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Abstract

Background: Handwriting abnormalities represents one of the major symptom in Parkinson'’s Disease (PD) patients.
The computer-aided analysis of the handwriting allows for the identification of promising patterns that might be
useful in PD detection and rating. In this study, we propose an innovative set of features extracted by geometrical,
dynamical and muscle activation signals acquired during handwriting tasks, and evaluate the contribution of such
features in detecting and rating PD by means of artificial neural networks.

Methods: Eleven healthy subjects and twenty-one PD patients were enrolled in this study. Each involved subject was
asked to write three different patterns on a graphic tablet while wearing the Myo Armband used to collect the muscle
activation signals of the main forearm muscles. We have then extracted several features related to the written pattern,
the movement of the pen and the pressure exerted with the pen and the muscle activations. The computed features
have been used to classify healthy subjects versus PD patients and to discriminate mild PD patients from moderate PD
patients by using an artificial neural network (ANN).

Results: After the training and evaluation of different ANN topologies, the obtained results showed that the
proposed features have high relevance in PD detection and rating. In particular, we found that our approach both
detect and rate (mild and moderate PD) with a classification accuracy higher than 90%.

Conclusions: In this paper we have investigated the representativeness of a set of proposed features related to
handwriting tasks in PD detection and rating. In particular, we used an ANN to classify healthy subjects and PD patients
(PD detection), and to classify mild and moderate PD patients (PD rating). The implemented and tested methods
showed promising results proven by the high level of accuracy, sensitivity and specificity. Such results suggest the
usability of the proposed setup in clinical settings to support the medical decision about Parkinson’s Disease.
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Background

Parkinson’s Disease (PD) is the second most common
neurodegenerative disorder after Alzheimer’s disease that
leads to several neuro-motor deficits. It is well known
that PD patients exhibit problems when the perform
movements that are executed sequentially due to the loss
of coordination among the motor sequence components
[1-5]. As a result, sequential movements are more
segmented and characterized by pauses between sub-
movements [6].

The handwriting is a task composed of sequential move-
ments that involves fine and complex manual skills relying
on a sophisticated mix of cognitive, sensory and motor
components [7]. This explains the manifestation of abnor-
mal features in the handwriting of PD patients. The dif-
ficulties in the handwriting process affecting PD patients
are mainly two:

o difficulties related to the control of the movement
amplitude, e.g. decreasing the size of the characters
(micrographia) and failing in keeping the stroke
width of the characters constant as the writing
progresses [8—15];

e not regular and bradykinetic movements that lead to
an increased movement duration, decreased speed
and accelerations, and unstable velocity and
acceleration [16-21].

Several research groups have investigated the use of
handwriting’s features to classify PD patients and healthy
subjects.

Helsper et al. published a study that investigated the
handwriting differences between preclinical PD patients
and healthy controls [22]. The authors analysed two lines
of the handwritten text (sampled from a longer written
text) and proposed an approach that considers (1) the
extraction of 10 features from text segments written by
test subjects as a first step, and then (2) the computation
of a single resulting feature set based on the mean, the
standard deviation and the frequency of the occurrences.
The authors statistically proved the existence of features
characterizing many years before the diagnosis.

Longstaff and collegues studied the relation between
the inclination of PD patients to scale the character size
and reduce the speed of drawing movements and the
movement variability [23]. The experiment is based on
the analysis of several geometrical writing patterns with
different shape and size drawn with a pen on a graph-
ics tablet. By analysing the extracted features the authors
stated that there is a substantial divergence in the quality
of movements between PD patients and healthy people

A different recording set-up has been used by Unlii et
al. [24] that recorded the pressure and the inclination of
an electronic pen during writing tasks. Their proposed
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approach considered the extraction of 8 different features
and the use the Receiver Operating Characteristic (ROC)
to analyse the diagnostic possibilities both in term of sen-
sitivity and specificity. Their results showed that the most
representative feature is based on the difference between
the writing pressure and the tremor of the pen tilt angle.

