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Abstract

Objective: To examine the association between the medical imaging utilization and information related to patients’
socioeconomic, demographic and clinical factors during the patients’ ED visits; and to develop predictive models
using these associated factors including natural language elements to predict the medical imaging utilization at
pediatric ED.

Methods: Pediatric patients’ data from the 2012-2016 United States National Hospital Ambulatory Medical Care
Survey was included to build the models to predict the use of imaging in children presenting to the ED.
Multivariable logistic regression models were built with structured variables such as temperature, heart rate, age,
and unstructured variables such as reason for visit, free text nursing notes and combined data available at triage.
NLP techniques were used to extract information from the unstructured data.

Results: Of the 27,665 pediatric ED visits included in the study, 8394 (30.3%) received medical imaging in the ED,
including 6922 (25.0%) who had an X-ray and 1367 (4.9%) who had a computed tomography (CT) scan. In the
predictive model including only structured variables, the c-statistic was 0.71 (95% Cl: 0.70-0.71) for any imaging use,
069 (95% Cl: 068-0.70) for X-ray, and 0.77 (95% Cl: 0.76-0.78) for CT. Models including only unstructured
information had c-statistics of 0.81 (95% Cl: 0.81-0.82) for any imaging use, 0.82 (95% Cl: 0.82-0.83) for X-ray, and
0.85 (95% Cl: 0.83-0.86) for CT scans. When both structured variables and free text variables were included, the ¢-
statistics reached 0.82 (95% Cl: 0.82-0.83) for any imaging use, 0.83 (95% Cl: 0.83-0.84) for X-ray, and 0.87 (95% Cl:
0.86-0.88) for CT.

Conclusions: Both CT and X-rays are commonly used in the pediatric ED with one third of the visits receiving at
least one. Patients’ socioeconomic, demographic and clinical factors presented at ED triage period were associated
with the medical imaging utilization. Predictive models combining structured and unstructured variables available
at triage performed better than models using structured or unstructured variables alone, suggesting the potential
for use of NLP in determining resource utilization.
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Introduction

More than 25 million pediatric patients seek medical
care in the Emergency Department (ED) each year in the
United States, and the pediatric ED utilization continues
to increase [1]. Emergency providers usually need to
make quick and complex clinical decisions with limited
information [2]. Clinical decision making in pediatric
patients is complicated and time-consuming because of
their unique physiologic and developmental differences
[3, 4]. Consequently, ED health outcomes of children
differ as their pattern of illness and presenting symptoms
vary with age [5, 6].

In many instances clinical decision making in the ED
involves ordering of laboratory tests (blood, urine tests
etc.) and/or performance of imaging procedures (x-rays,
ultrasound, computed tomography (CT) scans) in order
to arrive at working diagnosis to initiate therapies or
other interventions which in some instances are lifesav-
ing [7]. However, use of imaging has a significant impact
on emergency care delivery both in terms of appropri-
ateness as well as the impact of such studies on patient
throughput, which in turn impacts access to emergency
care and overcrowding [8, 9].

Previous studies have focused on improving the effi-
ciency and accuracy of pediatric medical decisions dur-
ing ED visits [10, 11]. Utilization of predictive analytical
techniques to more rapidly determine patient health out-
comes among adult ED patients have proved useful [12].
However, few studies have focused on predicting re-
source utilization (e.g., medical imaging use) of pediatric
ED patients [13]. In addition, unstructured data such as
patient chief complaints often available at the time of
patient visiting, and contains valuable information that
can potentially enhance the prediction performance [14,
15]. However, these data are not immediately useful and
require extraction, cleaning, and aggregation [16]. Our
previous work has revealed that the incorporation of un-
structured clinical notes can increase predictive accuracy
for adult hospital admission using natural language pro-
cessing [12] .

Early and accurate prediction of the need for medical
imaging in pediatric patients visiting the ED may assist in
the planning and optimization of resources in the ED
healthcare service. In the current study, we examined the
association between the medical imaging utilization and
information related to patients’ socioeconomic, demo-
graphic and clinical factors during the pediatric patients’
ED visits; and developed predictive models using these
associated factors including natural language elements to
predict the medical imaging utilization at pediatric ED.

Data and methods
We used standardized guidelines for the conduction and
reporting of this study including the Guidelines for
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Developing and Reporting Machine Learning Predictive
Models in Biomedical Research [17]. We performed a sec-
ondary data analysis on the 2012—-2016 National Hospital
Ambulatory Medical Care Survey ED Subfile (NHAMCS-
ED) [18-20]. NHAMCS is a multistage, stratified prob-
ability sample of ED visits from 300 hospital-based EDs
each year, which was randomly selected from about 1900
geographically defined areas across the United States,
administered by the National Center for Health Statistics.
Details of the survey methodology are available from the
National Center for Health Statistics [19, 20]. We included
a total of 27,665 pediatric patients (<18 years old) visits for
analysis in the survey datasets from 2012 to 2016. This
represents 161,340,000 ED visits on the national level
including the patient visit weight.

The primary outcome variables for this study were
performance of any diagnostic imaging (X-ray and/or
CT), any X-Ray use, and CT scan during an ED visit.
Ultrasound use was not included in the study as the
frequency of ultrasound use was low in the NHAMCS-
ED. Structured covariates included information rou-
tinely collected at the time of ED triage: sex, age
category, race/ethnicity, type of residence, source of
payment, arrival mode, arrival day and time, initial vital
signs (body temperature, heart rate, respiratory rate,
blood pressure, pulse oximetry), 5 point triage level (1
Immediate; 2 Emergent; 3 Urgent; 4 Semi Urgent; 5
Nonurgent), pain scale, 72 h revisit, comorbidities (can-
cer, cerebrovascular disease, chronic obstructive pul-
monary disease (COPD), congestive heart failure, and
HIV), whether the visit was related to an injury, poison-
ing, or adverse effect of medical treatment. Description
analysis of these structured variables were performed
among each medical imaging group, and the odds ratios
of using any imaging, X-Ray and CT scan were esti-
mated using logistic regression.

