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Abstract

Background: The essential proteins in protein networks play an important role in complex cellular functions and in
protein evolution. Therefore, the identification of essential proteins in a network can help to explain the structure,
function, and dynamics of basic cellular networks. The existing dynamic protein networks regard the protein
components as the same at all time points; however, the role of proteins can vary over time.

Methods: To improve the accuracy of identifying essential proteins, an improved h-index algorithm based on the
attenuation coefficient method is proposed in this paper. This method incorporates previously neglected node
information to improve the accuracy of the essential protein search. Based on choosing the appropriate attenuation
coefficient, the values, such as monotonicity, SN, SP, PPV and NPV of different essential protein search algorithms
are tested.

Results: The experimental results show that, the algorithm proposed in this paper can ensure the accuracy of the
found proteins while identifying more essential proteins.

Conclusions: The described experiments show that this method is more effective than other similar methods in
identifying essential proteins in dynamic protein networks. This study can better explain the mechanism of life
activities and provide theoretical basis for the research and development of targeted drugs.
Background
With the increasing amount of available medical infor-
mation, the identification of key proteins has become an
area of interest for many researchers [1–3].
In recent years, methods using different perspectives

have been developed to mine essential nodes in complex
networks. Wang et al [4]. proposed an effective method
to identify vertices in dynamic networks using local de-
tection and update strategies. This method locally de-
tects change vertices in a dynamic network and locally
updates the influence measure of these change vertices,
without globally calculating the influence of all vertices.
Essential proteins are those that play an important role
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in protein evolution and are similar to the definition of
essential GO terms presented by Wan et al. [5] Li et al.
[6] proposed a new method for identifying essential pro-
teins by combining information on protein complexes
and protein–protein interaction (PPI) network topo-
logical features. By analyzing the relationship between
protein complexes and essential proteins, it was found
that proteins in multiple complexes were more likely to
be essential than those in only one complex. Based on a
statistical analysis of proteins and protein complexes,
Luo et al. [7] proposed a method for predicting essential
proteins in PPI networks based on the local interaction
density and protein complexes. Hu et al. [8] proposed a
new method, the E-Burt method, which can be applied
to weighted networks. This method fully considers the
total connection strength, the number of connection
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edges, and the distribution of the total connection
strength on the connection edge in the local range.
Wang et al. [9] used the iterative information of k-shell
decomposition to distinguish the influence ability of
nodes with the same k-shell. Lei et al. [10] proposed an
essential protein exploration method named RWEP
using a random walk algorithm that integrates topo-
logical and biological properties to determine protein es-
sentiality in PPI networks. Many of the key factors to
measure nodes in complex networks are based on graph
theory to quantify the topological structure and attri-
butes of each node, and comparisons of the centrality of
each node are made through different centrality calcula-
tion methods, such as the degree center, median center,
proximity center, and edge clustering coefficient center.
Quantitative methods can also be used to find the essen-
tial nodes in networks [11–14]
The identification of essential proteins in dynamic pro-

tein networks reveals those that play the most important
role in the evolution of proteins. In the search for essen-
tial proteins, the above methods consider only the im-
portance of the nodes themselves to illustrate their
centrality, ignoring structural information of network
graphs. When modeling the essential proteins, some al-
gorithms treat the protein situation at different time
points as the same. However, in the process of protein
evolution, the role of proteins can vary over time. There-
fore, adding the attenuation coefficient can help to find
proteins that are essential in the protein evolution
process. The importance of the node itself and other
structure information of the network can be combined
by the attenuation coefficient to examine the importance
of a particular node as it relates to the whole network.

Methods
Essential proteins in a protein network are usually lo-
cated at the center of the entire network. The appear-
ance or disappearance of these proteins has a crucial
impact on the whole protein network [15–17] Accur-
ately identifying essential proteins in a dynamic protein
network is helpful for understanding various biological
processes from a systematic point of view, and this infor-
mation can be widely used to explore the pathogenesis
of diseases and to predict and evaluate corresponding
treatments. This information can also be used to find
new drug targets and open new avenues for drug re-
search and development. Although effective methods
have been applied to identify essential proteins in pro-
tein interaction networks based on data mining, machine
learning, and artificial neural networks, it is still neces-
sary to carry out in-depth research on algorithms to im-
prove the accurate identification of such proteins.