Electronic pen and tablet have been also used by
Rosenblum et al. to collect the position, the pressure and
the angle of the pen tip during the writing of two main
patterns (i.e. the name and fixed address) [25]. The aver-
age values of the pressure and velocity acquired during the
entire task and other spatial and temporal characteristics
of each stroke allowed them to differentiate PD patients
from control subjects with a sensitivity of 95.0%.

In our preliminary previous works [26, 27], we proposed
a promising method to classify PD patients from healthy
subjects by using only 4 features extracted by scanned
text (through image processing techniques) and surface
ElectroMyoGraphy (sEMG) signals. Recently, we used a
graphic tablet and the Myo armband to extract biometric
signals related to pen movements (pen tip position, incli-
nation and pressure) and muscle activation [28, 29]. These
signals were processed to extract a number of features
used as input to two different classifiers.

In this work, we improve our recent studies by propos-
ing a larger feature set and testing our classifiers on bigger
cohort of subjects. Furthermore, we focused on the selec-
tion of the most representative features that better high-
light the handwriting differences between (1) mild and
moderate PD patients, and (2) PD patients and healthy
subjects.

Methods
The proposed model-free technique for the analysis of
handwriting is computer-assisted and based on the extrac-
tion of features from biometrical signals [30] (i.e., SEMG
signals, pen tilt, etc.) related to hand movements during
handwriting tasks.

In the following sections, the features selected and used
in our technique and the algorithms used for feature
selection and classification are presented and described.

Handwriting feature extraction

Handwriting features have been derived from biometric

signals obtained during handwriting tasks. In general, the

proposed features can be grouped into two groups based

on sEMG and pen tip signals:

® Features derived from sEMG signals — these features

are related to the subject’s muscle activity and are
derived from the sSEMG signals obtained from the
forearm of the subject:

— RMS features: for every sSEMG channel, Root
Mean Square (RMS) is computed. It is
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Fig. 1 Representation of the regression lines Ryp and Ry, and the
angle «. Circle and cross marks identifies respectively upper and
lower peaks of the Y-coordinate of the pen tip position

determined by Eq. (1), where x; is the sample
value at the discrete-time i, and n is the total
number of samples acquired.

(1)

— ZC features: Zero Crossing (ZC) is a
variance-related index. In detail, it is the
number of sign variations between two
consecutive samples, and it is only increased if
the difference exceeds a predefined tolerance
value. Considering two consecutive samples xj
and w1, the ZC value is increased if and only
if the following condition is satisfied: xx > 0
and x¢41 < 0, or xx < 0and x4 > 0 and
|xx — xk+1| > tol. Due to the presence of noisy
signals, the tolerance value (tol) is used to
prevent ZC increment; it is measured as the
average of the standard deviations of all the
SEMG channels considered. In addition, its
value is divided by the length of the signal to
normalize the features among the subjects.

p
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P

X

Fig. 2 Example of computation of the spiral precision index
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Table 1 The configuration of confusion matrix

Positive Negative
Positive TP FP
Negative FN N

® Pen tip related features - these features are extracted
during the handwriting task from the signals
produced by a graphic tablet:

— Cartesian and XY features: these features refer
to the pen tip writing kinematics on the
graphic tablet and are derived from the
orientation of the XY axes. This group of
features includes the features extracted from
the following signals: Cartesian and
XY-velocity, Cartesian and XY-acceleration,
Cartesian and XY-jerk. The features are
determined as first, second and third
derivatives, respectively, starting from the X-Y
position. It leads to nine output signals.

— Pen tip pressure feature: this is a scalar feature
which refers to the pressure applied to the
tablet surface by the pen tip.