Unstructured data included up to three reasons for visit-
ing the ED, and three causes of injury recorded by the
providers for each patient in the triage notes [21]. Natural
Language Processing (NLP) techniques were used to
extract the information from the unstructured data.
Firstly, we conducted a text preprocessing step which in-
cluded lemmatization (grouping word capitalization and
derivations together), removal of numbers, punctuations,
and stop words (e.g., ‘and’, ‘are’, ‘the’), and tokenization
(breaking the text into single words and word pairs). We
extracted all the unigrams (single words) and bigrams
(word pairs) from the free text data after preprocessing.
Subsequently, the frequency of each tokenized word or
word-pairs for each person or visit can be formed [22].
We finally removed sparse terms, ie., those with a fre-
quency lower than 99.9% of the overall population. The
words or word-pairs with frequency less than 277 (1% of
the total sample size 27,665) were removed. A total of
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1209 words and word-pairs were identified after prepro-
cessing the unstructured data.

For both structured data and the word (or word pairs)
frequencies, principal component analysis (PCA) was
used to decrease the dimension (or select the features)
of the structured data and frequency table of tokenized
words or word pairs. As is described in previous studies
[12, 23], the goal of PCA is to obtain a fewer number of
new variables, or principal components from the word
or word pairs to represent large number of words or
word pairs, using a linear combination. These principal
components account for the maximum original variance
or information of those words or word pairs. The first
components derive as much of the variance in the word
or word pairs frequency as possible, with each succeed-
ing principal components accounting for the largest pos-
sible remain variance. There principal components have
no information overlap between each other, based on
the linear orthogonal algorithm.

Logistic regression models were used to predict the
pediatric medical imaging utilization. We established
three models to determine the predictive performance in
identifying patients with any medical imaging use, X-
Ray, or CT scan: (1) models with structured variables
only; (2) models with unstructured data; (3) models with
both structured and unstructured variables. Missing
values were imputed with median of each corresponding
variable. Ten-fold cross-validation was used to validate
the performance of each model. Patients were randomly
divided into 10 sets, and 9 of the 10 sets were used to
train the models while the one left was used as the test-
ing set. For each round of training, t-tests compared
principal components’ scores between outcome groups.
Principal components with p < 0.05 were used to estab-
lish the logistic regression models’ input variables.

The area under the receiver operating curve (AUC), or
c-statistic, was recorded for each testing set. The c-
statistic informs in a single numerical value about the
overall diagnostic accuracy of the index test. The c-
statistic ranges from 0.50 to 1.00, with higher values
indicating better predictive models. Values above 0.80
indicate very good models, between 0.70 and 0.80 good
models, and between 0.50 and 0.70 weak models. The
average ROC curve was derived by comparing the pre-
diction values from all 10 cross-validation testing sets.
The AUCs from different models were compared using
t-test. The probabilities of medical imaging use for each
patient were calculated with this model. The best cutoff
of the probabilities was determined by using the point
on the ROC curve with the shortest distance to the
upper left corner (where sensitivity = 1 and specificity =
1). The best cutoff of the probabilities for prediction and
the corresponding sensitivity, specificity, and overall
accuracy were recorded [24].

(2019) 19:287

Page 3 of 13

We performed a sensitivity analysis to predict the two
major subtypes of the CT scan (abdomen/pelvis and
head CT) using the same modelling strategies described
above. The best cut-off of the probabilities, sensitivity,
specificity, overall accuracy, and AUC were recorded.
Basic data organization was done in SAS 9.4. The text
analyses were performed in R 3.3.2. The modeling of
logistic regression was performed in MATLAB R2016b.

Results

Among the 27,665 ED patient visits from 2012 to 2016,
30.3% (8394/27,665) received a medical imaging, includ-
ing 25.0% (n=6922) who had an X-ray and 4.9% (n =
1367/27,665) who had a CT scan (Table 1). Male
patients (31.6%) present higher imaging use than females
(29.1%). Younger kids had lower proportion of receiving
imaging than older (3.3% by < 1year and 21.7% by 1-6
years, compared to 32.3% by 6-12years and 41.4% by
older than 12 years). Hispanic patients had lower im-
aging use (27.6%) than non-Hispanics (31.2%), and black
patients presented lower imaging (26.8%) than white
(32.9%) and Asian (29.4%). Patients with private insur-
ance (36.4%) and Medicare (33.6%) had higher imaging
use than patients with Medicaid (27.4%) and no insur-
ance (29.3%). Patients with immediate or emergent tri-
age (37.1%) and patients urgent or semi-urgent (39.2%)
had higher use of imaging than non-urgent patients
(25.9%). A number of 45.5% of patients with injury/
trauma received medical imaging, which is higher than
patients with overdose/poisoning (13.9%), patients with
adverse effect of medical treatment (20.3%), and patients
with no injury/trauma, overdose/poisoning, or adverse
effect of medical treatment (23.4%).

The crude and adjusted odds ratio of ED visits resulting
in different types of medical imaging (vs. no medical im-
aging) for each variable using binary logistic regression are
presented in Table 2. Adjusted analyses showed patients
between 1 and 6 years and between 6 and 12 were 42 and
24% less likely to require any medical imaging than pa-
tients less than 1 year old, respectively (aOR: 0.58, 95% CI
047-0.72 and aOR: 0.76, 95% CI 0.60-0.96). Black
patients were 12% less likely for any imaging use than
white patients (aOR: 0.88, 95% CI 0.77-1.00). Compared
to those with private insurance, patients with Medicaid
were 18% less likely for any imaging use than patients with
private insurance (aOR: 0.82, 95% CI 0.73-0.92). Com-
pared to those with mild pain level, patients with moder-
ate and very severe levels were 2.15 and 2.70 more likely
to receive any imaging respectively (aOR: 2.15, 95% CI
1.90-2.44 and aOR: 2.70, 95% CI 2.32-3.13). Compared to
those with injury/trauma, patients with overdose/poison-
ing were 82% less likely to receive any imaging (aOR: 0.18,
95% CI 0.09-0.34) Patients with adverse effects of medical
treatment and patients with other diagnoses were 80 and
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Table 1 Baseline characteristics of U.S. patients presenting to the ED, stratified by medical imaging utilization, NHAMCS 2012-2016

