB), beta-blockers and aldos-
terone antagonists, and it is meaningful to select
appropriate treatments for an individual HF patient ac-
cording to his or her clinical conditions and the desired
treatment effects. The objective of this case study was to
analyze the effects of treatments on the one-year re-
admission of HF patients.
The experimental dataset consisted of 736 HF patients

with one-year follow up information (461 readmitted,
275 not readmitted). Each patient sample contained 105
features including demographics (such as age, gender),
vital signs (including blood pressure and heart rate), la-
boratory tests (for example, creatinine kinase (CK), car-
diac troponin T (cTnT)), echocardiography (such as
ejection fraction), comorbidities (for example, diabetes
and renal insufficiency), and treatments (including ACEI,

ARB, and beta-blockers) adopted for these patients. Spe-
cifically, for features with multiple measurement, like
vital signs and laboratory values, we kept the initial
measurement on admission. Table 3 lists the informa-
tion of several important patient characteristics sug-
gested by our clinical collaborators based on their
knowledge about HF. As the same with Table 1, the P-
values of features with continues values were calculated
by Mann-Whitney U test, while the P-values of features
with binary values were calculated by Chi-squared test.

Experimental results and analysis
Table 4 reports the experimental results on the HF data-
set. It can be observed that the proposed ADTEP out-
performed benchmark models in terms of both accuracy
and AUC. Specifically, ADTEP exhibited boosted per-
formance compared to the benchmark models. This
finding indicates that the proposed model can extract
more discriminative representations from EHR data for
predicting the treatment effects of HF patients, by using
deep learning tactics. Moreover, by introducing the

Table 2 Experimental results for accuracy, AUC, precision, recall and F1 score on ACS experimental dataset

Method Accuracy
(mean ± SD)

AUC
(mean ± SD)

Precision
(mean ± SD)

Recall
(mean ± SD)

F1 score
(mean ± SD)

LR 0.744 ± 0.016 0.648 ± 0.026 0.505 ± 0.078 0.198 ± 0.034 0.284 ± 0.044

SVM 0.716 ± 0.010 0.621 ± 0.014 0.402 ± 0.032 0.219 ± 0.026 0.283 ± 0.027

DTEP 0.747 ± 0.010 0.653 ± 0.021 0.524 ± 0.056 0.181 ± 0.025 0.268 ± 0.031

ADTEP 0.746 ± 0.012 0.662 ± 0.020 0.515 ± 0.058 0.210 ± 0.036 0.297 ± 0.042

Fig. 2 ROC curves for MACE prediction after ACS
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Fig. 3 Achieved Effk values of treatments on ACS dataset

Table 3 Baseline characteristics of experimental HF dataset

Characteristics No. of participants (n = 736) Readmission in one year (n = 461) Non-readmission in one year (n = 275) P-value

Age (years), mean (SD) 64.29 ± 13.55 63.66 ± 13.55 65.34 ± 13.53 0.104

Female sex (T/F) 508/227 331/130 177/97 0.050

Hypertension (T/F) 526/210 323/138 203/72 0.314

Diabetes mellitus (T/F) 466/270 283/178 183/92 0.185

Renal insufficiency (T/F) 592/144 359/102 233/42 0.030

SBP (mmHg), mean (SD) 133.41 ± 20.41 130.33 ± 20.02 138.57 ± 20.04 < 0.001

DBP (mmHg), mean (SD) 77.13 ± 13.66 76.15 ± 13.86 78.76 ± 13.19 0.012

Heart rate (b.p.m) mean (SD) 79.98 ± 16.37 81.17 ± 17.01 78.00 ± 15.06 0.011

Creatinine (umol/L), mean (SD) 100.35 ± 64.5 106.77 ± 72.85 89.61 ± 45.50 < 0.001

