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Abstract

Background: The ubiquity of electronic health records (EHR) offers an opportunity to observe trajectories of
laboratory results and vital signs over long periods of time. This study assessed the value of risk factor trajectories
available in the electronic health record to predict incident type 2 diabetes.

Study design and methods: Analysis was based on a large 13-year retrospective cohort of 71,545 adult, non-
diabetic patients with baseline in 2005 and median follow-up time of 8 years. The trajectories of fasting plasma
glucose, lipids, BMI and blood pressure were computed over three time frames (2000–2001, 2002–2003, 2004)
before baseline. A novel method, Cumulative Exposure (CE), was developed and evaluated using Cox proportional
hazards regression to assess risk of incident type 2 diabetes. We used the Framingham Diabetes Risk Scoring (FDRS)
Model as control.

Results: The new model outperformed the FDRS Model (.802 vs .660; p-values <2e-16). Cumulative exposure
measured over different periods showed that even short episodes of hyperglycemia increase the risk of developing
diabetes. Returning to normoglycemia moderates the risk, but does not fully eliminate it. The longer an individual
maintains glycemic control after a hyperglycemic episode, the lower the subsequent risk of diabetes.

Conclusion: Incorporating risk factor trajectories substantially increases the ability of clinical decision support risk
models to predict onset of type 2 diabetes and provides information about how risk changes over time.
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Background
The early identification of individual risk for developing
type 2 diabetes is essential for effective targeting of prevent-
ive measures. Early intervention through lifestyle change
and/or metformin therapy have shown robust results in
preventing or postponing the onset of diabetes [1, 2]. More
precise identification of individual risk allows limited
resources to be balanced against individual needs.
Diabetes risk scores, also known as diabetes indices or

risk equations, are currently used to estimate individual
risk for developing diabetes [3–9]. Besides estimating
individual risk, these risk scores can also deepen our
understanding of how diabetes develops, and inform us of
interactions between a specific risk factor and subsequent

development of complications. Many risk scores exist with
the sole purpose of risk estimation [6, 7] and numerous
diabetes models have been developed for the purpose of
biomarker discovery, [10, 11] but very few, if any, models
are able to simultaneously address both goals.
The Framingham diabetes score is a widely used model

for estimating diabetes risk [12]. In this score, weights are
assigned to seven risk factors, and the weights of the risk
factors that a patient presents with are summed. The
Framingham score is a paper-and-pencil score, [13] which
is easy to compute during a patient visit. The ease of
computation, however, trades accuracy for simplicity, and
hides the heterogeneity and the wide array of clinical risk
factors [14] associated with diabetes. In response, a stream
of increasingly accurate but increasingly complex risk
models followed (see [5, 6, 9, 15] for systematic reviews),
often relying on measurements related to nutrition, caloric
intake and lifestyle, that are not commonly recorded in
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routine clinical practice. These scores (or rather equa-
tions) are highly multivariate, and are no longer comput-
able with paper and pencil. The adoption of electronic
health records (EHR) systems can, in theory, alleviate the
problems stemming from running complex predictive
models; however, the reliance of these diabetes scores on
data elements not commonly available in the EHR system
renders these models impractical. More importantly, the
pursuit of increasingly marginal improvements in predict-
ive accuracy and the lack of temporal frames limit our
understanding of the disease and its progression.
We have previously shown that the order in which

patients develop comorbidities is predictive of the risk of
diabetes, even after adjusting for the severity of the comor-
bidities [16]. In another study, Hulsegge et al. compared
trajectories of laboratory results and vital signs between pa-
tients who developed diabetes and those who did not, over
21 years, taking a snapshot every 5 years. They showed that
laboratory results can be different as many as 15–20 years
before the diagnosis of diabetes, but they did not associate
trajectories with risk of diabetes [17]. None of the diabetes
risk scores take patient trajectory into account.
In this paper, we develop a novel methodology, Cumu-

lative Exposure, to associate trajectories of lab results
observed at a finer granularity with incidence of type 2
diabetes. The model embraces both goals of risk score
development: it offers state-of-the-art prediction accur-
acy using only data elements that we extracted from our
EHR system and it simultaneously allows us to generate
new hypothesis about the temporal aspect of diabetes.