— Azimuth and altitude feature: the azimuth
feature is the angle value between a reference
direction (e.g., the Y axes of the tablet) and the
pen direction projected on the horizontal

Fig. 3 Example of the system set-up used for data acquisition
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Fig. 6 Example of one repetition of the letter-based task (sequence of
eight "I" with size of 2.5cm) performed by a healthy subject (top) and
a PD subject (bottom), respectively
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Fig. 4 Scheme of the experiment. Features are grouped in three sets:
A, B and C. The application of the Feature Selection (FS) algorithm
leads to 6 cases

plane. The altitude feature is the angle value

between the pen direction and the horizontal plane.

— Pattern specific features: these features are
related to the writing size of letter-based
patterns and the writing precision of spiral
writing ones. In detail, for the letter-based
patterns, the pen tip Y coordinate has been
processed, and the upper and lower peaks are
then determined. The two groups of peak

0)
@

Fig. 5 Example of one repetition of the spiral drawing task performed
by a healthy subject (top) and a PD subject (bottom), respectively

points are then independently used to
determine the upper regression line R, and
the lower regression line Ry,,, using linear
regression. Finally, the o angle between the
regression lines is computed. The graphical
representation of the procedure is shown in
Fig. 1. A further feature taken into account is
the coefficient of determination (R?)
computed according to Egs. (2).

1 n
y= ZZ”’
1

SST =Y (i =) (2)
i
SSE =Y (i—)%
i
R =1-3E
SST

The three resulting patterns chosen as
descriptors of the variability of the writing size
are the o angle between the regression lines
and the two coefficients of determination (R2).
For the spiral patterns, instead, the feature is
based on the variability of the strokes. We
computed the vector 7 originating in P with
respect to the spiral centroid point C for each

Fig. 7 Example of one repetition of the letter-based task (sequence of
eight "I" with size of 5cm) performed by a healthy subject (top) and a
PD subject (bottom), respectively
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Table 2 Objective 1: results of the application of the MOGA algorithm on each of the six different feature datasets
ANN T \
Case Number of Features Writing Pattern opelogy Accuracy
Number of Neurons Activation Function

1 41 1 186/15/2 logsig/logsig/softmax 90.76%
2 43 2 44/10/2 logsig/logsig/softmax 92.98%
3 43 3 232/82/7/2 logsig/logsig/logsig/softmax 95.95%
4 6 1 222/25/2 logsig/logsig/softmax 93.78%
5 6 2 246/12/2 logsig/logsig/softmax 91.58%
6 7 3 45/114/21/2 satlins/tansig/logsig/softmax 96.85%
The output layer configuration was preliminarily fixed with two neurons and softmax as activation function

point P of the X-Y pen tip position. Then, we Accuracy = TP+ TN 3)

calculated the angle B between 7 and the TP+ TN + FP+ FN

=
direction vector d tangent to the spiral in P. Specificity = N , (4)
The visual explanation of the process is IN +FP
. A, TP
depicted in F.lg..2. Lastly, we calculated the Sensitivity = ) (5)
standard deviation of the 8 angles computed TP+ FN

for each point P. The standard deviation value
is the feature chosen to describe the precision
of the spiral.

Feature selection and classification

A feature selection procedure has been used to under-
stand the main representative for the subject’s status [31];
we used an approach similar to the entropy criterion (i.e.,
information gain) and based on a classification decision
tree technique with Gini’s diversity index [32].

The classification procedure is based on Artificial
Neural Network (ANN) classifier [33—35]. Since design-
ing the topology of neural classifiers is challenging, several
works have been proposed dealing with this task [36—38].
In this work, the topology of the classifier was optimised
by the evolutionary approach proposed in [39].

