
RESEARCH ARTICLE Open Access

A validated natural language processing
algorithm for brain imaging phenotypes
from radiology reports in UK electronic
health records
Emily Wheater1, Grant Mair1, Cathie Sudlow1,2,3, Beatrice Alex4,5, Claire Grover4,5 and William Whiteley1,6*

Abstract

Background: Manual coding of phenotypes in brain radiology reports is time consuming. We developed a natural
language processing (NLP) algorithm to enable automatic identification of brain imaging in radiology reports
performed in routine clinical practice in the UK National Health Service (NHS).

Methods: We used anonymized text brain imaging reports from a cohort study of stroke/TIA patients and from a
regional hospital to develop and test an NLP algorithm. Two experts marked up text in 1692 reports for 24
cerebrovascular and other neurological phenotypes. We developed and tested a rule-based NLP algorithm first
within the cohort study, and further evaluated it in the reports from the regional hospital.

Results: The agreement between expert readers was excellent (Cohen’s κ =0.93) in both datasets. In the final test dataset
(n = 700) in unseen regional hospital reports, the algorithm had very good performance for a report of any ischaemic
stroke [sensitivity 89% (95% CI:81–94); positive predictive value (PPV) 85% (76–90); specificity 100% (95% CI:0.99–1.00)]; any
haemorrhagic stroke [sensitivity 96% (95% CI: 80–99), PPV 72% (95% CI:55–84); specificity 100% (95% CI:0.99–1.00)]; brain
tumours [sensitivity 96% (CI:87–99); PPV 84% (73–91); specificity: 100% (95% CI:0.99–1.00)] and cerebral small vessel disease
and cerebral atrophy (sensitivity, PPV and specificity all > 97%). We obtained few reports of subarachnoid haemorrhage,
microbleeds or subdural haematomas. In 110,695 reports from NHS Tayside, atrophy (n = 28,757, 26%), small vessel
disease (15,015, 14%) and old, deep ischaemic strokes (10,636, 10%) were the commonest findings.

Conclusions: An NLP algorithm can be developed in UK NHS radiology records to allow identification of cohorts of
patients with important brain imaging phenotypes at a scale that would otherwise not be possible.
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Key messages

� Brain imaging is expensive to perform at scale for
research purposes, and automated reading of base
images is yet to be developed for most important
disease phenotypes. Therefore reading of brain
imaging text reports at scale would be useful for
research and clinical purposes.

� We developed a natural language processing (NLP)
algorithm to identify 24 brain imaging phenotypes in
two areas of NHS Scotland which had excellent
positive predictive value for cerebrovascular and
neurodegenerative phenotypes.

� Use of radiologists’ reports of brain imaging in
clinical practice can be useful for cohort
development and outcome ascertainment of
neurological phenotypes.

Background
Brain imaging with computerized tomography (CT) and
magnetic resonance imaging (MRI) can identify biomarkers
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of brain pathology that are important for the accurate diag-
nosis and phenotyping of many neurological diseases. How-
ever, brain imaging is expensive, and there are practical
constraints to its use for research purposes, particularly in
elderly and frail populations. Brain imaging reported by ex-
pert radiologists is nevertheless performed very frequently
in clinical practice: in NHS England, for example, ~ 700,000
brain MRIs were performed between 2016 and 2017 [1].
Therefore, the reports of brain imaging could aid pheno-
type definition at lower costs, and be used for large-scale
epidemiological studies of volunteers (e.g. UK Biobank) [2],
cohorts of patients with disease, cataloguing clinical images,
and for system-wide health care quality improvement.
In clinical practice, a radiologist reads a brain image

and produces a text report of the findings. However, it is
difficult to use these text reports in large scale research
studies, because manually coding many thousands of re-
ports is time consuming, and subject to inter- and intra-
annotator variation [3]. Many radiology reports are un-
structured, despite initiatives to improve this by the
Radiological Society of America and other organizations,
and therefore are difficult to use with the simplest auto-
mated methods of text searching.
One solution is to use natural language processing