All N(%) No Imaging N(%)  Any imaging N(%)  X-Ray N(%)  CT Scan N(%) P value
27,665 19,271(69.7) 8394(30.3) 6922(250)  1367(4.9)
Sex
Female 13,542(489)  9606(70.9) 3936(29.1) 3170(23.4) 625(4.6) < 0.0001
Male 14,123(51.1)  9665(68.4) 4458(31.6) 3752(26.6) 742(5.3)
Age category
< 1year 3191(12.2) 2448(76.7) 743(23.3) 653(20.5) 68(2.1) < 0.0001
1-6 year 9447(36.2) 7400(78.3) 2047(21.7) 1829(19.4) 187(2.0)
—12 year 6390(24.5) 4325(67.7) 2065(32.3) 1759(27.5) 291(4.6)
—18 year 7033(27.0) 4118(58.6) 2915(41.4) 2271(32.3) 628(8.9)
Ethnic
Hispanic 6776(24.5) 4908(72.4) 1868(27.6) 1516(22.4) 272(4.0) < 0.0001
Non-Hispanic 20,889(75.5) 14,363(68.8) 6526(31.2) 5406(25.9) 1095(5.2)
Race
White 14,692(689)  9859(67.1) 4833(329) 3928(26.7) 902(6.1) <0.0001
Black 5773(27.1) 4227(73.2) 1546(26.8) 1353(234) 180(3.1)
Asian 557(2.6) 393(70.6) 164(29.4) 136(24.4) 19(3.4)
Other 315(1.5) 231(73.3) 84(26.7) 71(22.5) 11(3.5)
Residence
Private residence 26,783(99.2)  18,599(694) 8184(30.6) 6747(25.2) 1323(4.9) 0.1114
Nursing home 36(0.1) 22(61.1) 14(38.9) 10(27.8) 7(194)
Homeless 27(0.1) 20(74.1) 7(25.9) 6(22.2) 2(7.4)
Other 156(0.6) 96(61.5) 60(38.5) 51(32.7) 12(7.7)
Insurance
Private insurance 7572(29.7) 4819(63.6) 2753(36.4) 2193(29.0) 543(7.2) < 0.0001
Medicare 235(0.9) 156(66.4) 79(33.6) 61(26.0) 19(8.1)
Medicaid or CHIP 15,448(60.6) 11,212(72.6) 4236(27.4) 3562(23.1) 569(3.7)
Uninsured 1546(6.1) 1093(70.7) 453(29.3) 365(23.6) 81(5.2)
Other 692(2.7) 459(66.3) 233(337) 200(28.9) 46(6.6)
Arrival by Ambulance
No 25,059(93.6) 17,562(70.1) 7497(29.9) 6219(24.8) 1093(4.4) < 0.0001
Yes 1711(64) 1032(60.3) 679(39.7) 518(30.3) 247(144)
Visit year
2012 6641(24.0) 4526(68.2) 2115(31.8) 1714(25.8) 393(5.9) < 0.0001
2013 5709(20.6) 4088(71.6) 1621(284) 1357(23.8) 240(4.2)
2014 5906(21.3) 4193(71.0) 1713(29.0) 1425(24.1) 272(4.6)
2015 4954(17.9) 3400(68.6) 1554(31.4) 1259(25.4) 262(5.3)
2016 4455(16.1) 3064(68.8) 1391(31.2) 1167(26.2) 200(4.5)
Visit month
Dec-Feb 6718(24.3) 4705(70.0) 2013(30.0) 1697(25.3) 305(4.5) 0.0006
Mar-May 7055(25.5) 4866(69.0) 2189(31.0) 1820(25.8) 360(5.1)
Jun-Aug 6745(24.4) 4815(71.4) 1930(28.6) 1562(23.2) 312(4.6)
Sep-Nov 7147(25.8) 4885(684) 2262(31.6) 1843(25.8) 390(5.5)
Day of Week
Sunday 4109(14.9) 2902(70.6) 1207(29.4) 1018(24.8) 168(4.1) 0.3082
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Table 1 Baseline characteristics of U.S. patients presenting to the ED, stratified by medical imaging utilization, NHAMCS 2012-2016

(Continued)
All N(%) No Imaging N(%)  Any imaging N(%)  X-Ray N(%)  CT Scan N(%) P value
27,665 19,271(69.7) 8394(30.3) 6922(25.0) 1367(4.9)
Monday 4478(16.2) 3117(69.6) 1361(30.4) 1110(24.8) 227(5.1)
Tuesday 4008(14.5) 2781(694) 1227(30.6) 1010(25.2) 201(5.0)
Wednesday 3805(13.8) 2668(70.1) 1137(29.9) 934(24.5) 192(5.0)
Thursday 3808(13.8) 2613(68.6) 1195(31.4) 974(25.6) 201(5.3)
Friday 3617(13.1) 2484(68.7) 1133(31.3) 940(26.0) 190(5.3)
Saturday 3840(13.9) 2706(70.5) 1134(29.5) 936(24.4) 188(4.9)
Arrival time
Morning 5529(204) 3857(69.8) 1672(30.2) 1368(24.7) 272(4.9) 0.0001
Afternoon 7383(27.2) 5052(684) 2331(31.6) 1904(25.8) 385(5.2)
Evening 5872(21.6) 3993(68.0) 1879(32.0) 1572(26.8) 292(5.0)
Night 8344(30.8) 5936(71.1) 2408(28.9) 1996(23.9) 395(4.7)
Triage level
Immediate and Emergent 1465(7.4) 921(62.9) 544(37.1) 414(28.3) 148(10.1) < 0.0001
Urgent and Semi-urgent 6746(33.9) 4100(60.8) 2646(39.2) 2000(29.6) 566(84)
Nonurgent 11,698(588)  8669(74.1) 3029(25.9) 2737(234) 273(2.3)
Temperature
36 C-38 C 22,667(86.9) 15,719(69.3) 6948(30.7) 5651(24.9) 1199(5.3) 08118
<=36C 684(2.6) 475(69.4) 209(30.6) 161(23.5) 39(5.7)
>38C 2742(10.5) 1918(69.9) 824(30.1) 774(28.2) 43(1.6)
Diastolic BP
60-80 11,502(41.6)  7482(65.0) 4020(35.0) 3225(28.0) 734(6.4) < 0.0001
<60 13541(489)  10,228(75.5) 3313(24.5) 2875(21.2) 396(2.9)
>80 2622(9.5) 1561(59.5) 1061(40.5) 822(31.4) 237(9.0)
Systolic BP
80-120 11,152(403)  7604(68.2) 3548(31.8) 2873(25.8) 596(5.3) < 0.0001
<80 10,238(37.0)  7966(77.8) 2272(22.2) 2047(20.0) 200(2.0)
>120 6275(22.7) 3701(59.0) 2574(41.0) 2002(31.9) 571(9.1)
Heart Rate
<60 7589(27.4) 4618(60.9) 2971(39.1) 2302(30.3) 607(8.0) < 0.0001
60-90 2687(9.7) 1979(73.7) 708(26.3) 584(21.7) 131(4.9)
>90 17,389(62.9)  12,674(72.9) 4715(27.1) 4036(23.2) 629(3.6)
Pulse Oximetry
<95 788(3.3) 444(56.3) 344(43.7) 316(40.1) 39(4.9) < 0.0001
>=95 23430(96.7)  16,214(69.2) 7216(30.8) 5934(25.3) 1214(5.2)
Pain level
Mild 9097(54.0) 7123(78.3) 1974(21.7) 1649(18.1) 300(3.3) < 0.0001
Moderate 4677(27.8) 2613(55.9) 2064(44.1) 1650(35.3) 364(7.8)
Very severe 3062(18.2) 1608(52.5) 1454(47.5) 1152(37.6) 286(9.3)
Injury/poisoning
Injury/trauma 8963(33.5) 4886(54.5) 4077(45.5) 3551(39.6) 703(7.8) <0.0001
Overdose/poisoning 280(1.0) 241(86.1) 39(13.9) 37(13.2) 5(1.8)
Adverse effect of medical/surgical treatment — 296(1.1) 236(79.7) 60(20.3) 47(15.9) 17(5.7)
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Table 1 Baseline characteristics of U.S. patients presenting to the ED, stratified by medical imaging utilization, NHAMCS 2012-2016