We used a Multi-Objective Genetic Algorithm (MOGA)
to find the optimal network topology. A genetic algorithm
is a powerful optimization technique that reflects the pro-
cess of natural selection where the fittest individuals are
selected for reproduction in order to produce offspring
of the next generation, thus explaining its feasibility in
several research domains [40, 41]. The MOGA algorithm
was configured to find the optimum varying the following
network parameters: (i) number of hidden layers (integer
interval: 1 to 3), (ii) number of neurons per layer (inte-
ger interval: 1 to 256 for the first hidden layer and 0 to
255 for other ones), and (iii) activation functions for each
layer (one among: log-sigmoid - logsig, hyperbolic tan-
gent sigmoid -tansig, pure linear - purelin and symmetric
saturating linear - satlins).

The overall performances of MOGA algorithm and clas-
sification network were evaluated using the confusion
matrix reported in Table 1 and the performance indexes
reported in Egs. 3, 4 and 5.

Experiments and results

Participants

32 participants (21 males, 11 females, age: 71.4 +8.3
years old) were enrolled for the experiment. In detail,
the participants were composed of 21 PD subjects
(17 males and 4 females, age: 72.1 £8.3) and 11 healthy
ones (4 males and 7 females, age: 70.2 £10.2 years old);
the healthy group was selected to match the age of
the PD one. The PD group was subsequently divided
into mild and moderate subgroups according to the
degree of the disease. The subgroups were composed
of 12 mild patients (9 males and 3 females, age: 70.5
£10.0) and 9 moderate ones (8 males and 1 female, age:
73.8 +6.0).

System set-up

The data acquisition is based on the system set-up (Fig. 3)
presented in a previous work [28]. The set-up is based on
two sensors: the Myo™Gesture Control Armband [42] for
sEMG signal acquisition and the graphics tablet WACOM
Cintiq 13” HD [43] for acquiring handwriting signals and
data. In detail, the Myo™Armband allowed us to acquire 8
different SEMG signals of the forearm, whereas the tablet
permitted us to acquire the pen tip coordinates and pres-
sure, and the tilt of the pen with respect to the writing
surface.

Table 3 Confusion matrix of Case 1 (Objective 1)

True Condition

PD Control
) . PD 59.75% 5.35%
Predicted Condition
Control 3.89% 31.02%
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Table 4 Confusion matrix of Case 2 (Objective 1)
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Table 6 Confusion matrix of Case 4 (Objective 1)

True Condition

True Condition

PD Control PD Control
. . PD 60.36% 3.75% . . PD 61.40% 3.98%
Predicted Condition Predicted Condition
Control 3.89% 32.62% Control 2.24% 32.38%

Experimental description

We used three writing patterns for the experiments lead-
ing to as many writing tasks. The patterns selected were
as follows:

1 Pattern 1 — a five-turn spiral drawn in anticlockwise

direction;

2 Pattern 2 — a sequence of 8 Latin letter "1” with a size
of 2.5¢cmy;

3 Pattern 3 — a sequence of 8 Latin letter "1” with a size
of 5cm.

It is possible to observe that only two writing patterns
(Patterns 2 and 3) were size-constrained, and for those, a
visual marker has been provided as a size reference.

In the experiment, we asked each subject to perform
four repetitions for each writing tasks: the first one was
used to familiarise with the task and was discarded, the
remaining three were recorded as data for the following
processing.

Each handwriting tasks was interleaved with a rest
period of three seconds, and the first pressure point on the
tablet has been used as a trigger for the tasks begin.

Each subject generated 41 features for writing task 1 and
to 43 features for writing task 2 and 3:

® Root Mean Square (RMS) of each sEMG signal (8
RMS features for each subject and for each task);

e Zero Crossing (ZC) of each sEMG signal (8 RMS
features for each subject and for each task);

e mean and standard deviation for each subject and for
each task of the following signals:

— pen tip Cartesian velocity (two features);

— X and Y velocity components of the pen tip
(four features);

— pen tip Cartesian acceleration (two features);

Table 5 Confusion matrix of Case 3 (Objective 1)

True Condition

PD Control
) - PD 61.67% 2.09%
Predicted Condition
Control 1.96% 34.27%

— Xand Y acceleration components of the pen
tip (four features);

— pen tip Cartesian jerk (two features);

— Xand Y jerk components of the pen tip (four
features);

— pen tip pressure (two features);

— pen azimuth (two features);

— pen altitude (two features);

e pattern specific features:

— index of precision of the spiral drawing (one feature);
— size related features for the constrained
patterns (three features).