(NLP) methods to extract information from unstruc-
tured text in a radiology report. NLP algorithms can be
constructed to identify clinically relevant phenotypes
within text and to determine the grammatical relation-
ship between different phrases. Rule-based NLP algo-
rithms can have a high sensitivity (i.e. identify a high
proportion of true cases) and high positive predictive
value (i.e. a high proportion of those identified are true
cases) in clinical records, for example identifying appen-
dicitis, acute lung injury and cancer for use in cohort
building, query based case retrieval and quality assess-
ment of neurological practice [4]. For example a US-
based study from Partner’s Healthcare identified ~ 6000
cases of cerebral aneurysms and ~ 6000 matched con-
trols with a penalized logistic regression NLP model
using radiology reports and other text and routine cod-
ing, giving a positive predictive value of 91% for the
presence of aneurysms [5]. For the identification of
stroke phenotypes, a study of 400 reports from the Mayo
Clinic and Tufts Medical Center demonstrated that a
rule-based NLP system had an excellent positive predict-
ive value (1.0) for the identification of ‘silent brain in-
farcts’ and a convolutional neural network had an
excellent positive predictive value (0.99) for the identifi-
cation of white matter disease [6].
We aimed to develop and test an NLP algorithm to ex-

tract brain phenotypes from CT and MR brain radiology
reports in NHS Scotland. We developed a list of brain
phenotypes, primarily related to cerebrovascular disease
that could be extracted from reports; determined ground

truth in each report by expert review of the text; and de-
veloped and validated an NLP algorithm in two different
datasets from different regions of NHS Scotland.

Methods
The datasets used to create the algorithm are available, sub-
ject to potential users obtaining the necessary ethical, re-
search and data governance approvals, from Edinburgh
Stroke Study (www.dcn.ed.ac.uk/ess) and Health Informatics
Centre Services, Dundee (www.dundee.ac.uk/hic/hicservices).

Datasets
We used two sources of radiology reports to develop
and test our automated reading and labelling algorithm:
(i) all the brain imaging reports between 2002 and 2014
of participants in the Edinburgh Stroke Study (ESS), a
hospital based register of 2160 stroke and transient is-
chaemic attack (TIA) patients [7] (of whom 1168 could
be linked to local radiology reports) and (ii) MR and CT
brain reports from NHS Tayside (a different NHS health
board within Scotland) performed in unselected in- and
out-patients between December 1994 and January 2015
(n = 156,619). We received reports stripped of identifiers.
We excluded reports of non-brain imaging that were of
mixed brain and other body areas, or did not contain a
complete radiologist’s report.
We divided each set of reports into datasets for algo-

rithm development (dev) and algorithm validation (test).
The ESS data as we received it appeared to be random-
ized. We reserved the first 500 reports as development
data, of which 364 were manually annotated. The
remaining 668 reports were further randomized and, of
these, 266 were manually annotated to make a test data-
set. The Tayside data contained 156,619 reports and we
first split this into four equal parts. We used the first
part to create manually annotated development data
(362 reports) and a randomised version of the fourth
part to create manually annotated test data (700 reports).
The Tayside data contained a high proportion of ‘nor-
mal’ reports, so to enrich it for pathological findings, we
used a regular expression search (“blood|bleed|haemor|-
hemor”) to select reports for the development set. We
did not do this for the Tayside test data in order to en-
sure that it was truly random (of the 700 test reports,
only 295 matched the above regular expression).

