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Abstract

Background: In classification and diagnostic testing, the receiver-operator characteristic (ROC) plot and the area
under the ROC curve (AUC) describe how an adjustable threshold causes changes in two types of error: false
positives and false negatives. Only part of the ROC curve and AUC are informative however when they are used
with imbalanced data. Hence, alternatives to the AUC have been proposed, such as the partial AUC and the area
under the precision-recall curve. However, these alternatives cannot be as fully interpreted as the AUC, in part
because they ignore some information about actual negatives.

Methods: We derive and propose a new concordant partial AUC and a new partial c statistic for ROC data—as
foundational measures and methods to help understand and explain parts of the ROC plot and AUC. Our partial
measures are continuous and discrete versions of the same measure, are derived from the AUC and c statistic
respectively, are validated as equal to each other, and validated as equal in summation to whole measures where
expected. Our partial measures are tested for validity on a classic ROC example from Fawcett, a variation thereof,
and two real-life benchmark data sets in breast cancer: the Wisconsin and Ljubljana data sets. Interpretation of an
example is then provided.

Results: Results show the expected equalities between our new partial measures and the existing whole measures.
The example interpretation illustrates the need for our newly derived partial measures.

Conclusions: The concordant partial area under the ROC curve was proposed and unlike previous partial measure
alternatives, it maintains the characteristics of the AUC. The first partial c statistic for ROC plots was also proposed as
an unbiased interpretation for part of an ROC curve. The expected equalities among and between our newly
derived partial measures and their existing full measure counterparts are confirmed. These measures may be used
with any data set but this paper focuses on imbalanced data with low prevalence.

Future work: Future work with our proposed measures may: demonstrate their value for imbalanced data with
high prevalence, compare them to other measures not based on areas; and combine them with other ROC
measures and techniques.
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Background
The ability of a classifier or diagnostic test to discrim-
inate between actual positives and negatives, is often
assessed by its curve in a receiver-operator character-
istic (ROC) plot and the area under the ROC curve
(AUC). However, when data are imbalanced with few
positives relative to negatives (i.e. a low prevalence or
incidence of a disease in the total population), we need
high specificity to avoid a large number of false posi-
tives and ideally high sensitivity as well. For example,
the prevalence of breast cancer in Western Europe is
90 per 100,000 women per year (< 0.01%) [1]; hence, a
screening test with 100% sensitivity and 99.9% specifi-
city will have 90 false positives for every 10 true posi-
tives. The AUC does not focus on the need for high
specificity in the leftmost part of an ROC curve.
Two strategies are used to address limitations of the

ROC and AUC in a low prevalence setting—the partial
area under the ROC curve (pAUC), or using a different
plot, the precision-recall curve and its associated area
under the PRC (AUPRC), also called average precision
(AP). Neither strategy fully represents the information in
the part of the curve that is of interest.
This study outlines limitations of the pAUC and

AUPRC, reviews related work and then derives new
measures to address those limitations. It derives the par-
tial c statistic for ROC (cΔ) and other measures with the
end goal of deriving the concordant partial AUC
(pAUCc). We then perform experiments to validate the
correctness of the measures and provide interpretation
for some results.
There are a rich set of relationships between our pro-

posed partial measures and the existing whole measures
and a fair bit of background, so we provide an overview
of our measures (Figs. 1 and 2) and their definitions
(Table 1) as context for the related work and review sec-
tions that follow. Our measures resolve issues and offer
Fig. 1 The partial AUC versus our proposed concordant partial AUC. a The
average TPR for part of the ROC curve (thick line) multiplied by the horizon
horizontal perspectives and equals the partial c statistic
greater understanding and explanation for partial areas
in ROC plots.
A Receiver Operator Characteristic (ROC) plot [3–5]

depicts how a classifier or diagnostic test performs or
errs at different thresholds. It may depict a curve which
is fit to data (Fig 1), or a plot which exactly represents
the data called an empirical ROC plot (Fig 4b) or a con-
vex polygon, called an ROC convex hull [6] which repre-
sents the performance possible by interpolating between
one classifier at two thresholds (hence not the original
classifier itself) or between two classifiers. We refer to all
three as “ROC curves”.
The area under the ROC curve (AUC) represents the