(1) Time series on dynamic protein networks
When modeling dynamic protein networks, gene ex-
pression data and large-scale static protein networks are
usually considered together. The gene expression arrays
of M genes at T time points can be divided into T sets.
Each set represents the state of M genes at the same
time point and can be combined into a dynamic protein
network based on a time series.

(2) Evolution of proteins

Different protein interaction networks are present at dif-
ferent time points. Figure 1 shows a simple protein evolu-
tion process, where A, B, and C represent different proteins
that appear at different times in protein evolution.
The ultimate goal of the model is to facilitate subse-

quent research by identifying essential proteins that play a
crucial role in protein evolution or by predicting the link-
ages between proteins in subsequent points in evolution.
This requires recording the evolution of the protein itself.
In the past, link relationships between proteins in a net-
work at different time points were recorded as 1 and rela-
tionships without links were recorded as 0. This approach
is not amenable to a time series, because over time the
historic protein data becomes less prominent and recently
generated links between proteins play a larger role.
Dynamic protein networks represent the implementa-

tion of the entire evolutionary process over time. If a
link relationship between proteins is considered to be
constant in the evolutionary process over time, it will
obviously affect subsequent studies that are based on dy-
namic protein models. Therefore, it is worth exploring
how to incorporate protein link relationships that
change over time into the scope of a model so as to cor-
rectly identify key proteins in dynamic protein networks
and predict future protein link relationships.

(3) The h-index method

The h-index [18] is a new method for evaluating aca-
demic achievements. The h stands for “high citation
times”. The h-index means that a scientist has at most h
papers cited at least h times. The h-index was originally
used to accurately reflect a person’s academic achieve-
ments. A higher h-index indicates a greater academic in-
fluence. In the study of dynamic protein networks, the h-
index can be used to find essential proteins, and formula
(1) can be used to calculate the h-index value of nodes.

H−index við Þ ¼ H du1; du2;…; dudið Þ uj∈neighbor við Þ

ð1Þ

where di denotes the degree of node vi, formula h (x1,
x2,... xn) returns the maximum value of y, and at least y
items from x1, x2,... xn are greater than or equal to y.



Fig. 1 Simple protein evolution
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However, the h-index considers only the importance
of the node itself to illustrate its centrality, ignoring
some network structure information, which will reduce
the accuracy of the node expansion.
For example, in Fig. 2, the centrality of node 2 is rela-

tively large. However, considering the information of
nodes in this graph, the expansion ability of node 3 is
greater than that of node 2. The reason for this is that
when defining the centrality of the h-index, some infor-
mation about the node neighbors is ignored. For ex-
ample, nodes with a degree less than y are completely
ignored, resulting in reduced specification accuracy
when the node is expanded. Therefore, this method is
not accurate in calculating the expansion capacity of
nodes.
Therefore, it is necessary to improve the existing h-

index algorithm on the basis of the established dynamic
protein network model to accurately identify key pro-
teins in the network by combining information of the
nodes themselves and structural information that has
been neglected in previous algorithms.
Fig. 2 An example of node centrality. a. Integrating gene expression data
network and dynamic proteins to form a dynamic protein network. c. Cons
weight of the same edge at adjacent times
(4) Monotonicity

The ability to distinguish nodes with different scalabil-
ities and nodes with uniform distribution at different
levels is one criterion for evaluating the ranking methods
of influential nodes in social networks [8] Monotonicity
is used to test the recognition ability of this method for
nodes with different extensibility. Formula (2) is used to
calculate the m value of ranking Table R. In this equa-
tion, n is the number of column groups in list R and the
number of nodes in column group R. The value of M is
always in the range 0–1. Large numbers indicate that
nodes have high recognition ability.

M Rð Þ ¼ 1−

X
r∈R

nr� nr−1ð Þ

n� n−1ð Þ

0
B@

1
CA

2

ð2Þ

After establishing a dynamic protein network model
based on attenuation coefficients, the essential protein
and extracting dynamic proteins. b. Combining an open protein
tructing dynamic protein networks at different time points. d. The
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recognition methods can be investigated. The methods
to be adopted are as follows.

(1) Construct the whole protein evolution process
network based on the attenuation coefficient.