Experimental data processing description
The objectives of the conducted experiments were mainly
two:

1 the first was to separate PD patients from healthy
subjects;

2 the second was to correctly classify mild and
moderate Parkinson patients.

For each objective, the features extracted during the
experiments were grouped according to the following
scheme:

e creation of three different feature datasets:

— dataset A including only the features extracted
from writing pattern 1 (41 features);

— dataset B including only the features extracted
from writing pattern 2 (43 features);

— dataset C including only the features extracted
from writing pattern 3 (43 features);

Table 7 Confusion matrix of Case 5 (Objective 1)

True Condition

PD Control
. . PD 60.35% 5.13%
Predicted Condition
Control 2.24% 31.24%
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e application of a feature selection algorithm to reduce
the number of the features;
e creation of six different new feature datasets:

— Case 1. Dataset including all the feature of set A;

— Case2. Dataset including all the feature of set B;

— Case 3. Dataset including all the feature of set C

— Case 4. Dataset including only the features
obtained by the application of the feature
selection algorithm on dataset A;

— Case 5. Dataset including only the features
obtained by the application of the feature
selection algorithm on dataset B;

— Case 6. Dataset including only the features
obtained by the application of the feature
selection algorithm on dataset C.

To assess both objectives of the experiments, an
Artificial Neural Network (ANN) classifier featuring an
optimised topology provided a Multi-Objective Genetic
Algorithm (MOGA) was used.

In detail, for each objective and each of the six cases,
we estimated the performance indexes of the ANN opti-
mal topology approach, reported in Egs. 3, 4 and 5,
in terms of percentage and standard deviation. Due to
the dependence of the ANN performances from both
net initialisation and permutation of training-validation
datasets, we iterated the assessment over 250 repetitions
of the net training procedure. Figure 4 depicts the scheme
of the experiments.

Results

Two samples of one repetition of the writing tasks
performed respectively by healthy and PD subject are
reported (not in real scale) in Figs. 5 (task no.1), 6 (task
no.2) and 7 (task no.3).

Based on the two objectives the presentation and the
discussion of the results obtained from the experiments
have been subdivided. In particular, for each objective, we
have reported the results obtained from both the feature
selection and the classification for each of the six cases.

For each case the training procedure was iterated 250
times to assess the stability of the learning process; hence,
the confusion matrices and the related results are pre-
sented in percentage with the standard deviation reported
in brackets.

Table 8 Confusion matrix of Case 6 (Objective 1)

True Condition

PD Control
) . PD 62.11% 1.62%
Predicted Condition
Control 1.53% 34.75%
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Table 9 Objective 1: performances of the application of the
MOGA algorithm on each of the six different feature datasets

Case Accuracy Specificity Sensitivity

1 0.9076 [0.0764] 0.8530 [0.1553] 0.9389 [0.0720]

2 0.9298 [0.0523] 0.8970[0.1212] 0.9486 [0.0587]
0.9595 [0.0479] 0.9425 [0.0831] 0.9691 [0.0575]

4 0.9378[0.0566] 0.8905 [0.1356] 0.9649 [0.0537]

5 0.9158 [0.0526] 0.8590 [0.1153] 0.9483 [0.0607]

6 0.9685 [0.0405] 0.9555 [0.0805] 0.9760 [0.0500]