Methods
Study setting
Mayo Clinic provides primary care to residents of Olm-
sted County, Minnesota, and it has an integrated
electronic health record system including diagnoses, medi-
cations, laboratory results and clinical notes. These
records are part of the Rochester Epidemiology Project
(REP), a comprehensive research data repository over
several decades, approved for medical research. The
resources available for the REP have been described else-
where [18]. The primary care clinics at Mayo Clinic pro-
vide routine health care similar to any primary care clinic
elsewhere. The study was approved by Mayo Clinic IRB.

Study design
We used a retrospective cohort of de-identified data
from 71,454 primary care patients at Mayo Clinic, Roch-
ester, MN with research consent. The cohort consists of
patients aged ≥18 at baseline on Jan. 1st, 2005, having at
least one visit before and after baseline. These patients
were followed until 2015 (median follow-up time is 8
years). We extracted diagnoses (ICD-9), laboratory re-
sults, vital signs, and medications longitudinally for three

non-overlapping time periods: 2000–2001, 2002–2003
and the year of 2004. Patients with pre-existing diagnosis
of diabetes at baseline (5891 patients), without fasting
plasma glucose (FPG) measurements during any of the
three time periods (32,852) and those with suspected
diabetes (indicated by insulin or oral antidiabetic medi-
cation use or a single FPG > 125mg/dl; 2427 patients) at
any time before baseline were excluded. The final cohort
consists of 30,284 patients. Table 1 contains a descrip-
tion of the cohort.

Predictors
The predictor variables include age, gender, ICD-9 diag-
noses categorized into four diabetes risk factors (hyper-
tension, dyslipidemia, impaired fasting glucose, obesity)
and medication use for the above categories rolled up to
National Drug File Reference Terminology NDF-RT
pharmaceutical subclasses at baseline, vital signs (BMI,
systolic and diastolic blood pressure; SBP and DBP,
respectively), and laboratory results (LDL, HDL, triglyc-
erides, and fasting plasma glucose; FPG). Glucose values
were used if they were fasting glucose value obtained
during routine clinical care in the ambulatory setting.
Glucose values done in the emergency department and
hospital setting were excluded. Point-of-care glucose
measurements, which usually use capillary whole-blood,
were also excluded. All the laboratory tests were done
by Mayo Clinic Laboratories which are fully certified by
the College of American Pathology and the Clinical La-
boratory Improvement Amendments. These data yield
three sets of predictor variables. The first set is baseline,
and it contains the latest measurements before baseline.
The second set is extreme measurements, which contains

Table 1 Description of the cohort. For lab results and vitals, the
median and interquartile range and for medication usage and
progression to diabetes the number and percentage of patients
are reported

Variable Median Interquartile Range

Age [years] 51 41, 62

Male [%] 38.4

LDL [mg/dL] 111 91, 32

TG [mg/dL] 114 81, 161

HDL [mg/dL] 52 43, 64

SBP [Hg mm] 122 110, 132

DBP [Hg mm] 73 66, 80

FPG [mg/dL] 92 87, 99

Follow-up [years] 9.5 8.0, 9.8

Number of patients Percent

Antihypertensive medication 6571 21.7

Antilipemic medication 5395 17.8

Progressed to DM 2972 9.8
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the most extreme (minimum for HDL, maximum for
the others) result over the 5-year period of 2000–
2004. The third set is the proposed cumulative expos-
ure. Through linear interpolation, a segment-wise lin-
ear curve of the lab results and vital signs were
obtained, and the area under the curve was computed
for three non-overlapping time periods: 2000–2001,
2002–2003, and 2004. If the curve could not be esti-
mated via linear interpolation for a time period (e.g.
there was no result before 2000 for the 2000–2001
time period), the cumulative exposure variable for
that time period was marked missing. To complete
the curve between the last measurement and Jan 1st,
2005, the last measurement was carried forward (the
measurement was assumed to stay constant). The cu-
mulative exposure can be interpreted as our best esti-
mate of the average of the daily lab values of the
patient for each time period.