(Continued)
All N(%) No Imaging N(%)  Any imaging N(%)  X-Ray N(%)  CT Scan N(%) P value
27,665 19,271(69.7) 8394(30.3) 6922(250)  1367(4.9)

Not related to any above 17,112(64.0) 13,111(76.6) 4001(23.4) 3119(18.2) 603(3.5)
Questionable injury status 81(0.3) 66(81.5) 15(18.5) 10(12.3) 5(6.2)

72 h Revisit
Yes 1029(4.1) 745(72.4) 284(27.6) 223(21.7) 53(5.2) 0.0429
No 24,092(95.9) 16,728(694) 7364(30.6) 6053(25.1) 1201(5.0)

Cancer
Yes 74(0.3) 45(60.8) 29(39.2) 23(31.1) 8(10.8) 0.0974
No 27,591(99.7) 19,226 8365 (30.3) 6899 (35.9) 1359 (4.9)

Cerebral Cardiovascular disease
Yes 16(0.1) 6(37.5) 10(62.5) 8(50.0) 6(37.5) 0.0051
No 27,649(99.9) 19,265 (69.8) 8384(30.3) 6914(35.9) 1361 (4.9)

Congestive Heart Failure
Yes 8(0.1) 3(37.5) 5(62.5) 4(50.0) 1(12.5) 0.0478
No 27,657(99.9) 19,268(69.8) 8389(30.3) 6918(35.9) 1366 (4.9)

COPD
Yes 135(0.5) 63(46.7) 72(53.3) 70(51.9) 1(0.7) <0.0001
No 27,530(99.5) 19,208(69.8) 8322(30.3) 6852(35.7) 1366 (5.0)

HIV
Yes 17(0.1) 13(76.5) 4(23.5) 3(17.6) 1(5.9) 0.5411
No 27,648(99.9) 19,258(69.8) 8390(30.3) 6919(35.9) 1366 (5.0)

Note: Missing value for systolic and diastolic blood pressure, arrival by ambulance, patient’s residence type, arrival time, and whether the visit is related to injury/
poisoning is lower than 5%. Missing values for body temperature, heart rate, pulse oximetry, source of payment, episode of care, 72 h revisit are between 10 and

15%. Missing values for pain level is 38%, and triage level pain scale is 64%

68% less likely for any imaging use than patient with in-
jury, respectively (aOR: 0.20, 95% CI 0.11-0.37 and aOR:
0.32, 95% CI 0.28—0.36). The odds ratios of those charac-
teristics for X-Ray use are similar to the risk for any
imaging use, as X-Ray is the most frequent medical im-
aging type.

The distribution and the odds ratio of the top 25 most
frequent words or word pairs were also reported in Fig. 1
and Additional file 1: Table S1. The odds of having
imaging were higher for patients whose complaints con-
tained words, such as pain, soreness, injury, and spasm,
compared to patients without the presence of those
words. Patients reporting fever, vomit, or skin issues
showed lower odds of having imaging done. Around 200
principal components remain after feature selection for
the input of each logistic regression model. Applying the
three logistic regression models (Table 3; model 1: struc-
tured variables only, model 2: unstructured variables
only, and model 3: both unstructured and structured
variables), we found that the predictive accuracy for any
medical imaging use was higher for models with text-
based reason for visit variables only, compared to models
with structured variables only. The AUC (Fig. 2) was

0.71 (95% CI: 0.70-0.71) for any imaging use, 0.69 (95%
CIL: 0.68-0.70) for X-ray, and 0.77 (95% CI: 0.76-0.78)
for CT scan, in the predictive model including only
structured variables. Models including only unstructured
information obtained c-statistics of 0.81 (95% CI: 0.81—
0.82) for any imaging use, 0.82 (95% CI: 0.82—0.83) for
X-ray, and 0.85 (95% CI: 0.83-0.86) for CT scan. When
both structured variables and free text variables were in-
cluded, the c-statistics reached 0.82 (95% CI: 0.82—0.83)
for any imaging use, 0.83 (95% CI: 0.83—-0.84) for X-ray,
and 0.87 (95% CI: 0.86—0.88) for CT scan. The AUC are
significantly different between the models on the un-
structured data, structured data, and combined data (p <
0.001).