In this network, the weights of each side at the corre-
sponding time points should be added together to obtain
the final weights; the formulas are stated below.
In the process of construction, the same edge appears

at different times. At the current time point, the corre-
sponding weight calculation will vary. The earlier the
edge appears, the more its role in the protein evolution
process will change over time. The calculation method
of weight corresponding to the edges at each time is as
follows:
For each edge (u, v) in the protein network at time t,

its weight D (u, v, t) varies with time t and is defined as:

D u; vð Þ; tð Þ ¼ δ u; vð Þ; 0ð Þ t ¼ 0
D u; vð Þ; t−1ð Þ�λþ δ I; tð Þ otherwise

�

ð3Þ

in which

δ u; vð Þ; tð Þ ¼ 1 a tð Þ include edge u; vð Þ
0 otherwise

�
ð4Þ

where a (t) is a set of all the edges appearing at time t; a
(t) is a constant and is called the attenuation coefficient.
The weight of each vertex neighbor is calculated by

the weight of the edge. If the vertex v is a neighbor of u,
the weight w (u, v) of v for u is defined as:

w u; vð Þ ¼ D u; v; tð ÞX
x∈N uð Þ

D u; x; tð Þ ð5Þ

It can be seen from the above definition that
X

v∈NðuÞ
wð

u; v; tÞ ¼ 1 and w (u, v) and w (v, u) are not necessarily
equal.
In this way, the weight of each edge in the protein net-

work at different times is will vary.
The process of constructing a dynamic protein net-

work based on attenuation coefficients is shown in Fig.
3.
Considering that proteins will change with time in the

process of protein evolution, the protein network model
is more objective and conforms to the process of bio-
logical evolution.

(2) Calculating the cumulative centrality of the node
neighborhood
Although the h-index measure attempts to determine
the centrality of nodes based on the importance of adja-
cent nodes, some information about the adjacent nodes
is still ignored. The centrality of a node can be standard-
ized by using all the information of its adjacent nodes.
For this purpose, the cumulative function in definition 1
is used.

Definition 1. The cumulative function ck (vi) is defined
as the number of nodes whose vi neighbors are moder-
ately larger than or equal to k, expressed as follows:

ck við Þ ¼j v jjv j∈Ni and d j≥k
� � j ð6Þ

The h-index function is improved to the cumulative
function defined in eq. (7):

pth−index við Þ ¼ k ck við Þ≥kð Þargmax k ¼ 1sk−1 við Þ−
X

v j∈Nk−1 við Þ
w vi; v j
� �

if k > 1

ð10Þ

Here, Sk (vi) is the k-th index value of vector S (vi), and
Nk (vi) is the set of neighbor vertices whose degree is k.
Given the cumulative function vector of node vi, its

cumulative centrality is expressed as eq. (11):

CMC við Þ ¼
Xh
k¼1

p1þk�pr�sk við Þ ð11Þ

In this formula, p and r are two adjustable parameters,
and the value of p is between 0 and 1. Because there is a
larger cumulative value in the lower degree than in the
higher degree and in the higher-order cumulative value

of many nodes, equation (11) uses the parameter p1þk�pr
to multiply the lower-order cumulative value by a larger
number. This ensures that the lower-order cumulative
value is more effective and has a stronger expansion and
recognition ability in the regulation of node centrality.

(3) The extended h-index centrality EHC(v) of a node
is determined according to the cumulative
centrality of its neighborhood.

Formula (12) can be used to determine the extended
h-index centrality EHC(v) of nodes by iteration:

EHC 0ð Þ vð Þ ¼ CMC vð Þ

EHC tþ1ð Þ vð Þ ¼
X

u∈N vð Þ
w v; uð Þ:EHC tð Þ vð Þ

ð12Þ



Fig. 3 Construction of a dynamic protein network based on the attenuation coefficient
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(4) Calculate the centrality of all nodes and arrange
them in order. N nodes with larger centralities are
the essential nodes.

The process of our proposed IH-index algorithm is
shown in Fig. 4.
Results
Experimental data
The following data were used in the experiment:

(1) Gene expression data GSE3431 [19]; the
corresponding matrix contained 6470 lines, and



Fig. 4 The IH-index algorithm process
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each line represented the corresponding expression
data of a different gene.

(2) Yeast protein network in DIP [20], which includes
5093 proteins and 24,743 edges. We processed the
network and extracted a portion of the nodes in the
evolution process, as shown in the composition
diagram in Fig. 5.