ability of the classifier (or test) to produce a higher score
for an actual positive than an actual negative— i.e., the
(underlying) ability to discriminate positives from nega-
tives according to the score (properly called a classifica-
tion score). This interpretation of the AUC is known as
the c statistic or concordance [7–10], and the two are
equal AUC = c for binary outcomes—excluding survival
or “censored” data, with outcomes that include time-to-
event.
Two other interpretations [11] of the AUC are that it

represents the average true positive rate (TPR) a.k.a.
average sensitivity, over all thresholds or all specificity
values; and it represents the average true negative rate
(TNR) a.k.a. average specificity, over all thresholds or all
sensitivity values.

Review of the partial area under the ROC curve (pAUC)
For an ROC curve y = r(x), the partial area under the
ROC curve (pAUC) [12, 13].

pAUC≜
Z x2

x1

r xð Þdx ð1Þ

allows us to focus on the area of interest on the left side
partial AUC (pAUC) provides a vertical perspective that represents the
tal width. b The concordant partial AUC (pAUCc) combines vertical and



Fig. 2 An overview of our proposed measures and concepts (red). For a set of partial ROC curves which span the whole curve, without overlap,
the sum ∑ of partial measures/concepts equals the whole measure; and the continuous ROC/AUC concepts equal their discrete c statistic and
concordance matrix counterparts

Carrington et al. BMC Medical Informatics and Decision Making            (2020) 20:4 Page 3 of 12
of the ROC plot (Fig 1a) and avoid the region of high false
positives to the right, which may not be relevant [14, 15],
or which may not be clinically acceptable [2]. That is, the
pAUC addresses some criticisms of the AUC.
Table 1 An overview of definitions for proposed measures and
concepts in sections that follow with the same name

1. The horizontal partial area under the curve (a section that follows)
This partial area denoted pAUCx, was suggested by Walter [2] and is
defined for part or an ROC curve r(·) defined by TPR = [y1, y2] with
inverse function r−1(·):
pAUCx∶ ¼ R y2

y1
1−r−1ðyÞdy

2. The concordant partial area under the curve (a section that follows)
This partial area denoted pAUCc (Fig 1b) is defined for part of an ROC
curve r(·) defined by FPR = [× 1, × 2] and TPR = [y1, y2], with inverse
function r−1(·):

pAUCc≜ 1
2 pAUC þ 1

2 pAUCx

¼ 1
2

R x2
x1
rðxÞdx þ 1

2

R y2
y1
1−r−1ðyÞdy

3. The concordance matrix for ROC data (a section that follows)
A matrix that depicts the exact relationship between the unique scores
of positives and negatives in data and their corresponding points along
a matrix border that exactly matches the (empirical) ROC curve. It
geometrically and procedurally equates area measures AUC and pAUCc
to the statistics c and cΔ.

4. The partial c statistic for ROC data (a section that follows)
This statistic denoted cΔ is defined for ROC data with P actual positives
{p1…P} and N actual negatives {n1…N} and a partial curve specified by a
subset of J positives and K negatives, i.e., fp0

1… Jg and fn0
1…Kg; with

Heaviside function H(·) and classification scores g(·). We present simple
cΔ (the non-interpolated version) here:

simple cΔ≜ 1
2JN

XJ

j¼1

XN
k¼1

Hðgðp0
jÞ−gðnkÞÞ

þ 1
2PK

PP
j¼1

PK
k¼1Hðgðp jÞ−gðn0

kÞÞ
McClish [12] uses the partial AUC on published data
[16] for paired ROC curves in computed tomography
(CT) examinations with and without clinical history by
one individual. McClish [12] showed that when two
curves are compared in the false positive range of 0 to
10% rather than a specific threshold of 10%, the results
were significantly different in the latter case but not the
former. However, the author [12] does not provide a
clinical interpretation of the results.
While the pAUC may improve upon the AUC, it

does not fully represent the partial curve that is of
interest. Walter [2] expresses concern that the pAUC
is not symmetric in its consideration of positives and
negatives in contrast to the AUC. It ignores actual
negatives (whether false positives or true negatives),
except as bounds on the region of interest. Further-
more, pAUC lacks a defined relationship to the c
statistic (concordance), which gives concrete mean-
ing to AUC values, and which is also symmetric in
its perspective.
The pAUC is also insufficient for high prevalence data