Results are reported as man and standard deviation values over 250 iterations

Objective 1 - separating PD patients and healthy subjects:

e Feature Selection results: The application of the
feature selection algorithm previously reported, led to
a significant reduction of the number of considered
features for all three datasets of features extracted
from the writing patterns. In particular:

e for dataset A including the 41 features extracted from
writing pattern 1, the sSEMG RMS value, three sSEMG
ZC values, the mean Cartesian velocity and the mean
acceleration on X axes were the six selected features
to be classified in Case 4;

e for dataset B including the 43 features extracted from
writing pattern 2, the mean jerk on Y axes, three
SEMG ZC values, the mean Cartesian acceleration
and the mean velocity on X axes were the six selected
features to be classified in Case 5;

o for dataset C including the 43 features extracted from
writing pattern 3, two sEMG RMS values, a sSEMG
ZC value, the mean cartesian velocity, the altitude
STD, the azimuth RMS and the mean velocity on X
axes were the seven selected features to be classified
in Case 6.

e (lassification results: for each of the six different
feature datasets, the MOGA algorithm is applied to
provide the optimal ANN topology. The optimal
topology results and the confusion matrices are
reported in Table 2 and in Tables 3, 4, 5, 6, 7 and 8,
respectively; the performances expressed in terms of
accuracy, specificity and sensitivity have been
summarised in Table 9.

Objective 2 - separating mild and moderate PD patients:
e Feature Selection results: the application of the
feature selection algorithm previously reported, led to
a significant reduction of the number of considered
features for all three datasets of features extracted
from writing patterns. In particular:

— for dataset A including the 41 features
extracted from writing pattern 1, two sEMG
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Table 10 Objective 2: results of the application of the MOGA algorithm on each of the six different feature datasets

Case Number of Features Writing Pattern ANN Topology Accuracy
Number of Neurons Activation Function
1 41 1 59/65/2/2 logsig/logsig/logsig/softmax 94.34%
2 43 2 138/18/1/2 logsig/logsig/logsig/softmax 87.26%
3 43 3 65/36/7/2 logsig/logsig/logsig/softmax 91.86%
4 6 1 123/2 logsig/softmax 96.00%
5 5 2 67/24/2 logsig/logsig/softmax 86.71%
6 5 3 17/2 tansig/softmax 91.66%

The output layer configuration was preliminarily fixed with two neurons and softmax as activation function

RMS values, two sSEMG ZC values, the mean
pressure and the mean altitude were the six
selected features to be classified in Case 4;

— for dataset B including the 43 features
extracted from writing pattern 2, two sSEMG
RMS values, two sSEMG ZC values and the
mean Cartesian velocity were the five selected
features to be classified in Case 5;

— for dataset C including the 43 features
extracted from writing pattern 3, two sEMG
RMS values, a sSEMG ZC value, the mean
Cartesian velocity on X axes and the mean
pressure were the five selected features to be
classified in Case 6.

o (lassification results: for each of the six different
feature datasets, the MOGA algorithm is applied to
provide the optimal ANN topology. The optimal
topology results and the confusion matrices are
reported in Table 10 and in Tables 11, 12, 13, 14, 15
and 16, respectively; the performances expressed in
terms of accuracy, specificity and sensitivity have
been summarised in Table 17.

Discussion

For the sake of clarity, we summarised the accuracy of
all cases for both objectives in Table 18. As reported in
the table, the proposed procedure leads to high accu-
racy performances; the results for both objectives present
accuracy in the range 86 < x < 97, with a standard
deviation lower than 0.09. The low value of the standard
deviation allows us to assess the stability of the learn-
ing process of the optimal ANN. Similar observations can
be stated for both objectives for the classification of the
selected features. In detail:

e the classification between PD patients and healthy
subjects (objective 1) achieves the best accuracy
(96.85%) in Case 6 (seven features selected from the
dataset of 43 features extracted from writing pattern

3). The feature selection stated that three out of seven
features were related to sSEMG signals (RMS and ZC),
whereas the others to pen tilt and velocity;

o the classification between mild and moderate PD
patients (objective 2) achieves the best accuracy
(96.00%) in Case 4 (six features selected from the
dataset of 41 features extracted from writing pattern
1). The feature selection stated that four out of six
features were related to SEMG signals (RMS and ZC),
whereas the others to pen tilt and velocity;