(3) 1285 essential proteins obtained from the
datasets MIPS [21], SGD [22], DEG [23] and
SGDP [24].
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Experimental results
Parameter selection experiments
First, the attenuation coefficient was tested. The dy-
namic protein network was divided into 36 moments,
and the attenuation coefficients were compared with dif-
ferent values. The proposed algorithm is abbreviated as
the IH-index.
The SIR extension model [25] was used to evaluate the

accuracy of this method in determining the node expan-
sion capability and sorting the nodes. For this reason,
the diffusion process was simulated by SIR, and the real
ranking table σ was generated. In the SIR process, each
node can be in one of three states: susceptibility (S), in-
fection (I) or recovery (Re). After applying necessary
changes to the node states, the node state Re was con-
sidered as the extension capability of node vi. The scal-
ability of each node was calculated through repeated
processing, and the ranking table σ was obtained.
After calculating the values in table σ, the sorting

Table R can be generated by using various methods. The
higher the correlation between the two ranking tables,
the higher the accuracy of the corresponding methods in
specifying the node expansion capability. For this reason,
the Kendall correlation coefficient τ (0 ≤ τ ≤ 1) is
adopted:

τ σ;Rð Þ ¼ nc−nd
n n−1ð Þ=2 ð13Þ

where nc and nd denote the number of consistent and
inconsistent pairs of nodes in the two sorting tables, re-
spectively, and n denotes the size of the sorting vector.
The larger the Kendall correlation coefficient τ value,
the closer the relationship between the two tables σ and
Fig. 5 Part of the yeast protein network
R, and the more accurate the proposed algorithm for
calculating the essential degree of the dynamic proteins.
Figures 6 and 7 show that the number of identified es-

sential proteins and the accuracy of the identification
change when the attenuation coefficient is altered. By
synthesizing the two experimental results, we found that
the attenuation coefficient ranged from 0.9 to 0.95, and
the number of identified essential proteins found was
optimized. Therefore, the attenuation coefficient was set
to 0.92.
Next, the effect of parameters p and r on the results of

the search algorithm was investigated using the yeast
protein dataset by applying the Kendall coefficient.
Figure 8 shows that the value of the Kendall correl-

ation coefficient changed slightly with the change of pa-
rameters p and r. The maximum value of τ was obtained
when p = 0.9 and r = 100. Thus, the following experi-
ments were carried out for the case of p = 0.9 and
r = 100.

Experimental results of dynamic protein network models
based on attenuation coefficients for different algorithms
To verify the performance of dynamic protein networks
based on the attenuation coefficient, different algorithms
were used to identify essential proteins in the established
networks, and the results were compared.
The four essential node search methods were: Cnc+,

[23] h-index, [26] IGC, [27] TEO, [11] RWEP [10] and
IH-index, and they were run on the constructed attenu-
ation coefficient-based protein network.

(1) Monotonicity values

We verified the monotony of the different algorithms
based on the dynamic protein network to identify essen-
tial proteins. The results are shown in Fig. 9.
Fig. 6 The effect of the attenuation coefficient on the number of
essential proteins



Fig. 7 The change in correctness as the attenuation
coefficient changes Fig. 9 Monotonicity values of different essential protein

search algorithms
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Figure 9 shows that the monotonicity value of the IH-
index algorithm was higher than that of the other algo-
rithms. The value was close to 1, which indicates that
this algorithm has a stronger ability to recognize essen-
tial proteins.

(2) Correctness

Figure 10 shows the Kendall coefficients of two sorting
tables corresponding to different algorithms. The accur-
acy of the IH-index algorithm in finding essential pro-
teins was slightly higher than that of Cnc+, IGC, TEO
and RWEP, and was significantly higher than that of the
h-index.
Combined with the above two experimental results,

the accuracy of the improved algorithm was also verified
because the number of essential proteins found by the
algorithm was the largest.
Fig. 8 Kendall coefficient values corresponding to changes in p and r
(3) The values of SN, SP, PPV, and NPV of six
algorithms

To further verify the performance of the algorithm, we
compared the sensitivity (SN), specificity (SP), positive
predictive value (PPV), and negative predictive value
(NPV) of the six different algorithms.
Table 1 presents the values of SN, SP, PPV, and NPV

of the six algorithms.