[2, 17, 18] where the top (often top-right) portion of an
ROC curve is of interest (e.g., Fig. 3a). McClish [17] sug-
gests that one could use the pAUC while “reversing the
role of disease and non-disease”. Walter [2], suggests
that the area to the right of a curve could be observed
(integrated) like the original pAUC but would lack
symmetry.
Finally, McClish provides a standardized version of

pAUC [17].



Fig. 3 To integrate horizontally perform two simple transformations (swap the axes, flip the new vertical) and then integrate normally (vertically).
The two transformations have the same effect as a 90 degree clockwise rotation
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Review of the area under the precision recall curve
(AUPRC)
The precision recall curve (PRC) and corresponding area
under the PRC (AUPRC) purposefully focus on positives,
with the y axis indicating how often a positive classifier/
test result is actually positive (precision), and the x axis
indicating how many of the actual positives the classi-
fier/test will detect (recall). AUPRC is also called average
precision (AP).
In low prevalence data, negatives are predominant in

numbers and the AUPRC allows positives to be suffi-
ciently weighted or considered despite the greater pro-
portion of negatives. This may be useful in information
retrieval, e.g., to find similar cases of a rare disease [19],
however for many medical problems such as screening
or diagnostic testing, negatives and negative predictive
value (NPV) must be sufficiently considered at the same
time since both types of errors have costs. To that end,
the AUPRC may be computed a second way, separately,
to focus on the negatives while largely ignoring positives.
However the shortcoming of the AUPRC is that it is not
comparable to the more popular ROC plot and AUC, it
has no connection to the c statistic and it is reported as
a two-part measure, for each class separately.

Related work
Related work on several alternatives to the partial AUC
are found in the literature [18, 20–22] however none of
them, including the partial AUC, have the same three
mathematical relationships (formulas) that the AUC has.
The AUC is equal to concordance, average TPR and
average TNR—where each aspect facilitates understand-
ing and explanation. To the best of our knowledge, we
derive the first partial measure which maintains all three
relationships of the AUC—the “concordant partial area
under the curve” (see the section by that name).
Jiang et al. [18] define a partial area index (PAI) for a

range of TPR above a threshold. They compare a computer
aided diagnostic (CAD) versus radiologists in the identifica-
tion of benign and malignant cancers using mammograms.
The authors select a sensitivity threshold of TPR > = 0.9,
based on the assumption that identifying malignant cancer
is more important than causing unnecessary biopsies for
benign conditions. The authors find that the computer’s
ROC curve is significantly higher (p = 0.03) than the radiol-
ogists’ ROC curve with their partial area index, whereas
with the AUC, the difference was not significant (p = 0.21).
Wu et al. [22] propose a learned partial area index that

learns the clinically relevant range from the subjective
ratings of physicians performing a task. For the task of
identifying and segmenting tumors in radiological im-
ages, the authors perform an experiment with 29 images
comparing an automated probabilistic segmentation al-
gorithm with radiologists ratings. The results highlight
that in radiologic diagnosis of cancer, FPR is more im-
portant than TPR. The authors conclude that ranges of
FPR and TPR can be defined based on clinical indication
and use.
Related work on a partial concordance (c) statistic in

the literature [23–26] do not correspond to partial
areas in an ROC. To the best of our knowledge, we de-
rive the first partial c statistic for partial curves in ROC
data. Using a similar term, may cause some initial con-
fusion among readers, but our context is sufficiently
different and it is appropriate to reuse the term partial
c statistic as it corresponds to the term partial AUC in
our context.
We develop the idea for a concordance matrix and

find that Hilden [27] depicted the same idea. Placements
or placement values [28, 29] are a related concept, some-
times in table/matrix form [30] but they are not ordered
in the same way and they lack a key insight: geometric
equivalence between empirical ROC curves and con-
cordance as we later show (Fig. 4). Placements have been
used to explain the (vertical) partial AUC [28], but not a
combined horizontal and vertical perspective for partial