The result for the sensitivity analysis was reported in
Additional file 1: Table S2 and Additional file 1: Figure
S1. A number of 420 (1.52% of total) patients had abdo-
men/pelvis CT scan and 785 (2.84%) had a head CT
scan. In the model of abdomen/pelvis CT scan, the AUC
was 0.856 (95% CI: 0.833-0.879) for unstructured data,
0.826 (95% CI: 0.814—0.838) for structured data, and
0.892 (95% CI: 0.875-0.909) for both. In the model for
head CT scan, the AUC was 0.891(95% CI: 0.877-0.905)
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Table 2 Adjusted odds ratio of characteristics associated with the use of diagnostic imaging studies during the emergency
department visit (vs. no imaging use), NHAMCS 2012-2016

Any imaging X-Ray CT Scan
Crude Adjusted Crude Adjusted Crude Adjusted
Male vs Female 1.13(1.07-1.19)  1.03(0.92-1.15) 1.18(1.12-1.25) 1.01(091-1.13)  1.15(1.03-1.28)  1.20(0.97-1.50)

Age category
< 1year
1-6 year

—12 year
12-18 year

Non-Hispanic vs Hispanic

Race
White
Black
Asian
Other

Residence
Private residence
Nursing home
Homeless
Other

Insurance
Private insurance
Medicare
Medicaid or CHIP
Uninsured
Other

Arrival by Ambulance
Yes vs No

Visit year
2012
2013
2014
2015
2016

Visit month
Dec-Feb
Mar-May
Jun-Aug
Sep-Nov

Day of Week
Sunday
Monday
Tuesday
Wednesday
Thursday

Reference [1]
0.91(0.83-1.00)
1.57(1.43-1.73)
2.33(2.12-2.56)
1.19(1.12-1.27)

Reference [1]

0.75(0.70-0.80)
0.85(0.71-1.03)
0.74(0.58-0.95)

Reference [1]

145(0.74-2.83)
0.80(0.34-1.88)
1.42(1.03-1.96)

Reference [1]
0.89(0.67-1.17)
0.66(0.62-0.70)
0.73(0.64-0.82)
0.89(0.75-1.05)

1.54(1.39-1.70)

Reference [1]

0.85(0.79-0.92)
0.87(0.81-0.94)
0.98(0.90-1.06)
0.97(0.90-1.05)

Reference [1]

1.05(0.98-1.13)
0.94(0.87-1.01)
1.08(1.01-1.16)

Reference [1]
1.05(0.96-1
1.06(0.97-1
1.03(0.93-1
1.10(1.00-1

Reference [1]
0.58(0.47-0.72)
0.76(0.60-0.96)
0.84(0.66-1.08)
21(1.05-1.40)

Reference [1]

0.88(0.77-1.00)
1.29(0.94-1.76)
0.65(0.43-0.99)

Reference [1]

2.01(0.58-7.04)
0.87(0.11-6.93)
0.62(0.32-1.22)

Reference [1]
16(0.68-1.98)

0.82(0.73-0.92)

0.82(0.65-1.03)
10(0.79-1.52)

1.19(0.96-1.49)

Reference [1]
0.73(0.63-0.86)
0.79(0.68-0.93)
0.89(0.76-1.06)
01(0.85-1.19)

Reference [1]
15(0.99-1.33)

0.83(0.71-0.97)

1.00(0.87-1.16)

Reference [1]

0.96(0.79-1.15

17(0.97-1.42

0.99(0.81-1.20
01(

)
)
)
0.83-1.23)

Reference [1]
0.93(0.84-1.03)
48(1.33-1.64)
1.85(1.68-2.05)
1.21(1.14-1.29)

Reference (1]

0.84(0.78-0.90)
0.89(0.73-1.08)
0.80(0.61-1.04)

Reference (1]

1.14(0.55-2.37)
0.85(0.34-2.10)
1.44(1.03-2.02)

Reference [1]
0.86(0.64-1.16)
0.74(0.69-0.78)
0.76(0.67-0.86)

00(0.84-1.18)

1.32(1.18-1.46)

Reference (1]

0.90(0.83-0.97)
0.91(0.84-0.99)
0.98(0.90-1.07)
1.02(0.94-1.11)

Reference [1]

1.03(0.95-1.11)
0.89(0.82-0.97)
1.03(0.95-1.11)

Reference [1]
1.00(0.91-1.10)
1.02(0.93-1.13)
0.99(0.89-1.09)
1.04(0.94-1.16)

Reference [1]

0.62(0.50-0.77)
0.78(0.61-0.99)
0.79(0.61-1.03)
1.16(1.00-1.35)

Reference [1]

1.03(0.90-1.18)
1.22(0.88-1.68)
0.79(0.52-1.20)

Reference [1]
2.14(0.61-7.54)
1.48(0.21-10.60)
0.67(0.33-1.36)

Reference [1]

0.99(0.56-1.74)
0.88(0.78-0.99)
0.86(0.68-1.09)
1.27(0.91-1.76)

1.04(0.83-1.30)

Reference [1]
0.75(0.63-0.88)
0.80(0.68-0.94)
0.89(0.75-1.05)
14(0.96-1.34)

Reference [1]

1.05(0.90-1.22)
0.77(0.66-0.90)
0.86(0.74-1.00)

Reference [1]
0.91(0.75-1.10

1.20(0.99-1.46
0.93(0.76-1.14,

)
)
)
0.94(0.77-1.15)

Reference [1]
0.93(0.70-1.23)

19(1.68-2.86)
4.50(3.49-5.80)
1.32(1.16-1.52)

Reference [1]

0.49(042-0.58)
0.54(0.34-0.86)
0.55(0.30-1.01)

Reference [1]
4.65(2.03-10.62)
1.54(0.36-6.51)
1.60(0.89-2.90)

Reference [1]

14(0.71-1.84)
0.50(0.44-0.56)
0.72(0.56-0.91)
0.92(0.68-1.26)

3.70(3.19-4.29)

Reference [1]

0.70(0.59-0.82)
0.77(0.66-0.90)
0.89(0.76-1.04)
0.75(0.63-0.89)

Reference [1]

1.13(0.97-1.32)
1.02(0.87-1.20)
1.21(1.04-142)

Reference [1]

1.25(1.02-1.54

1.24(1.00-1.53

1.25(1.01-1.54
(

)
)
)
1.31(1.06-161)

Reference [1]
0.83(0.44-1.54)
1.44(0.77-2.69)

91(1.01-3.62)
1.32(0.98-1.79)

Reference [1]