Outcomes
The study endpoint was incident type 2 diabetes mellitus
as defined by a first ICD-9 diagnosis code or a fasting
glucose measurement in excess of 125mg/dl.

Statistical modeling
Cox proportional hazards regression models were con-
structed with type 2 diabetes mellitus (T2DM) as the
dependent variable using age, gender, and some of the
above sets of clinical predictor variables. Specifically,
four models were constructed:

1. Baseline using demographic information (age,
gender) and the baseline predictors (latest lab
results and vital signs before baseline);

2. Cumulative Exposure (CE) using demographics,
baseline and the cumulative exposure variables;

3. Extreme values (EV) using demographics, baseline
and the extreme measurements (most extreme lab
results and vitals over 2000–2004); and

4. Extreme plus Cumulative (EV + CE) which uses
all variable sets (demographics, most recent, extreme
measurement, and cumulative exposure).

Laboratory results and vital signs completely missing
throughout the years 2000–2005 were handled through
mean imputation with the addition of missingness indi-
cator variables. When results were missing for one of
the three time periods, carry-forward imputation was
used. Patients with missing fasting glucose measure-
ments were discarded. Backwards elimination was used
for variable selection.
The four models were compared to the Framingham

Diabetes Risk Scoring Model (FDRSM) [12].

Model evaluation
Model performance was evaluated using bootstrap es-
timation with 1000 replications and survival concord-
ance as the evaluation metric measured on the out-
of-bag samples. Survival concordance is the probabil-
ity that for any pair of patients in which one patient
remained free of progression to overt diabetes longer
than the other, the one who developed diabetes earl-
ier has higher predicted risk. Survival concordance is
the C-statistic for censored data. We report the
model performances as the median, upper and lower
quartiles of the 1000 performance measurements. All
models were evaluated on the same 1000 replications,
so paired t-test was used for pairwise comparison of
model performances.

Applying CE to study episodic prediabetic populations
We apply the Cumulative Exposure model to study the
effect of episodic pre-diabetes on incident diabetes. By
‘episodic prediabetes’, we refer to a short (no more than
2–3 years long) episode of prediabetes (FPG between
100 and 125 mg/dl) where the patient returned to
normoglycemia without pharmacological intervention.
We study two subpopulations that differ in the duration
of normoglycemia following the prediabetic episode and
two kinds of controls: patients who did not return to
normoglycemia (two subpopulations) and patients who
did not develop prediabetes. Specifically, we have the fol-
lowing subpopulations:

1) patients who were prediabetic in 2000–2001 and
returned to normoglycemia in 2002–2003 (‘pnn’);

2) patients who were prediabetic in 2002–2003 and
returned to normoglycemia in 2004 (‘npn’);

3) patients who became prediabetic in 2004 (‘nnp’);
4) patients who were normoglycemic in 2001–2002

and developed prediabetes in 2002–2003 (‘npp’);
5) patients who did not developed prediabetes before

2005 (‘nnn’).

We fit the Baseline, the Cumulative Exposure, and the
Extreme Value models to the entire population as de-
scribed above. Missing value imputation was applied to
the entire population before the subpopulations were
created. We used these models to estimate the risk of
developing overt diabetes in these specific subpopula-
tions. We defined our risk as the per-patient expected
number of diabetes incidents in each subpopulation dur-
ing the 10 follow-up years (2005–2015) and we defined
the error as the (signed) Martingale residual (difference
between the per-patient estimated and observed number
of diabetes incidents). We wish to know how diabetes
risk varies across the subpopulations and how well the
two models can estimate them.
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Sensitivity Analysis
We carried out a sensitivity analysis in patients with at
least one FPG measurement in all three time periods
(2000–2001; 2002–2003; and 2004) and at least five dur-
ing follow-up to ascertain that our conclusions are not
unduly impacted by the intermittent nature of the pa-
tient visits.