Phenotypes of interest, ground truth and agreement
between expert readers
Two clinically trained readers (a neuroradiologist and a
neurologist, both with specialist expertise in stroke) read
1692 reports and marked up and coded each report with
open access annotation software (http://brat.nlplab.org)
[8] using the following simple clinically meaningful dis-
ease entity and modifier entity annotations in the
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reports: stroke (haemorrhagic vs ischaemic vs under-
specified, deep vs cortical, recent vs old); atrophy
(present vs absent); changes of small vessel disease
(present vs absent); brain tumours (meningioma, gli-
oma, metastasis, other); subdural hematoma (present
vs absent); subarachnoid haemorrhage (aneurysmal or
other); microbleeds (deep vs lobar vs unspecified);
haemorrhagic transformation of infarct (present vs ab-
sent. We combined these annotations into 24 clinic-
ally meaningful phenotypes (e.g. old deep ischaemic
stroke, recent cortical stroke etc., see Table 1), which
the expert readers also identified for each report as

annotations on the document level. Stroke types were
defined as ‘underspecified’ when it was not possible
to assign a location, age or stroke type. Table 1 lists
the number of reports, sentences, tokens and annota-
tions for each of the datasets and partitions and also
provides detailed counts for each phenotype per parti-
tion. An example of an annotated and synthetic but
realistic brain imaging report with entity and label
(phenotype) annotation displayed via the Brat annota-
tion tool is shown in Fig. 1. A report can be labelled
with zero or more phenotypes (min = 0, max = 7, aver-
age = 1.4). In the chosen example the report is

Table 1 Dataset statistics: number of reports, sentences, entity, modifier and phenotype (label) annotation per data set (ESS dev/test
vs Tayside dev/test) for annotator 1

ESS Dev ESS Test Tayside Dev* Tayside Test*

Reports 364 266 362 700

Sentences 3837 2855 2791 3948

Tokens 32,229 22,842 50,522 48,519

Total Entities 4332 2924 2997 2986

Disease Entities 2373 1494 1361 1501

Modifier Entities 1959 1430 1636 1485

Total Phenotypes (Labels) 792 518 558 506

Atrophy 187 122 90 164

Small vessel disease 245 159 60 145

Stroke, underspecified 24 15 16 < 5

Haemorrhagic stroke, deep, old 2 4 < 5 < 5

Haemorrhagic stroke, deep, recent 2 2 < 5 < 5

Haemorrhagic stroke, lobar, old 4 3 7 < 5

Haemorrhagic stroke, lobar, recent 1 4 < 5 < 5

Haemorrhagic stroke, underspecified 7 10 94 15

Ischaemic stroke, cortical, old 112 61 27 26

Ischaemic stroke, cortical, recent 21 14 19 12

Ischaemic stroke, deep, old 140 85 60 41

Ischaemic stroke, deep, recent 7 4 < 5 < 5

Ischaemic stroke, underspecified 5 12 85 15

Haemorrhagic transformation 1 1 10 < 5

Subdural haematoma 9 6 20 8

Subarachnoid haemorrhage, aneurysmal 1 0 < 5 < 5

Subarachnoid haemorrhage, other 6 6 21 7

Microbleed, deep 2 1 < 5 < 5

Microbleed, lobar 2 1 < 5 < 5

Microbleed, underspecified 0 1 < 5 < 5

Tumour, glioma 0 0 < 5 < 5

Tumour, meningioma 2 4 < 5 < 5

Tumour, metastasis 2 0 22 37

Tumour, other 10 3 21 12

*Small numbers suppressed in the NHS Tayside table due to data governance requirements
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labelled with two phenotypes (Ischaemic stroke, cor-
tical, old and small vessel disease).
We calculated inter-annotator agreement (IAA) be-

tween the two clinician annotators for each of the
phenotypes in the ESS test dataset (n = 266) and a
subset of the NHS Tayside test dataset (n = 100).
We selected a subset of Tayside data for double an-
notation because we did not have the resources to

annotate all test reports twice. The double annotated
sample was the final 100 of the 700 randomly se-
lected test reports. We use precision, recall and F1-
score for entity annotation agreement because
Cohen’s Kappa has been found to be an inappropri-
ate metric for measuring IAA for named entities [9]..
We use Cohen’s Kappa for the label (phenotype) an-
notations [9].