Fig. 4 The concordance matrix and ROC plot. a The proposed concordance matrix visualizes how the c statistic is computed—as the proportion
of correctly ranked pairs (green) out of all pairs. b The empirical ROC plot (above) equals the border in the concordance matrix (left), visualizing
the known equivalence between the c statistic and the AUC
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measures, as in our proposed partial c statistic and pro-
posed concordant partial AUC.
The only work with some similarity to the combined

perspective of our proposed measures comes from jack-
knife pseudovalues [30, 31]—but its numeric perspective
is not as readily translated into the ROC interpretations
we seek.
Problem statement and solution
If the AUC, pAUC and AUPRC are not fully adequate to
summarize, understand and explain the performance of
a classifier or diagnostic test with low prevalence data,
then what do we require to rectify the situation?
We require a partial area measure that can focus on a

region of the ROC that is of interest, and which has
three relationships like the AUC—a relation to the c
statistic, to average TPR and to average TNR.1

We solve the problem statement by proposing the
concordant partial AUC, pAUCc (Fig. 1b)(Table 1), as
half the sum of the partial (vertical) area under the ROC
curve pAUC [12, 13] and the horizontal partial area
under the ROC curve. This sum is derived from how
concordance and partial concordance are computed. All
of these measures are defined in subsequent sections ex-
cept for pAUC [12, 13] previously discussed.
1Since TNR = 1 − FPR, measures in terms of average TNR are easily
translated to measures in average FPR and vice-versa.
The horizontal partial area under the curve
To capture the horizontal perspective on a partial curve
we define the horizontal partial AUC (pAUCx) as Walter
[2] suggests, the area to the right of the curve (Fig. 3a).
We refer to this as “under the curve” henceforth for
consistency with the term AUC. We do not reuse the
partial area index [18] because we must be able to select
both ends of the range.
Horizontal integration uses the right border x = 1 as

the baseline (Fig. 3a) and the distance to the ROC curve
left of that to measure the true negative rate (TNR).
Normally integration is defined with the x axis (y = 0) as
the baseline, but if we swap the x and y axes we get x = 0
as a baseline (Fig. 3b). If we then transform x (FPR) to
1 − x (TNR), i.e., reverse it, or flip it about its center
(Fig. 3c), we get TNR as needed and the x = 0 baseline
becomes x = 1 as needed. The integration bounds remain
the same (Fig. 3). We therefore define pAUCx as follows:

pAUCx≜
Z y2

y1

1−r−1 yð Þdy ð2Þ

Concordance: the c statistic
The c statistic [7–9, 32] is a measure of discrimination
[9, 10] that is variously referred to as the C statistic [10],
concordance [8], the C-index [32, 33] and Kendall’s coef-
ficient of concordance [25]. The concept and its equiva-
lence to the AUC first arose in classification in the two-
alternative force choice (2AFC) experiment [34]. It was
later defined for regression and survival analysis by
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Harrell Jr. et al. [32]. It should not be confused with
Hosmer and Lemeshow’s [35] Cˆ statistic which is a
measure of calibration [9].
For every possible pair of one actual positive pj and

one actual negative nk in a test or validation set, the c
statistic for a classifier or diagnostic test is the propor-
tion of times when the classification score g (·) for the
actual positive is greater than the score for the actual
negative, i.e., is ranked correctly [36]. The formula,

c≜
1
PN

XP
j¼1

XN
k¼1

H g pj

� �
−g nkð Þ

� �
ð3Þ

measures the c statistic for data with P and N actual pos-
itives and negatives, respectively, and uses the Heaviside
function H (·) to count correct ranking as 1, ties as 0.5
and incorrect ranking as 0.
It is important to note that the c statistic equals the

area under the ROC curve (AUC) for ROC data with a
binary outcome–but not censored data [36, 37] (e.g.,
survival or time-to-failure) data. In the next section, we
visualize this statistic.