Results
Baseline cohort characteristics
Table 1 shows the clinical characteristics of the cohort
at baseline, 2005.

Performance of the predictive models
The performance of the new models, Baseline, Cumula-
tive Exposure, Extreme Values and Extreme plus Cumu-
lative Models, each outperformed the FDRS Model, with
concordance of 0.767, 0.783, 0.802, 0.805 and 0.660 re-
spectively, all p-values <2e-16 (Fig. 1). Among the four
new models, only Baseline lacks the ability to take the
patient’s past trajectory into account and accordingly
has a substantially lower performance than the other
models.
Table 2 shows the coefficients of the statistically sig-

nificant laboratory results and vital signs after backwards
elimination in each model. Each row within a model cor-
responds to a variable set and timeframe (baseline, ex-
treme measurements, cumulative exposure over the
three timeframes labeled as 2000-2001, 2002-2003 and
2004) and each column corresponds to a laboratory

result or vital sign. Consider, for example, the effect of
FPG (column ‘fasting’) in the Cumulative Exposure
model. The Cumulative Exposure model is the second
group from the top in Table 2 and has four rows (time-
frames): 2000-2001, 2002-2003, 2004 and baseline. A
unit increase in the cumulative exposure of FPG, which
is essentially the estimated daily average FPG level, in
the timeframe of 2000-2001 independently increases the
relative hazard of diabetes by exp(.034)=1.04. Addition-
ally, a unit increase in 2002-2003 further increases the
relative hazard (independently of other timeframes) by
exp(.035)=1.04 and the baseline measurement increases
it further by exp(.041). The cumulative exposure to FPG
in 2004 was not significant (because the most recent
FPG is mostly the only measurement from 2004). The
other lab results and vitals can be interpreted
analogously.

Using the cumulative exposure model to study episodic
pre-diabetic subpopulations
Table 3 presents a comparison of the five subpopulations
in terms of their median lab results, vitals, age, follow-up
time, and percentage of medication use. None of the pa-
tients in the cohort used anti-diabetic medications.
Table 4 summarizes the estimates from the Most Re-

cent, the Cumulative Exposure, and the Extreme Value
models for five subpopulations. The results from the Ex-
treme Plus Cumulative model are very similar to the Ex-
treme Value model, so we omitted them from Table 3.
For each model, the estimated risk (Pred) and the

Fig. 1 Performance comparison of the four regression models and the Framingham score. FDRS: Framingham Diabtes Risk Score, CE: Cumulative
Exposure, EV: Extreme Value, EV + CE: Extreme Plus Cumulative Exposure. Performance is measured through survival concordance using bootstrap
estimation with 1000 replications. The performance difference between any two models is statistically significant at .05 level
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estimation error (Error) are displayed. We will refer to
each group by their row number.

Risk of diabetes in the five subpopulations
Patients who returned to normoglycemia after an epi-
sode of hyperglycemia (groups 1 and 2) had lower risk

of progression to overt diabetes than patients who did
not return to normoglycemia (groups 3 and 4): the
adjusted risks in groups 1 and 2 were .087 and .103, as
compared to groups 3 and 4, where it was .139 and .207
as estimated by the Cumulative Exposure model. Pa-
tients who returned to normoglycemia (groups 1 and 2)

Table 2 Coefficients of the four models organized by timeframe. 2000–2001 refers to the cumulative exposure between 01/01/2000
and 12/31/2001; 2001–2002 refers to the cumulative exposure between 01/01/2002 and 12/31/2003; 2004 is the cumulative
exposure in 2004; ‘Baseline’ refers to the latest observations before baseline; and ‘5-year extreme’ refers to the most extreme
(minimum for HDL and maximum for others) observations between 01/01/2000 and 12/31/2004