Conclusions

In this work, we proposed an innovative methodology
for computer-assisted handwriting analysis with the main
goal of PD detection (healthy subjects vs. PD patients)
and rating (mild vs moderate PD patients). The proposed
approach is based on extracting different features from
biometric signals collected during handwriting tasks and
using such features to detect and rate PD. The developed
decision support system (DSS) is based on an artificial
neural network whose topology has been optimized with
a MOGA.

The results showed that the proposed DSS is able to
classify healthy subjects vs PD patients and mild vs mod-
erate PD patients with a high classification accuracy (more
than 90.0%). Furthermore, we proved that a limited set of
representative feature selected by means of a classifica-
tion decision tree technique, that uses the Gini’s diversity
index, improves the overall accuracy (more than 96.0%).

Future works are needed to investigate the DSS perfor-
mance with a larger cohort of subjects that includes severe
PD patients too. This will allow us to classify PD patients
by using more than two PD status classes and to monitor

Table 11 Confusion matrix of Case 1 (Objective 2)

True Condition

Moderate Mild
] - Moderate 39.51% 2.31%
Predicted Condition
Mild 3.34% 54.83%
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Table 12 Confusion matrix of Case 2 (Objective 2)

True Condition

Moderate Mild
) o Moderate 37.43% 7.31%
Predicted Condition
Mild 5.43% 49.83%

Table 13 Confusion matrix of Case 3 (Objective 2)

True Condition

Moderate Mild
) o Moderate 39.51% 4.80%
Predicted Condition
Mild 3.34% 52.34%
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Table 18 Summary of the accuracy values obtained for each of
the two objectives for each considered case

Case Objective
1 2

1 90.76% (0.0764) 94.34% (0.0626)
All Feature 2 92.98% (0.0523) 87.26% (0.0850)

3 95.95% (0.0479) 91.86% (0.0830)

4 93.78% (0.0566) 96.00% (0.0658)
Selected Feature 5 91.58% (0.0526) 86.71% (0.0837)

6 96.85% (0.0405) 91.66% (0.0858)

Table 14 Confusion matrix of Case 4 (Objective 2)

True Condition

Moderate Mild
) o Moderate 41.31% 2.46%
Predicted Condition
Mild 1.54% 54.69%

Table 15 Confusion matrix of Case 5 (Objective 2)

True Condition

Moderate Mild
) o Moderate 36.51% 6.94%
Predicted Condition
Mild 6.34% 50.20%

Table 16 Confusion matrix of Case 6 (Objective 2)

True Condition

Moderate Mild
) o Moderate 39.29% 4.77%
Predicted Condition
Mild 3.57% 52.37%

Table 17 Objective 2: performances of the application of the
MOGA algorithm on each of the six different feature datasets

Case Accuracy Specificity Sensitivity

1 0.9434 [0.0626] 0.9595 [0.0763] 0.9220[0.1158]
2 0.8726 [0.0850] 0.8720 [0.1206] 0.8733 [0.1544]
3 0.9186 [0.0830] 09196 [0.1167] 0.9220 [0.1286]
4 0.9600 [0.0658] 0.9570[0.0939] 0.9640 [0.0947]
5 0.8671[0.0837] 0.87851[0.1128] 0.8520[0.1598]
6 0.9166 [0.0858] 0.9165 [0.1163] 09167 [0.1313]

Results are reported as mean and standard deviation values over 250 iterations

Standard deviation over 250 repetitions is reported in brackets

the progress of the disease over time. Furthermore, due
to the time-consuming acquisition steps, it is desirable
to reduce the required number of pattern tasks; this will
be achieved through a proper writing pattern selection
among the proposed ones.
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