Fig. 1 Annotated example report displayed in the Brat annotation tool
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Natural language processing
We iteratively developed an NLP system to identify the
24 phenotypes in radiology reports. The NLP system,
Edinburgh Information Extraction for Radiology reports
(EdIE-R), is a staged pipeline process (see Fig. 2), with
XML rule-based text mining software at its core [10].
Scan reports are first converted from text format into
XML. Each report is then zoned into relevant sections
(request, body of report, conclusions) using regular ex-
pressions. The text of the body of each report is then
split into paragraphs, sentences and word tokens by a
tokenization component. This is followed by part-of-
speech (POS) tagging where words are labeled with their
syntactic categories using the C&C POS tagger [11] in
combination with two models, one trained on newspaper
text and one on the Genia biomedical corpus [12]. This
is followed by a lemmatization step using morpha [13]
to analyze inflected nouns and verbs and determine their
canonical form (e.g. bleed for bleed, bled, bleeding and
bleeds). All information computed up to this point is the
basis for named entity recognition (NER), negation de-
tection and relation extraction. These processes are rule-
based and also involve look-up from two manually cre-
ated domain lexicons (i.e. dictionaries), developed by ex-
pert readers’ mark-up of text. These lexicons total
around 400 entries though many of these are near dupli-
cates arising from hyphenation and spelling variants (e.g.
‘intracranial’, ‘intra-cranial’, ‘intra cranial’; ‘haemorrhage’,
‘haemorrhage’). The negation detection and relation ex-
traction also rely on an additional chunking step which
determines noun and verb phrases in the text. Finally,
document-level labels on the patient’s type of stroke or
other diseases discussed in the report (phenotypes) are
assigned based on the entities and relations present in
the text. The rules for this step are a simple mapping
from the previous layers of mark-up to the labels. For
example, to choose a ‘small vessel disease’ label, the rules
need only to check that there is a non-negative small
vessel disease entity in either the report or conclusions
part of the report. To choose the label ‘Ischaemic stroke,

cortical, recent’ there needs to be a non-negative ischae-
mic stroke entity which is in a location relation with a
loc:cortical entity as well as in a time relation with a
time:recent entity.

Assessment of performance
We developed EdIE-R first on the ESS development data
set and validated the system on separate, novel reports
from the ESS validation data set. We then validated the
EdIE-R system in the NHS Tayside dataset, and further
developed and improved its performance, before validat-
ing it again on unselected unseen NHS Tayside and ESS
data. The main further developments were additions to
the domain lexicons for named entities that had not pre-
viously been encountered, extensions of the rules to
recognize negative contexts (e.g. ‘Exclude subdural
bleed.’) and fine-tuning of the relation extraction rules.
We report the performance of EdIE-R phenotyping of

reports against the reference phenotyping standard of
clinical expert reading of reports. For each phenotype,
we report sensitivity (proportion of true positive reports
identified by EdIE-R), specificity (proportion of true
negative reports identified by EdIE-R) and positive pre-
dictive value (proportion of EdIE-R positive reports that
are true positive). For each measure and phenotype, we
calculated 95% confidence intervals using the Wilson
method, which generates asymmetrical confidence inter-
vals suitable for values very close to either 100% or 0%
[14]. We also report F1-scores which is the harmonic
mean of precision (positive predicted value) and recall
(sensitivity) and a standard metric used in NLP research.

Sample size
We based the sample size, n = 700, of the validation of
the final version of EdIE-R in the Tayside dataset on a
sensitivity of 95% for a phenotype of particular interest,
old deep ischaemic stroke, with an estimated prevalence
of 12% with a 95% Wilson interval width of 10%. The
700 reports were selected at random from the final

Fig. 2 EdIE-R system architecture
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quarter, n = 39,154, of the original Tayside dataset. The
development data was selected from the first quarter.