The concordance matrix for ROC
We formalize the concept of a concordance matrix
which depicts the c statistic for ROC data as a rectangu-
lar matrix of actual positives on the y axis versus actual
negatives on the x axis (Fig. 4a) ordered such that scores
monotonically increase toward the origin.
Hilden [27] first illustrated this concept as a probabil-

istic interpretation of the ROC area, using scores with
Fig. 5 Local concordance for one versus all parts of the border. a Local co
into three disjoint parts. b Local concordance for all three parts of the con
the opposite meaning and order from common con-
vention as in [4].
With the definition of concordance in mind from the

previous section, the concor- dance matrix shows the
correctly ranked pairs in concordance toward the bot-
tom- right, incorrectly ranked pairs toward the top-left
and a border in between which exactly corresponds to
the empirical ROC curve (Fig. 4).
This illustrates the well-known equivalence between

the c statistic and AUC [7–9, 11, 38] even though they
are computed differently.

The local c statistic (towards the partial c statistic for ROC
data)
For a partial curve we first hypothesize and define a local
c statistic (cL), which like the whole c statistic, represents
the percentage of correctly ranked pairs of one actual
positive with one actual negative, but is limited to the
ROC data points which fall in the range of the partial
curve (Fig. 5a).
This may seem to have the same meaning as the whole

c statistic at first glance, but there is no way to relate a
sum, product or weighted average of cL values to the c
statistic because it lacks information from cells in the
matrix over multiple parts which comprise the whole
ROC curve (Fig. 5b). The cL is an incomplete view of a
partial area related to the curve and its contribution to
the AUC. Also, since the concordance matrix demon-
strates an exact correspondence between c and AUC, we
expect that a proper partial c statistic in the concordance
matrix will correspond to the concordant partial AUC
we proposed in the introduction.
ncordance for the middle part of the concordance matrix border split
cordance matrix border does not use all of the cells in the matrix
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The partial c statistic for ROC data
There are two obvious possible ways to define a partial c
statistic, and in the previous section we found that the first
way, the local c statistic, is insufficient. Hence, we define
the partial c statistic (cΔ) in the second obvious way, to in-
clude off-diagonal interactions—and we confirm that this
provides complete and accurate information. We define cΔ
based on a set of columns and a set of rows (Fig. 6a).
In computations for both cΔ and pAUCc, there is a re-

gion of overlap that is counted twice, and division by
two in the equation for cΔ accounts for that.
We define simplified cΔ for a partial ROC curve with J

out of P actual positives fp0
1… Jg and a subset of K out of

N actual negatives fn0
1…Kg, cΔ as below. H(·) is the Heav-

iside function and g (·) are classification scores.

simple cΔ≜
1

2JN

XJ

j¼1

XN
k¼1

H g p
0
j

� �
−g nkð Þ

� �

þ 1
2PK

XP
j¼1

XK
k¼1

H g pj

� �
−g n

0
k

� �� �
ð4Þ

The formula above (4) has two parts which are
summed: the proportion of correctly ranked cells within
a vertical and horizontal stripe (Fig. 6a). The measure
may be normalized for explanation:

~cΔ≜
2PN � cΔ

J � N þ K � P ð5Þ

And the partial c statistic over all q disjoint partial
curves that comprise the whole curve, sums to the c
statistic:
Fig. 6 Partial concordance versus concordant partial AUC. a The partial c st
concordant partial AUC in green corresponds to the green (positive) cells h
c ¼
Xq
i¼1

cΔð Þi ð6Þ

We first use the partial c statistic on a classic example
ROC from Fawcett [4] with an equal number of pos-
itives and negatives. However, it works equally well
if we use ROC data with one positive for every three
negatives (as an arbitrary example) and if one (or
some) of the partial curves has only a horizontal or
vertical component (Fig. 7).
The general case which the partial c statistic must ac-

count for, requires interpolation (Fig. 8). That is, when
the partial curve has endpoints that do not match the
scores of data points, we must interpolate to use a por-
tion of a data point in calculations of the proportion for
concordance. This is done by altering (4) to use partial
weights for endpoints in positives in weight vector wþ