044(0.32-0.61)
0.60(0.28-1.26)
045(0.16-1.28)

Reference [1]
2.26(0.42-12.21)
146(0.09-23.04)
0.35(0.08-1.56)

Reference [1]
61(1.17-5.81)
0.75(0.60-0.95)
0.80(0.51-1.26)
0.70(0.34-1.44)

240(1.75-3.31)

Reference [1]
0.72(0.53-1.00)
0.76(0.55-1.04)
0.98(0.71-1.34)
0.67(047-0.94)

Reference [1]

1.46(1.07-1.98)
0.95(0.68-1.34)
143(1.05-1.93)

Reference [1]
0.93(0.63-1.37
0.99(0.67-1.47
1.08(0.73-1.60

(

)
)
)
1.28(0.88-1.86)



Zhang et al. BVIC Medical Informatics and Decision Making (2019) 19:287 Page 8 of 13

Table 2 Adjusted odds ratio of characteristics associated with the use of diagnostic imaging studies during the emergency
department visit (vs. no imaging use), NHAMCS 2012-2016 (Continued)

Any imaging X-Ray CT Scan
Crude Adjusted Crude Adjusted Crude Adjusted

Friday 1.10(1.00-1.21)  0.93(0.76-1.14) 1.07(0.96-1.18) 0.98(0.80-1.20)  1.30(1.05-1.61)  0.85(0.56-1.29)

Saturday 1.01(0.92-1.11) 0.84(0.69-1.02) 0.98(0.88-1.08) 0.85(0.70-1.05) 1.21(0.98-1.49)  0.96(0.64-1.44)
Arrival time

Morning Reference [1]  Reference [1]  Reference [1]  Reference [1] Reference [1] Reference [1]

Afternoon 1.06(0.99-1.15)  0.96(0.82-1.12) 1.06(0.98-1.15) 0.90(0.77-1.06)  1.06(0.91-1.25)  1.18(0.86-1.62)

Evening 1.09(1.00-1.18) 0.87(0.74-1.03) 1.11(1.02-1.21) 0.87(0.74-1.03)  1.01(0.85-1.20)  0.98(0.70-1.37)

Night 0.94(0.87-1.01) 0.89(0.77-1.04) 0.96(0.88-1.04) 0.88(0.75-1.03)  0.96(0.82-1.13)  1.06(0.77-1.46)
Triage level

Immediate and Emergent Reference [1]  Reference [1]  Reference [1]  Reference [1] Reference [1] Reference [1]

Urgent and Semi-urgent 1.09(0.97-1.23) 1.07(0.86-1.33) 1.07(0.94-1.21) 1.11(0.88-1.40) 0.82(0.67-0.99)  0.93(0.66-1.32)

Nonurgent 0.59(0.53-0.66) 0.53(0.43-0.60) 0.78(0.69-0.88) 0.78(0.62-0.98) 0.21(0.17-0.26)  0.23(0.16-0.33)
Temperature

36 C-38 C Reference [1]  Reference [1]  Reference [1]  Reference [1] Reference [1] Reference [1]

<=36C 1.00(0.84-1.17) 0.77(0.55-1.09) 0.93(0.78-1.11) 0.77(0.53-1.10)  1.08(0.78-1.50)  1.21(0.66-2.21)

>38C 0.97(0.89-1.06) 1.79(148-2.16) 1.18(1.08-1.29) 2.04(1.69-248) 0.29(0.21-039)  0.67(0.39-1.16)
Diastolic BP

60-80 Reference [1]  Reference [1]  Reference [1]  Reference [1] Reference [1] Reference [1]

<60 0.60(0.57-0.64) 1.08(091-1.28) 0.69(0.65-0.73) 1.01(0.85-1.21) 044(0.39-0.50)  1.12(0.81-1.55)

>80 1.27(1.16-138) 1.12(0.94-1.34) 1.17(1.07-129) 1.09(091-131)  1.46(1.25-1.70)  0.99(0.72-1.35)
Systolic BP

80-120 Reference [1]  Reference [1]  Reference [1]  Reference [1] Reference [1] Reference [1]

<80 0.61(0.58-0.65) 0.83(0.68-1.00) 0.72(0.68-0.77) 0.93(0.76-1.14)  035(0.30-042)  0.70(0.45-1.08)

>120 149(1.40-159) 1.02(0.89-1.18) 1.35(1.26-1.45) 0.99(0.86-1.15)  1.77(1.57-2.00)  1.08(0.83-1.40)
Heart Rate

60-90 Reference [1]  Reference [1]  Reference [1] ~ Reference [1] Reference [1] Reference [1]

<60 0.56(0.50-0.61) 1.03(0.78-1.36) 0.64(0.58-0.71) 1.27(0.96-1.68) 0.59(0.49-0.72)  0.90(0.54-1.49)

>90 0.58(0.55-0.61) 0.89(0.79-1.01) 0.69(0.65-0.74) 1.02(0.89-1.16)  043(0.39-048)  0.89(0.70-1.13)
Pulse Oximetry

>=95vs <95 0.57(0.50-0.66) 0.61(0.45-0.82) 0.51(044-0.59) 0.51(0.38-0.68) 1.05(0.76-1.45) 1.11(0.57-2.18)
Pain level

Mild Reference [1]  Reference [1]  Reference [1]  Reference [1] Reference [1] Reference [1]

Moderate 2.85(2.64-3.08) 2.15(1.90-2.44) 246(227-2.67) 197(1.73-224) 248(2.12-290) 1.72(1.32-2.22)

Very severe 3.26(299-356) 2.70(232-3.13) 2.72(249-298) 233(2.00-2.72) 3.02(2.56-3.57)  1.94(1.45-2.59)
Injury/poisoning

Injury/trauma Reference [1]  Reference [1]  Reference [1]  Reference [1] Reference [1] Reference [1]

Overdose/poisoning 0.19(0.14-0.27) 0.18(0.09-0.34) 0.23(0.16-0.33) 0.24(0.12-046) 0.21(0.09-0.52)  0.23(0.05-0.96)

Adverse effect of medical/surgical treatment 0.31(0.23-0.41) 0.20(0.11-0.37) 0.29(0.21-039) 0.21(0.11-041)  0.72(044-1.18)  0.67(0.23-1.91)