Results
We first developed the EdIE-R algorithm in 364 reports
from the ESS dataset, and internally validated it on 266
further reports from the ESS dataset. We externally vali-
dated the algorithm on 362 reports from the NHS Tay-
side dataset, then further developed the algorithm with
different data before a final external validation in 700 re-
ports from NHS Tayside (Fig. 3).
IAA for the entity annotations was high for both sub-

sets. In the ESS subset, we found a precision of 0.96, a
recall of 0.98 and an F1-score of 0.97. For the Tayside
subset, precision was 0.95, recall was 0.96 and F1 was
0.96 [15]. The agreement between the two expert anno-
tators for all phenotypes was generally excellent in ESS
(all Cohen’s κ > 0.95), less so in NHS Tayside (Cohen’s κ
0.39–1.00, see Table 2).
We developed the NLP algorithm using the ESS data-

set, which is enriched for cerebrovascular phenotypes. In
unseen ESS validation data, the algorithm had an excel-
lent specificity (≥99%) for all phenotypes and excellent
sensitivity for stroke phenotypes, atrophy and small ves-
sel disease (≥95%). However, we identified few cases of

haemorrhagic stroke, subdural or subarachnoid haemor-
rhage, or brain tumours.
We further developed our model in 362 expert-anno-

tated reports in NHS Tayside, and then tested the final
EdIE-R model in 700 unselected expert-annotated NHS
Tayside reports. The final EdIE-R model had excellent
sensitivity, specificity and positive predictive value (all
≥95%) for the following phenotypes: cerebral atrophy,
cerebral small vessel disease, and old deep infarcts. The
algorithm identified any ischaemic stroke (n = 88) with a
sensitivity of 89% (95% CI:81–94), positive predictive
value of 85% (76–90) and specificity of 100% (0.99–
1.00); haemorrhagic stroke (n = 23) with a sensitivity of
96% (95% CI: 80–99), positive predictive value of 72%
(55–84) and specificity of 100% (0.99–1.00); and any
brain tumour with a sensitivity of 96% (95% CI: 87–99),
positive predictive value of 84% (73–91) and specificity
of 100% (0.99–1.00). For individual stroke and tumour
types, the number of patients with any one type was
small, and therefore point estimates had wide confidence
intervals (see Table 3).
We tested the potential of the final EdIE-R algorithm

to identify patients with particular brain phenotypes in
the routinely acquired brain imaging reports from the
Tayside region of Scotland. Of 98,036 patients, there was
a preponderance of women (54.7%), particularly in the

Fig. 3 Data flow of patient scan reports from the Edinburgh Stroke Study and NHS Tayside
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youngest (0–50, 54.9%) and oldest (> 75 yrs. 61.7%) age
groups. A minority of patients had been admitted or
died with stroke within 30 days of the date of scan (over-
all 6, 1.5% < 50 yrs., 9.5% > 75 years) (see Table 4). In the
110,695 scan reports of these patients, the most frequent
phenotypes were cerebral atrophy (26%), cerebral small
vessel disease (13.6%), and deep old cerebral infarcts
(9.6%) (see Table 5).

Discussion
We have developed an NLP algorithm for brain imaging
reports in a stroke cohort study in one NHS hospital
and validated it with reports from general clinical prac-
tice in a second NHS hospital. We have demonstrated
excellent diagnostic performance for more common
cerebrovascular phenotypes. Although the identification
of phenotypes was not perfect, it would have been prac-
tically impossible to manually code > 100,000 radiology

reports. The ability to code these reports using an NLP
algorithm opens the door to using radiology reports to
better identify stroke subtype when combined with ICD-
10 coded information for outcome ascertainment in
large studies such as UK Biobank, for the creation of
new in silico cohort studies, or for health care quality
improvement [2].
In most research using electronic health records,

phenotypes are identified from administrative coding
with multiple or single codes (e.g. ICD-10). These
codes and combinations have modest to good positive
predictive value (> 80%) for all stroke [16]. The
addition of NLP summaries of brain imaging report
data to administratively coded information, or to NLP
processing of medical text, could improve the positive
or negative predictive value of stroke identified in
EHR. It would also increase the number of stroke
that are unspecified (up to 40%) or where stroke type