fasting bmi sbp dbp ldl hdl trigl

Baseline

Most recent 0.064 0.009 0.011 −0.021 0.002

Cumulative Exposure

2000–2001 0.034 0.010 0.001

2002–2003 0.035 −0.002

2004 0.011

Most recent 0.041 0.005 0.009 −0.017 0.001

Extreme Values

Most recent 0.018 0.011 0.009 −0.018 0.001

5-year extreme 0.072 −0.004 0.004 −0.001 0.001

Extreme Plus Cumulative

2000–2001 0.008 0.016 −0.009

2002–2003 0.022 0.018

2004

Most recent 0.015 0.013 0.008 −0.015 0.001

5-year extreme 0.062 −0.009 0.009 −0.001 0.001

Table 3 Comparison of the 5 subpopulations. The label of the subpopulation is derived from the diabetes status of the patients in
the three time periods: 2000–2001, 2002–2003, and 2004. For example, ‘pnn’ patients were pre-diabetic in 2000–2001, normal in
2002–2003 and normal in 2004; ‘npn’ patients were normal in 2000–2001, prediabetic in 2002–2003 and normal in 2004. The other
subpopulation labels can be interpreted analogously

All pnn npn nnp npp nnn

N 30,284 2181 1193 1065 889 14,387

Age [median; years] 51 55 56 54 55 49

Male [%] 38 42 42 37 48 32

LDL [median; mg/dL] 111 111 109 113 113 111

TG [median; mg/dL] 114 120 118 129 135 106

HDL [median; mg/dL] 53 54 52 53 50 56

SBP [median; Hg mm] 122 124 124 124 125 120

DBP [median; Hg mm] 73 74 74 74 76 72

FPG [median; mg/dL] 92 93 93 104 105 89

BMI [median; kg/m2] 27 28 28 29 29 26

Antihypertensive medication [%] 21.7 27.0 32.4 29.9 29.8 17.6

Antihyperlipidemi medication [%] 17.8 22.2 27.8 22.5 23.3 15.2

Fullow-up [median; years] 9.51 9.55 9.55 9.56 9.43 9.59

Diabetes outcome [%] 9.8 8.9 12.2 14.1 19.9 4.4
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had higher adjusted risk of developing overt diabetes
than patients who did not develop prediabetes (group 5):
the adjusted risk of diabetes was .087 and .103 vs .051 by
the Cumulative Exposure model. The risk estimates
from the Baseline and the Extreme Value model show
similar trends but with higher estimation errors.
In patients who returned to normoglycemia after an

episode of documented fasting hyperglycemia, and pa-
tients who had an episode of hyperglycemia earlier (and
hence remained normoglycemic longer) had a lower risk
of progression to diabetes. The adjusted risk by the Cu-
mulative Exposure model for patients who had their pre-
diabetic episode in 2000–2001 was .087 vs .103 for those
who had it in 2002–2003.

Accuracy of the estimation
The estimation error for the Cumulative Exposure
model was 1.5 to 50 times lower than for the Baseline
model: it was highest in group 3 with .057 vs .001 and
lowest in group 2 with .026 vs .019. In the predominant
group (group 5 with 14,387 patients), the CE model had
less than half the error of the Baseline model (.007 vs
.016). In all groups except group 3, the estimation error
of CE was lower than 1%. In contrast, the Baseline
model had estimation errors as high as 5.7% and had an
estimation error less than 1% only in one subpopulation
(group 1). The Extreme Value model had almost perfect
estimate in group 5 (patients who did not develop predi-
abetes) with an estimation error less than one tenth of a
percent, but it had higher estimation error than the Cu-
mulative Exposure model in all other groups, and it even
had higher estimation error than the Baseline model in
the first three groups.

Sensitivity analysis
Results from the sensitivity analysis show similar tenden-
cies as Table 4.