Not related to any above 0.37(0.35-0.39) 0.32(0.28-0.36) 0.34(0.32-0.36) 0.28(0.24-0.31)  0.43(0.38-048)  0.60(0.48-0.76)

Questionable injury status 0.27(0.16-048) 0.39(0.10-149) 0.22(0.11-042) 0.11(0.02-090) 0.77(0.31-192) 568

(1.14-28.22)

72 h Revisit

No vs Yes 1.16(1.01-1.33)  1.11(0.83-1.49) 1.21(1.04-141) 1.21(0.89-1.65) 0.97(0.73-1.28)  0.89(0.51-1.56)

Cancer 148(0.93-236) 1.31(0.30-5.78) 1.35(0.83-2.22) 0.67(0.14-324)  234(1.12-489) 2385
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Table 2 Adjusted odds ratio of characteristics associated with the use of diagnostic imaging studies during the emergency
department visit (vs. no imaging use), NHAMCS 2012-2016 (Continued)

Any imaging X-Ray CT Scan
Crude Adjusted Crude Adjusted Crude Adjusted
(0.46-17.53)
Cerebral Cardiovascular disease 3.81 - 2.99(1.12-798) - 11.59 -
(1.39-1048) (4.21-31.93)
COPD 2.64(1.88-3.70) 5.85 3.25(2.32-4.56) 7.87 0.14(0.02-1.02) -
(2.89-11.85) (3.91-15.84)
Congestive Heart Failure 381 - 2.99 - 2.76(0.34-2238) -
(0.91-15.93) (0.75-11.96)
HIV 0.71(023-217) - 0.64(0.19-2.24) 6.55 1.20(0.16-9.07)  2.81
(0.51-83.75) (0.16-50.30)

for unstructured data, 0.797 (95% CI: 0.786-0.808) for
structured data, and 0.906 (95% CI: 0.893-0.920) for
both. The AUC are significantly different between the
models on the unstructured data, structured data, and
combined data (p < 0.01).

Discussion
In the current study, we described the rates of X-Ray use
and CT use in pediatric visits to the emergency depart-
ment in the United States. The rate of medical imaging
use ranged from 28.4% to 31.8 each year across from 2012
to 2016; the rate of X-Ray use ranged from 23.8 to 26.2%,
and CT’s rate was 4.2 to 5.9%. We found that patients’ so-
cioeconomic, demographic and clinical factors presented
at ED triage were associated with the medical imaging use.
Similar to previous studies, we detected racial/ethnic
and socioeconomic differences in the use of medical im-
aging [25, 26]. We found that Blacks and Hispanics were

less likely to undergo CT scans compared to white pa-
tients, which could be related to the distribution differ-
ence of injury severity, or access to insurance coverage,
across racial/ethnic groups [25, 27]. Compared to pa-
tients with private insurance, patients with Medicaid
cover had less likelihood of receiving a CT scan. Reasons
for these disparities should be further explored in future
research to determine the appropriateness of including
or excluding these variables in prediction models [27]
based on the clinical context. We also found that youn-
ger age, higher triage level, ambulance arrival, abnormal
vital signs, injury diagnosis and certain comorbidities
were predictive of medical imaging use. As expected, pa-
tients with urgent and immediate triage levels had the
highest likelihood of medical imaging use. Patients with
abnormal vital signs generally had higher likelihood of
medical imaging use than the patients with normal
vitals.
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Fig. 1 Frequency and the word cloud of the word and word pairs in the unstructured variables (the first figure shows the words that appear
over 1500 times, the second shows the words that appear over 20 times)
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Table 3 Predictive performance of logistic regression models with 10-fold classification in identifying patients with various medical
imaging use during emergency department triage, NHAMCS 2012-2016

Probability cut-off Sensitivity Specificity Accuracy AUC (95% Cl)
Any Imaging use
Unstructured variables 0.28 0.72 0.74 0.73 0.810 (0.807-0.813)
Structured variables 031 062 067 0.66 0.706 (0.698-0.714)
Unstructured + Structured variables 027 0.75 0.73 0.74 0.824 (0.818-0.829)
Xray
Unstructured variables 0.22 073 0.74 0.74 0.824 (0.822-0.826)
Structured variables 0.26 061 067 0.65 0.694(0.685-0.704)
Unstructured + Structured variables 022 0.75 0.74 0.74 0.834 (0.830-0.839)
CT Scan
Unstructured variables 0.04 0.79 0.77 0.78 0.845 (0.832-0.858)
Structured variables 0.05 0.71 0.69 0.69 0.771 (0.759-0.783)
Unstructured + Structured variables 0.04 0.80 0.79 0.79 0.868(0.858-0.878)

Note: The best cutoff of the probabilities was determined by using the point on the ROC curve with the shortest distance to the upper left corner (where

sensitivity = 1 and specificity = 1)

Clinical practice in adult ED and pediatric ED is
largely different, in particular, triaging pediatric patients
is more complicated and time-consuming than adults
because of their unique physiologic and developmental
differences. Compared to our previous study on adult
patients, we found even worse racial /ethnic disparities
among the black patients compared to white patients in
pediatric ED than adult ED. The CT use are positively
associated with patients with Medicare in the pediatric
patients but opposite for the adult ED patients The CT
use are positively associated with urgency of ED among
pediatrics.

Since the prediction models are based on the imaging
utilization assigned by the clinicians, the associated factors
cannot only predict the imaging utilization outcomes but
can also indicate the bias in the medical decision in im-
aging assignment by the clinicians. These biases should be
considered in a real implementation of the prediction

models in healthcare management. One of the approaches
to evaluate these biases would be running a medical chart
review from the electronic health records for each patient
to analyze how much bias exists in the medical decisions
in pediatric ED imaging assignment. Because EDs are the
critical staging area for very ill patients, the higher ED
utilization and ED overcrowding leads to reduced access
to time-critical healthcare, thus negatively affecting patient
care quality and patient safety [28—30]. As the crisis of
emergency care grows, hospitals have taken initiatives to
improve the patient care quality in many ways [31, 32].
One of these is to establish better decision-making sys-
tems in emergency care systems that could mitigate these
challenges and facilitate the transition to a value-based
healthcare industry [33]. Based on large data collected
from ED electronic health records and technological inno-
vations that employ predictive analytics to more rapidly
identify resources utilization, such as medical imaging.