Table 2 Inter-annotator agreement measured in Cohen’s Κ between two human annotators in ESS (266 doubly annotated reports)
& NHS Tayside (100 doubly annotated reports) for different phenotypes (document-level annotations)

Κ ESS Κ NHS Tayside

Atrophy 0.95 0.97

Small vessel disease 0.98 0.97

Stroke

Underspecified – 0.99 –

Intracerebral haemorrhage Deep, old 1.00 –

Deep, recent 1.00 –

Lobar, old 1.00 1.00

Lobar, recent 1.00 0.80

Underspecified 1.00 0.88

Ischaemic stroke Cortical, old 0.97 1.00

Cortical, recent 0.98 –

Deep, old 0.97 1.00

Deep, recent 1.00 1.00

Underspecified 0.95 0.71

Haemorrhagic transformation 1.00 –

Other intracranial haemorrhage

Subdural hematoma – 1.00 1.00

Subarachnoid haemorrhage Aneurysmal – –

Other 0.99 0.66

Microbleeds Deep 1.00 –

Lobar 1.00 –

Underspecified 1.00 –

Tumours

Glioma – –

Meningioma 1.00 –

Metastasis – 0.85

Other 0.98 0.39
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is specified, to allow subtyping of ischaemic stroke types
where this is not available (for example in our center, codes
for lacunar stroke are rarely used). In addition, some
asymptomatic findings that are not routinely coded consist-
ently (e.g. changes of cerebral small vessel disease) could be

identified. This could be particularly useful for deriving
neurological phenotype at scale from health records in large
scale cohorts such as UK Biobank (N > 500,000), [2] and
the NIH-funded All of Us study (planned N = 1,000,000
https://allofus.nih.gov).

Table 3 EdIE-R performance on the NHS Tayside test set (n = 700 reports). Small numbers suppressed due to data governance
requirements

Label True Positives (n) Sensitivity/Recall (95%CI) PPV/Precision
(95%CI)

Specificity (95%CI) F1
score

Atrophy 159 0.97 (0.93–0.99) 1.00 (0.98–1.00) 1.00 (0.99–1.00) 0.98

Small vessel disease 145 1.00 (0.97–1.00 1.00 (0.97–1.00) 1.00 (0.99–1.00) 1.00

Stroke

Underspecified < 5 1.00 (0.34–1.00 0.67 (0.21–0.94) 1.00 (0.99–1.00) 0.80

Haemorrhagic stroke

Any haemorrhagic stroke 23 0.96 (0.80–0.99) 0.72 (0.55–0.84) 1.00 (0.99–1.00) 0.82