LVEF (%), mean (SD) 43.74 ± 11.86 41.92 ± 12.12 46.80 ± 10.76 < 0.001

CK (umol/L), mean (SD) 87.79 ± 82.04 89.71 ± 80.56 84.60 ± 84.50 0.414

cTnT (ng/ml), mean (SD) 0.058 ± 0.38 0.077 ± 0.47 0.025 ± 0.057 0.068

Treatment

Diuretics (T/F) 536/200 344/117 202/73 < 0.001

ACEI (T/F) 442/294 279/182 163/112 0.797

ARB (T/F) 480/256 296/165 184/91 0.507

Beta-blocker (T/F) 588/148 367/94 221/54 0.879

CCB (T/F) 454/282 307/154 147/128 < 0.001

Statin (T/F) 536/200 322/139 214/61 0.023

Digoxin (T/F) 457/279 257/204 200/75 < 0.001

Nitrates (T/F) 454/282 274/187 180/95 0.122

Aspirin (T/F) 513/223 314/147 199/76 0.258

Clopidogrel (T/F) 379/357 244/217 140/135 0.650

Warfarin (T/F) 638/98 399/62 239/36 0.979

Spironolactone (T/F) 402/334 288/173 161/114 0.328

Antibiotics (T/F) 713/23 446/15 267/8 0.967

Antiacid (T/F) 589/147 367/94 222/53 0.786

ACEI: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; CCB: calcium channel blocker; cTnT: cardiac troponin T; CK: creatinine kinase;
DBP: diastolic blood pressure; LVEF: left ventricular ejection fraction; SBP: systolic blood pressure
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adversarial learning strategy, the proposed ADTEP ob-
tained performance gains of 4.8 and 4.1% in terms of ac-
curacy and AUC, respectively, compared to DTEP. This
demonstrates that discriminative representations can be
obtained for efficient treatment effect estimation by
extracting correlational information between patient
characteristics and subsequent treatments.
Figure 4 illustrates the ROC curves achieved by both the

proposed model and baseline approaches on the HF data-
set. As can be observed from Fig. 4, the proposed ADTEP
performed better than benchmark models. In particular,
the proposed ADTEP exhibited performance gains of over
4.1, 0.9, and 8.7% in terms of the AUC in comparison with
DTEP, LR, and SVM, respectively, on the experimental
dataset, although LR curve closely approached the ADTEP
curve. These observations indicate that deep learning tac-
tics can indeed extract representative and discriminative
features from data and therefore aid in achieving compar-
able TEP performance compared to state-of-the-art
models. When comparing ADTEP and DTEP, it was

observed that ADTEP outperformed DTEP in terms of
the ROC curve. This indicates that incorporating adver-
sarial learning into the TEP can extract more representa-
tive features to improve the TEP performance.
Moreover, to analyze the correlations between the

treatments and clinical outcomes, we used Eq. (8) to
measure the Effk values of the treatments on the target
outcome (that is, one-year readmission), based on the
HF dataset. As can be observed from Fig. 5, the most
relevant treatments for the target outcome were: di-
uretics, AECI, and Warfarin, which is consistent with
existing medical domain knowledge, as these are the
main adopted medications for HF [47]. In contrast, the
least relevant treatment for the target outcome of HF
was Digoxin. Note that this finding is also consistent
with the newly published clinical guidelines because Di-
goxin is a type of obsolete medications for HF therapy
and may increase the risk of bleeding of HF patients
[48]. This finding may contain suggestive hypotheses
that could be validated by further clinical investigations.

Table 4 Experimental results for accuracy, AUC, precision, recall and F1 score on experimental HF dataset

Method Accuracy
(mean ± SD)

AUC
(mean ± SD)

Precision
(mean ± SD)

Recall
(mean ± SD)

F1 score
(mean ± SD)