Logistic Regression Model of X-Ray Cl

Logistic Regression Model of CT Scan C

Logistic Regression Model of Any Imaging Cl

Sensitivity
o
o
Sensitivity
o
o

====Unstructured Variables Only 02
= = Structured Variables Only
= Unstructured & Structured Variables 0.1

0 0.1 0.2 03 04 05 06 07 08 09 1 0 0.1 02 03 04
1-Specificity

====Unstructured Variables Only N
= = Structured Variables Only o1 fr
= Unstructured & Structured Variables

1-Specificity

Sensitivity

====Unstructured Variables Only
= = Structured Variables Only
= Unstructured & Structured Variables

0.6 07 08 09 1 0 0.1 0.2 03 04 05 06 07 08 09 1
1-Specificity

Fig. 2 ROC curves for the logistic regression models for medical imaging use (The red point on each ROC curve minimizes the Euclidean
distance between the ROC curve and the upper left corner of the coordinate, which is defined as the best cutoff in the study)
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Prediction models for the adult ED advanced medical
imaging utilization (CT, MRI, and ultrasound) has been
examined and proposed in a previous study [34]. The
main difference between the prediction models in the
adult paper and the current study is that single word fre-
quency was used in the adult study for topic modelling,
whereas we only kept the first few topics in the predic-
tion models. Topic modelling is a commonly used tech-
nique for NLP. Although the method was reported to
identify patterns hidden in the unstructured data into
different themes, we did not find many clinically mean-
ingful topics when we applied this to the reasons-for-
visit data from adult patients. In the current paper using
bag-of-words including both single and word pairs, we
used a principal component analysis combined with a t-
test for the feature extraction. We found that the AUC
for pediatric patients (Any imaging use: 0.824; CT scan:
0.868) is improved compared to adults (Any imaging
use: 0.780; CT scan: 0.790). The main contributors of
the improvement are the bigrams and the inclusion of
all features from all bags of words, instead of only keep-
ing the first few. A novel part of this study was the de-
velopment of a predictive model for medical imaging use
among a cohort of pediatric ED patients using both
structured and unstructured data available at ED triage.
The predictive model showed “good” prediction per-
formance for both medical imaging overall, X-Ray, and
CT scan [35]. Although statistically significant, we found
that the structured data did not add much prediction
power based on the unstructured data in predicting
medical imaging utilization for both adult and pediatric
patients, indicating that the main factors for imaging
utilization at ED were included in the reasons for visit
and cause of injury data. A prediction tool built based
on the information obtained from patient visits, includ-
ing the unstructured information written by the triage
nurse, may benefit triage personnel and ED physicians,
suggesting that the Emergency Severity Index [36-38], a
common triage standard in the US, may be underusing
the wealth of information available in a typical triage
note. Unstructured data from the hospital EHR system
have remained largely unexplored as extraction and ana-
lysis of these data are complicated [37]. However, infor-
mation hidden in those unstructured health records
provide potentially important information to better
predict resource utilization at ED. The prediction im-
proved significantly for all three outcomes when natural-
language processing elements were added. The present
study adds to similar previous studies [39, 40] by includ-
ing natural language processing in the ED triage predic-
tion model. Earlier prediction of resource use through
tools like those developed here may improve throughput,
and improved ED throughput may help reduce ED
crowding [32, 34, 41, 42].
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The models generally use variables measured at one
time point to estimate the probability of an outcome oc-
curring within a given time in the future [43]. Research
in prediction models for the ED health service at this
stage aims to assist the clinical decision (i.e., to help
identify patients’ imaging needs early in the triage
period) instead of completely replacing the role of clini-
cians. Prediction models with good accuracy can effi-
ciently assist the clinical management workflow if there
is a good implementation strategy. Medical and eco-
nomic risk of deploying these models in a real clinical
settings is, at this stage, high given the inaccuracies.
However, it is still of value to study how to improve the
prediction performance, how to better implement those
types of prediction tools, and test the values of those
models in real implementation, in order to advance the
field. This study brought up a new approach to improve
the prediction models, and set a base model for imaging
prediction at pediatric ED using a national sample. We
examined the associated factors of imaging utilization at
ED and developed prediction models with good predic-
tion results (AUCs greater than 0.80). Further studies
should be performed on how to improve the models’
accuracy, and how to implement the models with good
accuracy as well as assess the medical-economic risk.

Limitations and strengths

This study is limited in several ways. Limits of the data
source (NHAMCS) include that (1) the outcomes of
medical imaging use are based on clinical decisions
made with awareness of the predictors used in the
model, with resulting incorporation bias [44]; (2) the
survey did not collect the information of the subtype of
X-rays, or (3) information on the appropriateness of im-
aging utilization and pediatric specific comorbidities; (4)
the survey rely on clinician diagnoses and it is not pos-
sible to validate the diagnoses; (5) NHAMCS uses visits
and not individual patient counts, so it is possible that
some children had multiple visits, or received multiple
imaging, particularly those more medically complex. The
NLP approach simplified the feature extraction using the
frequency of word and word pairs existing in the text
data. The approach ignored other information, such as
word combination with more than bigrams, or the order
of the words, which could exclude specific predictors.
However, the number of words was small within each
text field, so we would expect to capture clinically rele-
vant information by simply extracting the frequency of
the words and word pairs.. Limitations of the use of the
c-statistic: it is a single number and summarizes the
discrimination of a model but does not communicate all
the information ROC plots contain and lacks direct clin-
ical application [43].
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Strengths of the NHAMCS include national represen-
tativeness, increasing the generalizability of the data.
This study was based on retrospective national survey
samples, and should be viewed as preliminary in the
hierarchy of diagnostic test validity. Future perspective
studies should be performed to test the effectiveness of
the predictive models.

Conclusions

Using a nationally representative data of pediatric pa-
tients presenting to the ED, we examined information
relating to the patients’ socioeconomic, demographic
and clinical factors during the patients’ ED visits, includ-
ing unstructured free-text fields such as the reason for
visiting, and developed predictive models for medical
imaging use. Both CT and X-rays are commonly used in
the pediatric ED with one third of the visits receiving at
least one. We present several predictive models for the
use of medical imaging in pediatric patients visiting the
ED. The inclusion of unstructured data (ie: triage notes)
provided significant improvement in accuracy.
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