Deep, old – – – – –

Deep, recent < 5 1.00 (0.21–1.00) 0.50 (0.10–0.91) 1.00 (0.99–1.00) 0.67

Lobar, old < 5 1.00 (0.51–1.00) 1.00 (0.51–1.00) 1.00 (0.99–1.00) 1.00

Lobar, recent < 5 0.75 (0.30–0.95) 1.00 (0.44–1.00) 1.00 (0.99–1.00) 0.86

Underspecified 15 1.00 (0.80–1.00) 0.65 (0.45–0.81) 0.99 (0.98–0.99) 0.79

Ischaemic stroke

Any ischaemic stroke 88 0.89 (0.81–0.94) 0.85 (0.76–0.90) 1.00 (0.99–1.00) 0.87

Cortical, old 24 0.92 (0.76–0.98) 0.92 (0.76–0.98) 1.00 (0.99–1.00) 0.92

Cortical, recent 9 0.75 (0.47–0.91) 1.00 (0.70–1.00) 1.00 (0.99–1.00) 0.86

Deep, old 39 0.95 (0.84–0.99) 0.95 (0.84–0.99) 1.00 (0.99–1.00) 0.95

Deep, recent < 5 0.50 (0.15–0.85) 0.50 (0.15–0.85) 1.00 (0.99–1.00) 0.50

Underspecified 13 0.87 (0.62–0.96) 0.57 (0.37–0.74) 0.99 (0.97–0.99) 0.68

Haemorrhagic transformation < 5 1.00 (0.21–1.00) 1.00 (0.21–1.00) 1.00 (0.99–1.00) 1.00

Other intracranial haemorrhage

Subdural hematoma 6 0.75 (0.41–0.93) 0.86 (0.49–0.97) 1.00 (0.99–1.00) 0.80

Subarachnoid haemorrhage < 5 0.57 (0.25–0.84) 0.57 (0.25–0.84) 1.00 (0.99–1.00) 0.53

Microbleed < 5 1.00 (0.34–1.00) 1.00 (0.34–1.00) 1.00 (0.99–1.00) 1.00

Tumour

Any tumour 52 0.96(0.87–0.99) 0.84 (0.73–0.91) 1.00 (0.99–1.00) 0.90

Glioma < 5 1.00 (0.44–1.00) 0.60 (0.23–0.88) 1.00 (0.99–1.00) 0.75

Meningioma < 5 1.00 (0.34–1.00) 1.00 (0.34–1.00) 1.00 (0.99–1.00) 1.00

Metastasis 37 1.00 (0.91–1.00) 0.90 (0.78–0.96) 0.99 (0.99–1.00) 0.95

Other 10 0.83 (0.55–0.95) 0.71 (0.45–0.88) 0.99 (0.99–1.00) 0.77

Table 4 Demographics of NHS Tayside patients providing reports

Age group (yrs) Patients (N) Women (%) Men (%) Stroke death or admission within 30 days of scan (%)

0–50 31,860 54.9 45.1 1.5

51–65 19,583 48.8 51.2 6.1

66–75 18,105 50.7 49.3 8.8

Over 75 27,746 61.7 38.3 9.5

Totals 98,036 54.7 45.3 6.0
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The performance of our algorithm differed to a mod-
est degree in the ESS dataset which was enriched for
cerebrovascular phenotypes and NHS Tayside from gen-
eral radiology practice. This is probably accounted for by
the differences in language used across different radi-
ology departments; and the different prevalence of find-
ings in different datasets with higher prevalence leading
to greater positive predictive value.
The high IAA scores indicate that the annotation tasks

were well-defined. In previous work we have demon-
strated the impact annotation has on NLP performance
[17]. The same is true for this task, the better and more
defined the annotation the easier it is to extract the same

information automatically. Before doing the annotation,
the experts carried out some pilot annotation on paper
and we decided on a set of rules for what to annotate. In
some cases, the high IAA can also be attributed to the
consistent use of medical terms in this domain. While
there is some variation, certain diseases and symptoms
are described with widely used and well-known expres-
sions and it is straightforward for experts to identify
them in text.
The high accuracy of the rules in our system results