¼ ½wq�; ∀q and negatives in weight vector w− ¼ ½wr�; ∀r:

cΔ≜
1

2N
P J

q¼1w
þ
q

XJ

j¼1

XN
k¼1

wþ
j �H g p

0
j

� �
−g nkð Þ

� �

þ 1

2P
PK

r¼1w
−
r

XP

j¼1

XK

k
w−
k �H g pj

� �
−g n

0
k

� �� � ð7Þ

The concordant partial area under the curve
We define the concordant partial AUC, pAUCc (Fig. 6b)
as half the sum of the (vertical) partial area under the
ROC curve pAUC and the horizontal partial area under
the ROC curve pAUCx defined by FPR = [× 1, × 2] and
TPR = [y1, y2].
atistic for part of the concordance matrix border (or ROC curve). b The
ighlighted in the matrix at left



Fig. 7 Imbalanced data and partial ROC curves without a horizontal area component. a Our measures work with imbalanced data—e.g, five positives
to fifteen negatives. b Our measures also work with partial ROC curves that have no horizontal area component (or no vertical area component)
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pAUCc≜
1
2
pAUC þ 1

2
pAUCx ð8Þ

¼ 1
2

Z x2

x1

r xð Þdxþ 1
2

Z y2

y1

1−r−1 yð Þdy ð9Þ

This sum is derived from how concordance (3) and
partial concordance (4)(7) are computed. That is, this
formula is not arbitrarily chosen to be a sum or aver-
age—it follows how the c statistic and partial c statistic
Fig. 8 Interpolation and ties in the concordance matrix. At left, ties in scor
a height of 0.85, hence interpolation is required to compute the partial c st
are computed as a sum with equal weighting. No other
weighting will maintain equivalence with the partial c
statistic.
Division by two is necessary in the formula to ensure

that the partial AUC sums to AUC instead of 2·AUC.
This reflects the fact that every point under the curve is
integrated (or included) exactly twice. Notably, AUC
could be computed as half the horizontal integral and
vertical integral, but the AUC is a special case where
those two integrals and areas are necessarily equal, and
e exist along both axes. At right, the partial curve’s right boundary has
atistic



Table 2 Area measures and c statistics are shown for 3 parts of
an ROC curve i = {1 . . . 3} as well as the whole curve, for a
classifier, a support vector machine, applied to Ljubljana breast
cancer remission data. Best values per column are shown in
bold font

i FPR TPR pAUC pAUCc pAUCx cΔ

1 [0.00, 0.33] [0.00, 0.84] 21.3% 49.5% 77.7% 49.5%

2 [0.33, 0.66] [0.84, 0.95] 29.5% 17.4% 5.3% 17.4%

3 [0.66, 1.00] [0.95, 1.00] 34.0% 17.9% 1.8% 17.9%

sum – – 84.8% 84.8% 84.8% 84.8%
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where average TPR and average TNR are necessarily
equal [11]. Due to this redundancy, the AUC as a special
case is computed using only the vertical integral, but our
concordant partial AUC, is a generalization of the AUC
to any case, partial or whole and reveals its implicit na-
ture which contains both perspectives.
Since our concordant partial AUC is derived from the

c statistic, it fulfills all expectations for summation and
equality.
If we take the sum of pAUCc measures for any set of

partial curves which span the whole ROC curve and
which are not overlapping, they sum to the AUC and c
statistic. That is, if we apply a subscript, i, to a complete
set of i = 1. .. q non-overlapping partial curves, the con-
cordant partial AUC for each partial curve, denoted
(pAUCc)i, has a relationship to AUC and c as follows:

AUC ¼ c ¼
Xq
i¼1

pAUCcð Þi ð10Þ

For the ith partial curve, (pAUCc)i is equal to (cΔ)i:

pAUCcð Þi ¼ cΔð Þi ð11Þ
Both measures in (11) can be normalized by dividing

by the areas and proportion of cells, respectively. Also,
in (9) pAUCc reduces to equality with AUC when the
partial curve is defined as the whole curve.
The concordant partial AUC has all three key interpre-

tations of the AUC. First, it includes the pAUC (average
sensitivity or TPR) in a way that makes its effect clear
and separable from other effects (8). Second, it includes
pAUCx (average specificity or TNR) in a way that makes
its effect clear and separable from other effects (8).
Third, it is equal to the partial c statistic cΔ (11) which

is derived from concordance and the concordance
matrix.
One complexity with the dual perspective of the

concordant partial AUC is that a range along one
axis, either the x axis (FPR) or the y axis (TPR),
does not uniquely specify a partial curve for a classi-
fier. For example, for the vertical part of a staircase
ROC plot (Fig. 4b), at least two points match a value
in FPR. Also, two different classifiers that share a
common range specified in FPR will generally have
different ranges in TPR.
Hence, if a user wishes to only specify values in FPR