Discussion
Predictive performance of the models
Our results showed that it is possible to build diabetes
risk models with state of the art predictive performance

using variables that are commonly available in the elec-
tronic health records. Among the four models we con-
structed, the Baseline model, which is built using
diagnoses, medication prescriptions, lab results (lipids
and FPG) and vitals (blood pressure and BMI) at base-
line, and does not even take trajectories into account,
achieved a survival concordance of .767 (±.006). This
performance represents a 14% improvement over the
performance of the Framingham score (.660 ± .006) and
is highly comparable to the performance of state-of-the-
art risk models published in a large validation study [7];
thus, the Baseline model can be considered a state-of-
the-art model in its own right.
Taking historic information about laboratory results

and vital sign into account significantly improves pre-
dictive accuracy. The simplest way to incorporate history
is to compute the most extreme measurement during
the period of 2000–2004. Adding these predictors to the
Baseline model results in the Extreme Value model,
which has almost 5% higher concordance than the Base-
line model (.802 vs .767; p-value < 2.2e-16). Having one
historic measurement in 2000–2004 and the most recent
measurement for most patients forms a trajectory, albeit
a very crude one. The results from the Extreme Value
model show that incorporating any trajectory informa-
tion is very beneficial; even this crude representation of
a trajectory brought almost half as much improvement
as adding all the predictors to the Framingham score
that the Baseline model has.
Finally, the cumulative exposure variables refined the

notion of trajectories, further improving the perform-
ance to .805 (±.005). This improvement is important
because it represents a substantial difference in certain
subpopulations. The key difference between the Extreme
Model and the Cumulative Exposure model is granular-
ity, which gives us two pieces of information: (i) the time
frame in which the extreme value occurred, and (ii)
whether or not the patient was normal in other time
frames. The cumulative exposure model opens up a tem-
poral dimension, allowing us to directly model situations
where patients can have intermittent abnormal labora-
tory results, and are brought back under control through

Table 4 Estimating diabetes risk in subpopulations that developed pre-diabetes at different time points. Some groups returned to
normoglycemia thereafter. The table shows the number of patients (N), mean predicted diabetes risk as the expected number of
incidents in 10 years (Pred) and the estimation error (Error) by the Baseline, Cumulative Exposure, and the Extreme Value models

Subpopulation N Baseline Cumulative Extreme

Pred Error Pred Error Pred Error

PreDM in 2000–2001, normal from 2003 onwards 2181 .135 .006 .145 .001 .181 −.018

PreDM in 2002–2003, normal before and after 1193 .157 .026 .175 .019 .262 −.034

Normal before 2004, PreDM in 2004 1065 .332 −.057 .235 .001 .282 −.234

Normal before 2002–2003, PreDM since then 889 .411 −.029 .384 −.008 .402 −.019

Normal throughout 2000–2004 14,387 .092 −.016 .080 −.007 .069 −.001
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(say) lifestyle changes. The Cumulative Exposure
achieved higher predictive ability to assess the risk of
diabetes in patients who had prediabetes at some point
in the past than the Baseline or the Extreme Values
model.

Importance of incorporating trajectories
Not only does incorporating trajectories through the Cu-
mulative Exposure variables improve predictive perform-
ance, it also improves our understanding of diabetes.
While many of the metabolic risk factors of diabetes are
well known, [14, 19] their temporal behavior is not.
We have demonstrated through the use of the cumula-

tive exposure model that even episodic (short-term; no
more than 2–3 years of) prediabetes increases the risk of
developing overt diabetes, and that returning to normo-
glycemia mitigates this risk, but does not fully eliminate
it. We could not find any evidence in the literature indi-
cating whether or not returning to normoglycemia elimi-
nates the increase in risk possibly caused by previous
prediabetes, it is well understood that prediabetic pa-
tients face an increased risk of developing type 2 dia-
betes, and it is also known that sustained successful
intervention either via lifestyle change or pharmaco-
logical intervention can delay the onset of diabetes by 4–
5 years [1, 2].
Moreover, our results also suggest that the longer a pa-

tient remains normoglycemic after an episode of hypergly-
cemia, the lower the risk of developing diabetes. Our
results suggest that temporarily returning to normogly-
cemia between two episodes of hyperglycemia has a posi-
tive effect on mitigating the risk of developing diabetes.