largely from the topic-focused nature of the radiology
reports and the fact that the language is restricted and
conventionalized, with only a limited number of ways in
which a phenomenon tends to be described. Several of
the system errors arise from unexpected ways of phras-
ing concepts, for example, the entity subarachnoid_
haemorrhage is most frequently expressed as ‘subarach-
noid haemorrhage’, ‘subarachnoid blood’ or ‘SAH’, and
the system failed to recognize it in a report where it was
described as ‘blood in the subarachnoid spaces’. This is
the kind of problem that unavoidably occurs when test
or run-time data contains unseen examples, i.e. ways of
expressing concepts that have not been seen in the train-
ing/development data. This is true of both supervised
machine-learning and rule-based systems. At the final
stage of assigning labels to documents, labels will be
missed if the relevant named-entities or relations have
been missed (false negatives). Errors at this stage also
arise from false positives from NER, relation detection
and negation detection. Clear cases of time and location
relations (e.g. ‘Right frontal chronic haemorrhage’) are
straightforward to detect but the system can make errors
in linking a time or location to an entity because it does
not take sentence-structure into account. For example,
in the sentence ‘I suspect this reflects redistribution of
the original haematoma rather than new blood.’, the
time entity ‘new’ was wrongly linked to the haemor-
rhagic stroke entity ‘haematoma’. With regard to neg-
ation, clearly stated absence of a phenomenon (e.g. ‘No
metastases’) are reliably detected but in cases where the
annotator has marked an entity as negative in an unclear
context (e.g. ‘diffusely sclerotic metastases are much less
likely’), negation detection can fail and this can lead to a
false positive in the labelling.
The phenotypes we have chosen are those that are rele-

vant for epidemiological and clinical researchers. There
are limits to the detail in reports in clinical practice, hence
we chose to identify phenotypes that we thought would be
possible to code. In different settings (for example hyper-
acute stroke services), there may be more detail in individ-
ual reports to identify other phenotypes such as vessel
occlusion. Further work is needed to enrich our samples
for less common phenotypes (for example individual types
of haemorrhagic stroke or tumours); to determine the

Table 5 Proportion of reports with a brain imaging phenotype
in NHS Tayside (110,695 reports). Small numbers suppressed
due to data governance requirements

Reports (N) Percentage of total
number of scans (%)

Atrophy 28,757 26.0

Small vessel disease 15,015 13.6

Stroke

Underspecified 1609 1.5

Haemorrhagic stroke

Deep, old 168 0.2

Deep, recent 397 0.4

Lobar, old 288 0.3

Lobar, recent 415 0.4

Underspecified 5702 5.2

Ischaemic stroke

Cortical, old 4385 4.0

Cortical, recent 1860 1.7

Deep, old 10,636 9.6

Deep, recent 771 0.7

Underspecified 9172 8.3

Haemorrhagic transformation 279 0.3

Subdural hematoma 2272 2.1

Subarachnoid haemorrhage

Aneurysmal 55 0.1

Other 1381 1.3

Microbleed

Deep 15 0.0

Lobar < 10 0.0

Underspecified 19 < 0.1

Tumour

Glioma 667 0.6

Meningioma 1458 1.3

Metastasis 2621 2.4

Other 4191 3.8
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diagnostic contribution of NLP alongside structured,
coded data (e.g., ICD-coded hospital admissions or Read-
coded primary care consultations); to compare the per-
formance of NLP coding of reports against research-grade
reads of images; and to implement these algorithms within
NHS systems.
In terms of portability and generalisability of our NLP

system, we have shown that EdIE-R is robust in pheno-
type labelling performance when porting it from one
dataset to another (ESS to Tayside). The same holds true
for named entity recognition (NER) on the same data.
While we spent some effort on fine-tuning the system
on the new development data, this did not take a sub-
stantial amount of time [15]. We would expect a high
level of performance when running the EdIE-R system
over new brain imaging reports. To port the system to a
new type of medical text, e.g. radiology reports for a dif-
ferent disease or body part, or to pathology reports, we
would require a new lexicon and would need to adapt
some of the rules. This is not an insignificant amount of
effort and requires input from domain experts. Instead
we could use machine learning methods but would then
require more training data (annotated by domain ex-
perts), as well as time to fine-tune parameters or fea-
tures, in order to reach or exceed the same level of
performance as the rule-based method.

Conclusions
In summary, we have demonstrated that an NLP algo-
rithm can be developed with neuroradiology reports
from the UK NHS radiology records, allowing identifica-
tion of cohorts of patients with important cerebrovascu-
lar phenotypes at a scale that would otherwise not be
possible.
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