(similar to the pAUC) for convenience, then one must
impose consistent choices or rules to resolve ambiguity
among multiple matching points, such as the following:

1 For the first and leftmost partial curve, if there is
ambiguity about:
whole AUC = c = 84.8%AUPRC+,− = 72.2, 53.7%

� The left endpoint, choose the most southwest

ROC point.
� The right endpoint, choose the most northeast
ROC point.
2 For all other partial curves, if there is ambiguity
about:

� The left endpoint, choose the most northeast

ROC point.
� The right endpoint, choose the most northeast

ROC point.
These rules make measurements consistent and can
prevent overlap between partial curves, if desired.

Experimental method, data and results
Our experimental method has two steps: first, we valid-
ate expected equalities among measures on four data
sets; then, we validate the behaviour of measures as
inequal- ities. We explain this in detail below.
In the first step we use four data sets for validation:

1 Fawcett’s classic example ROC data [4]
2 Fawcett’s example ROC data [4] modified for class

imbalance
3 The Ljubljana breast cancer data set [39], and
4 The Wisconsin breast cancer data set with only 2

features [40]

The Ljubljana breast cancer data seeks to detect recur-
rence versus non-recurrence at 1 year after treatment.
We show the results with the Ljubljana breast cancer

data set in Table 2. In all three partial curves i = {1…3},
the concordant partial AUC, pAUCc, and the partial c
statistic, cΔ, are equal to each other as expected, and the
sums of each partial measure equal the whole measure,
as expected. These equalities were validated in all four
data sets.
In the second step, we examine the behaviour of par-

tial and whole measures and their meaning.
Our interpretation begins by considering the area

under the curve (AUC) as a summary measure of a clas-
sifier’s overall performance [41, 42]. The higher the
AUC, the closer the classifier is to being perfect in



Table 4 We report the performance of four classifiers in one
experiment with best values per row shown in bold font

Measures LDA LogR SVM NN NN-SVM

Whole Area

AUC 82.9% 77.1% 84.8% 86.0% 1.2%

AUPRC+ 60.9% 53.5% 72.2% 71.0% −1.2%

AUPRC− 54.5% 56.7% 53.7% 53.3% −0.4%

Partial Area i = 1

sPA 75.0% 69.2% 78.8% 79.2% 0.4%

pAUC 19.2% 16.0% 21.3% 21.6% 0.3%

pAUCc 47.5% 37.2% 49.5% 48.0% −1.5%

Partial Area i = 2

sPA 90.0% 82.2% 89.4% 92.2% 2.8%

pAUC 29.7% 27.1% 29.5% 30.4% 0.9%

pAUCc 18.5% 22.9% 17.4% 21.0% 3.6%

Partial Area i = 3

sPA 100% 100% 99.7% 100% 0.3%

pAUC 34.0% 34.0% 34.0% 34.0% 0%

pAUCc 17.0% 17.0% 17.9% 17.0% −0.9%

sPA: sum of NN-SVM 3.5%

pAUC: sum of NN-SVM 1.2%

pAUCc: sum of NN-SVM 1.2%
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classifying actual positives and negatives at one threshold
at or toward the top left corner. This should also be true
of a normalized partial measure if it is meaningful—the
higher the number, the better the classifier is overall
with actual positives and negatives. However, this is not

true for the normalized partial AUC ( gpAUC) when com-
paring different partial curves for the same classifier
(Table 3) because it monotonically increases with FPR.
Hence McClish [17] proposes the standardized Partial