Obesity trajectories
While we did not perform a subpopulation analysis spe-
cifically for obese patients, the coefficients of the Cumu-
lative Exposure model suggest that an analogous
relationship exists between BMI and obesity. Becoming
obese even for a short period of time increases the pa-
tient’s risk of developing overt type 2 diabetes and losing
weight thereafter mitigates this risk. Similar to prediabe-
tes, the effect of previous short-term obesity is attenu-
ated over time: the longer the patient has been non-
obese, the lower the effect of any previous incidence of
obesity. After 5 years, the effect of previous obesity
appears to lose any significant effect. This observation
requires a cautionary statement. When exactly the effect
becomes insignificant depends on the sample size,
thus the 5-year period we observed in our sample
may be a statistical artifact, but the attenuation in the
effect size is not. In other words, in a larger cohort,
2000–2001 BMI could have been statistically signifi-
cant, but we expect its effect size to be smaller than
the effect size in 2002–2003.

Metabolic memory
In the context of progression from diabetes to its com-
plications, the concept of metabolic memory of glucose
control has been proposed. Several studies have shown
that better early glycemic control has enduring effect
that persists over time [20]. For example, in the Diabetes
Control and Complications Trial (DCCT), patients with
type 1 diabetes were randomized to intensive or stand-
ard insulin regimens to control their blood sugars [21].
Because the group in the intensive arm achieved pro-
found reductions in the rate of microvascular complica-
tions, the trial was stopped early and all patients were
switched to intensive therapy. In a follow up trial with
this same population (EDIC trial) it was found that those
initially assigned to the intensive arm continued to have
lower incidence of complications despite the fact that
both groups had subsequently achieved similar glycemic
control for several years after switching to the intensive
therapy [22]. In other words, initial better glucose con-
trol has sustained long-term benefits.
Our study presents a complementary but compatible

viewpoint. We found that even short-term loss of con-
trol can result in long-term disadvantages. Exposure to
hyperglycemia also has “memory”: elevated FPG in the
past continues to increase risk of diabetes in the future
despite having achieved similar control (returning to
normoglycemia). However, our study also suggests that
this memory fades over time. Returning to normogly-
cemia attenuates the negative effect of prior exposure.
Our findings are compatible with previous findings in
the sense that among patients with similar control
(normoglycemic at baseline), achieving better control
(return to normoglycemia earlier) has future benefits.
Although the UKPDS blood pressure control trial

failed to demonstrate “memory” for blood pressure, we
found that cumulative exposure to elevated blood pres-
sure was significant for the most recent timeframe [23].
This could be due to loss of power, since patients with
missing blood pressure measurement during 2000–2004
were included, while patients with similarly missing glu-
cose were excluded.

Limitations
Our study cohort was defined so that patients have mul-
tiple FPG measurements; however, other laboratory re-
sults and vital signs could be missing. Specifically, there
are 2200 patients who have no blood pressure measure-
ments and 1600 patients who have no lipid measure-
ments during the entire period of 2000–2004. The lack
of statistical significance of lipid trajectories may be due
to the lower statistical power of these variables. These
results are only applicable to health care provided in the
ambulatory care setting, specifically, primary care, and
using fasting plasma glucose measurements.

Simon et al. BMC Medical Informatics and Decision Making            (2020) 20:6 Page 7 of 9



This is a single center study, with limited racial
variability; therefore, the effect of race could not be in-
corporated. Social history and family history was avail-
able only for a limited number of patients. The study
was based on EHR data. As such, non-pharmacological
interventions, such as lifestyle changes, were not consist-
ently documented.

Conclusion
We have demonstrated that laboratory results and vital
sign trajectories that can be extracted from EHR data
provide better risk estimates than current models using
baseline measurements. The metabolic memory of ex-
posure to even mildly elevated glucose levels exists, but
fades over time when glucose is under control. Incorpor-
ating these data into risk estimates provides better iden-
tification of individual risk, and allows for allocation of
resources to be more precisely balanced against individ-
ual need.
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