LR 0.647 ± 0.030 0.682 ± 0.039 0.677 ± 0.022 0.836 ± 0.037 0.748 ± 0.021

SVM 0.642 ± 0.034 0.633 ± 0.027 0.669 ± 0.018 0.849 ± 0.050 0.748 ± 0.028

DTEP 0.624 ± 0.034 0.661 ± 0.038 0.679 ± 0.055 0.830 ± 0.149 0.721 ± 0.064

ADTEP 0.654 ± 0.025 0.688 ± 0.040 0.680 ± 0.019 0.848 ± 0.034 0.754 ± 0.019

Fig. 4 ROC curves for one-year readmission prediction for HF patients
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Discussion
Overall, compared to benchmark approaches, our model
can improve the TEP performance in terms of two aspects.
Firstly, we use deep learning models to generate latent rep-
resentations of patient features and treatments. This can
extract deep information from heterogeneous EHR data.
Secondly, the expression of adversarial learning extracts
abundant latent and nonlinear correlations between patient
status and corresponding treatments, so that precisely rep-
resentative features can be extracted from the data. With
such ability, our proposed model shows superiority against
other models on experimental results. Moreover, the results
validate our assumption that the correlational information
between patient characteristics and treatments can indeed
improve the TEP performance. Furthermore, our model
can extract informative treatments given the target out-
come. Several of these extracted treatments are not only
consistent with existing medical knowledge, but also con-
tain suggestive hypotheses that could be validated by fur-
ther investigations in the medical domain.
The experimental results were evaluated by hospital

managers and clinical experts at the Chinese PLA General
Hospital, who understand the beneficial effects of the pro-
posed model. They indicated the potential of applying the
proposed model in clinical practice for efficient treatment
selection and improvement. Specifically, the proposed
model can be utilized to support clinical decision-making
and aid in treatment adoption. For example, the patient
characteristics can be analyzed to aid healthcare profes-
sionals in scheduling individual treatment interventions
for patients, in order to achieve the expected treatment ef-
fects. The method is also applicable to clinical decision
support systems that recommend appropriate treatment
interventions matching the specific patient statuses. This
could guide healthcare professionals to schedule appropri-
ate treatment interventions based on the measurement of

the target patient statuses and the desired treatment ef-
fects, by meaningfully employing a large volume of EHR
data to derive non-trivial knowledge explaining the treat-
ment intentions and behaviors. In this regard, our clinical
collaborators advocate us to develop and deploy a TEP
service in the EHR system. Such a service will not only
predict treatment effects nearly at run-time in the treat-
ment processes of patients, but also essentially assist
healthcare professionals to schedule appropriate treatment
behaviors in a continuous and predictive manner.
Although our study has revealed that the proposed

model is effective in predicting treatment effects, even
more complex analysis and evaluation tasks remain to
be addressed. In this study, patient characteristics are
generated using the data collected at a single time point.
However, the dynamic nature of patient characteristics is
often essential in the adoption of treatment interven-
tions. In treatment processes, a patient status may be
changed dynamically, and new evidence often becomes
available at certain time points, which inevitably influ-
ences physician decisions on treatment selection. To ad-
dress this challenge, our model should incorporate
richer execution information into the learning, so as to
be more intelligent in terms of treatment adoption and
treatment effect improvement.
Moreover, the proposed work simply uses one treat-

ment property, namely the treatment type, as features.
This is not entirely consistent with clinical practice. In
actual clinical settings, medications with different dos-
ages and frequencies may be grouped into many treat-
ment variants according to the physical conditions of
individual patients. To address this problem, the signifi-
cant potential of EHR data is required to be exploited
for treatment effect estimation in a fine-grained manner.
A further limitation of our proposed model is that the

causal interactions between patient status and treatments

Fig. 5 Achieved Effk values of treatments on HF dataset
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are not considered. Causal interaction analysis may be use-
ful to identify unexpected changes in patient characteristics
and explain why scheduled treatments are changed to guar-
antee the expected treatment effects in an interpretable
manner. That is, such an approach may provide interpret-
able prediction on treatment effects given a specific patient
status. Note that this is an open medical problem and could
be addressed by mining a large amount of EHR data in a
maximum-informative manner. Substantial research is still
necessary to make such mining both effective and efficient.

Conclusions
In this work, we have addressed quite a challenging
problem in medical informatics, namely utilizing a large
volume of observational data for TEP. We have pro-
posed a novel model for extracting robust and discrim-
inative representations of patient samples from their
EHR data. We further improved the representation and
discrimination power of the features by using adversarial
loss to explore the correlational information between pa-
tient statuses and treatments. Our proposed model was
evaluated on two real clinical datasets pertaining to ACS
and HF, and collected from the cardiovascular depart-
ment of a Chinese hospital. The experimental results
demonstrate significant improvements in TEP compared
to state-of-the-art methods. An interesting finding is
that treatments are conditioned on patient clinical sta-
tuses and may result in varying outcomes. This inspires
us to explore the correlations between patient character-
istics and treatments further for promptly and accurately
predicting treatment effects in our future work.
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