Area (sPA). sPA subtracts any area under the major diag-
onal (considered non-informative) and then standardizes
the result to the range [0.5, 1]. This removes monotonic
behaviour, but the subtraction which is related to Kappa
and AUK, diverges from the meaning of AUC and con-
cordance. When sPA is computed on portions of an im-
proper ROC curve [11, 43, 44] it can yield a negative
value, which does not occur with our concordant partial
AUC (pAUCc).
pAUCc is a balanced measure but the leftmost partial

area is the region of interest for classifying fewer posi-
tives than negatives. In some cases (Table 4), pAUCc

ranks classifiers like average precision (AP or AUPRC)
in the leftmost area and differently from pAUC. AP (or
AUPRC) is thought to be a good measure for imbal-
anced data, preferred over AUC [45, 46], and it is more
popular measure than pAUC.
Next we compare the performance of two classifiers.

Table 4 shows that differences between neural network
(NN) and support vector machine (SVM) classifiers
(NN-SVM) in partial areas sum to the difference be-
tween the AUC. Next, consider the first or leftmost par-
tial curve/area—this is the region of interest when there
are few positives relative to negatives. Fig. 9 compares
the NN and SVM classifiers. We hope that the ROC
curve goes up quickly and/or stays to the left hand side,
but in Fig. 9 it is difficult to tell which curve is better.
The SVM curve goes up faster initially while staying left,
and it ends at a higher value of TPR, resulting in more
of the blue area, Also, the optimal ROC point (red circle)
is better (closer to the top right) for SVM than NN.
Consistent with these facts pAUCc is higher for SVM.
However, the NN curve goes up more quickly in the
middle (FPR≈1.5) and has more green area. Consistent
Table 3 Normalized area measures gpAUC, gpAUCc and sPA are
shown for 3 parts of an ROC curve using a support vector
machine classifier on Ljubljana breast cancer remission data.
Best values per column are shown in bold font

i FPR TPR gpAUC gpAUCc
sPA

1 [0.00, 0.33] [0.00, 0.53] 64.6% 84.5% 78.8%

2 [0.33, 0.66] [0.53, 0.88] 89.3% 79.8% 89.4%

3 [0.66, 1.00] [0.88, 1.00] 99.9% 90.1% 99.7%
with the vertical perspective (the green area only, not
blue) pAUC is higher for NN.
Discussion
The AUC and c statistic are important standard mea-
sures and our proposed con- cordant partial AUC and
partial c statistic are the partial equivalents thereto. Al-
ternative partial measures such as pAUC, sPA and others
discussed in related work (e.g., PAI) are not as complete
nor comprehensive in their relationships to the AUC,
TPR (Sensitivity), TNR (Specificity) and the c statistic.
Class imbalance in data traditionally prompted the use

of the alternatives to the AUC including partial measures
or AUPRC, but pAUC, sPA and AUPRC are biased to-
ward positives and are each one half of a pair. AUPRC is
paired with AUPRC− and pAUC (and sPA by extension)
is paired with pAUCx. The goal is not to identify the best
measure for all tasks, but to understand the meaning,
limitations and proper application of each measure.
Conclusions
We proposed a concordant partial area under the
curve pAUCc for ROC plots which is a foundational
partial measure, and unlike alternatives, has all three
of the interpretations offered by the AUC: a relation-
ship to the average true positive rate, the average true



Fig. 9 A comparison of the leftmost partial curve and area between two classifiers applied to Ljubljana breast cancer remission data. a Neural
network (NN) ROC plot. b Support vector machine (SVM) ROC plot
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negative rate (or false positive rate) and the c statistic
(or concordance).
We also proposed a partial c statistic and concordance

matrix which shed light on the meaning of partial areas.
Finally, we showed by experiment that the behaviour of
our proposed measures correctly match theory and are
meaningfully interpreted.
An important contribution of this paper is to help the

reader understand and explain the justification, assump-
tions, benefits and risks of area measures and c statistics
in ROC plots. We described the risks of measures fo-
cused primarily on positives, and we proposed partial
measures with desirable interpretations like their whole
counterparts.
Future work
Future work may include: demonstrating the value of
the concordant partial area for balanced data and high
prevalence data; comparison of our proposed measures
with other measures not based on areas; and combining
our proposed measures with other ROC measures and
techniques.
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