Discussion
Protein is an important component of all cells and tis-
sues in the human body. The cell itself undergoes dy-
namic evolution in the body, such as growth,
proliferation, differentiation, aging, and apoptosis.
Therefore, when searching for proteins that are essential
to the process of protein evolution, considering the
changes in proteins at different times is consistent with
Fig. 10 Correctness calculated by the Kendall coefficient of different
essential protein search algorithms



Table 1 The values of SN, SP, PPV, and NPV of six algorithms

algorithms Cnc+ H-index IGC TEO RWEP IH-index

SN 0.487 0.429 0.494 0.529 0.538 0.542

SP 0.803 0.794 0.810 0.827 0.836 0.846

PPV 0.456 0.376 0.472 0.481 0.493 0.516

NPV 0.821 0.817 0.839 0.848 0.859 0.865
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the development of actual life activities. Few algorithms
have considered this.
Because the algorithm experiments proposed by the

predecessors are based on the protein which has been
confirmed to be correct, there is no cross validation
[28–30] in this paper. Next, we consider using some
methods to do relevant tests. And some proteins like
CDC53 appear more frequently in the whole process of
biological evolution, but it is not classified as essential
protein in the dataset used. Next, we will compare
whether the dataset itself is overlooked, but it’s really an
essential protein.
Future research should also consider that an edge

plays a very small role in the network because the weight
of an edge decreases with time and reaches a minimum
threshold. It can be directly subtracted to save time and
space. In this way, a minimum threshold is set for the
weight of edges. Future research could apply this algo-
rithm to the study of dynamic protein sequence data.
Conclusions
To consider the influence of historical data on current
protein evolution data, a dynamic protein network
model based on the attenuation coefficient is proposed.
In this model, rather than simply generalizing the pres-
ence or absence of proteins at each time point, a dy-
namic protein network modeling method based on the
attenuation coefficient is used to record the changes of
proteins in the process of biological evolution according
to their corresponding occurrences. In the proposed
model, the traditional key node search method, the h-
index algorithm, which neglects neighbor attributes, is
improved. The cumulative function is used to account
for the varying degrees of the attributes of neighboring
nodes, which improves the accuracy of the search for es-
sential proteins. To verify the validity of the method, dif-
ferent key node search methods were applied to a
dynamic protein network. The experimental results
show that the model established by the IH-index method
is more convenient for accurately identifying essential
proteins.

Acknowledgements
We thank Katherine Thieltges from Liwen Bianji, Edanz Editing China
(www.liwenbianji.cn/ac), for editing the English text of a draft of this
manuscript.
Authors’ contributions
DCY analyzed and established the evolution model. HJ made a comparison
with other experiments and made to a conclusion. DYW was a major
contributor in writing the manuscript. HKF was responsible for guiding the
implementation of the work and verifying the algorithm. All authors read
and approved the final manuscript.

Funding
This study was supported in part by grants from Jiangsu Province Science
Foundation for Youths (No.BK20180822), Natural Science Research Projects in
Jiangsu Higher Education Institution (No. 18KJB520040) and National Natural
Science Foundation of China (No.61906100). The funder Caiyan Dai, is
responsible for the algorithm design and model establishment of this study.

Availability of data and materials
The datasets used during the current study are available in:
DIP:http://dip.deo-mbi.ucla.edu/dip/Stat.cgi,
MIPS:http://mips.helmholtz-muenchen.de/proj/ppi.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 27 October 2019 Accepted: 1 June 2020

References
1. Qiao S, Yan B, Li J. Ensemble learning for protein multiplex subcellular

localization prediction based on weighted KNN with different features. Appl
Intell. 2018;48(7):1813–24.

2. Zhao B, Wang J, Li M, Wu FX, Pan Y. Prediction of essential proteins based
on overlapping essential modules. IEEE Transact Nano Biosci. 2014;13(4):
415–24.

3. Peng W, Wang JX, Wang W, et al. Iteration method for predicting essential
proteins based on orthology and protein-protein interaction networks. BMC
Syst Biol. 2012;6(1):87.

4. Wang S, Cuomo S, Mei S, Cheng W, Xu N. Efficient method for identifying
influential vertices in dynamic networks using the strategy of local
detection and updating. Futur Gener Comput Syst. 2019;91:10–24.

5. Wan S, Mak MW, Kung SY. Sparse regressions for predicting and
interpreting subcellular localization of multi-label proteins. BMC Bioinform.
2016;17(1):97.

6. Li M, Lu Y, Xiang N, Pan W. Identification of essential proteins by using
complexes and interaction network. Bioinform Res Appl. 2014:255–65.

7. Luo J, Qi Y. Identification of essential proteins based on a new combination
of local interaction density and protein complexes. PLoS One. 2015;10(6):
e0131418.

8. Hu P, Mei T. Ranking influential nodes in complex networks with structural
holes. Phys A: Stat Mech Appl. 2018;490:624–31.

9. Wang Z, Zhao Y, Xia J, Du C. Fast ranking influential nodes in complex
networks using a k-shell iteration factor. Phys A: Stat Mech Appl. 2016;461:
171–81.

10. Lei X, Yang X, Fujita H. Random walk based method to identify essential
proteins by integrating network topology and biological characteristics.
Knowl-Based Syst. 1671;2019:53–67.

11. Zhang W, Xu J, Li Y, Zou X. Detecting Essential Proteins Based on Network
Topology, Gene Expression Data, and Gene Ontology Information. IEEE/ACM
Trans Comput Biol Bioinform. 2018;15(1):109–16.

12. Lei X, Wang S, Wu FX. Identification of essential proteins based on
improved HITS algorithm. IEEE/ACM Trans Comput Biol Bioinform Genes.
2019;10(2):177.

13. Mistry D, Wise R, Dickerson J. DiffSLC : a graph centrality method to detect
essential proteins of a protein-protein interaction network. PloS One. 2017.

14. Zaki N, Berengueres J, Efimov D. Detection of protein complexes using a
protein ranking algorithm. Proteins: Structure, Function, and Bioinformatics.
2012;80(10):2459–68.



Dai et al. BMC Medical Informatics and Decision Making          (2020) 20:110 Page 10 of 10
15. Jensen LJ, Gupta R, Staerfeldt HH, Brunak S. Prediction of human protein
function according to gene ontology categories. Bioinformatics. 2003;19(5):
635–42.

16. Wan S, Mak MW, Kung SY g-LEN. Interpretable prediction of subcellular
multi-localization of gram-positive and gram-negative bacterial proteins.
Chemom Intell Lab Syst. 2017;162:1–9.

17. Schlicker A, Domingues FS, Rahnenführer J, Lengauer T. A new measure for
functional similarity of gene products based on Gene Ontology. BMC
Bioinform. 2006;7(1):302.

18. Masic I, Begic E. Scientometric dilemma: is H-index adequate for scientific
validity of Academic’s work? ACTA INFORM MED. 2016;24(4):228–32.

19. Xiao Y, Lv Y, Zhao H, Gong Y. Predicting the Functions of Long Noncoding
RNAs Using RNA-Seq Based on Bayesian Network. BioMed Res Int. 2015;3:1–14.

20. Lo YS, Chen YC, Yang JM. 3D-interologs: an evolution database of physical
protein-protein interactions across multiple genomes. 2010;11(Suppl 3):S7.

21. Fleur J, Claire J, Andreas H. Integrated web visualizations for protein-protein
interaction databases. BMC Bioinformatics. 2015;195.

22. Luo J, Li G, Dan S, Cheng L. Integrating Functional and Topological
Properties to Identify Biological Network Motif in Protein Interaction
Networks. J Comput Theor Nanosci. 2014;744–50.

23. Zhang R, Lin Y. DEG 5.0, a database of essential genes in both prokaryotes
and eukaryotes[J]. Nucleic Acids Res. 2009;7:D455–D458.

24. Zhang X, Xiao W, Hu X. Predicting essential proteins by integrating
orthology, gene expressions, and PPI networks. Plos One. 2018;13(4):
e0195410.

25. Bae J, Kim S. Identifying and ranking influential spreaders in complex
networks by neighborhood coreness. Phys A Stat Mech Appl. 2014;395:549–59.

26. Lü L, Zhou T, Zhang QM, Stanley HE. The H-index of a network node and its
relation to degree and coreness. Nat Commun. 2016;7:10168.

27. Wang J, Li C, Xia C. Improved centrality indicators to characterize the nodal
spreading capability in complex networks. Appl Math Comput. 2018;334:
388–400.

28. Zhong J, Wang J, Peng W, Zhang Z, Pan Y. Prediction of essential proteins
based on gene expression programming. BMC Genomics. 2013;14(4):S7.

29. Wan S, Mak M, Kung SY. Ensemble linear neighborhood propagation for
predicting subchloroplast localization of multi-location proteins. J Proteome
Res. 2016;15(12):4755–62.

30. Chou KC, Wu ZC, Xiao X. iLoc-Euk: a multi-label classifier for predicting the
subcellular localization of singleplex and multiplex eukaryotic proteins. PloS
One. 2011;6(3):e18258.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Results
	Experimental data
	Experimental results
	Parameter selection experiments
	Experimental results of dynamic protein network models based on attenuation coefficients for different algorithms


	Discussion
	Conclusions
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

