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Abstract

Background: Imaging examinations, such as ultrasonography, magnetic resonance imaging and computed
tomography scans, play key roles in healthcare settings. To assess and improve the quality of imaging
diagnosis, we need to manually find and compare the pre-existing reports of imaging and pathology
examinations which contain overlapping exam body sites from electrical medical records (EMRs). The process
of retrieving those reports is time-consuming. In this paper, we propose a convolutional neural network (CNN)
based method which can better utilize semantic information contained in report texts to accelerate the
retrieving process.

Methods: We included 16,354 imaging and pathology report-pairs from 1926 patients who admitted to Shanghai
Tongren Hospital and had ultrasonic examinations between 1st May 2017 and 31st July 2017. We adapted the CNN
model to calculate the similarities among the report-pairs to identify target report-pairs with overlapping body sites,
and compared the performance with other six conventional models, including keyword mapping, latent semantic
analysis (LSA), latent Dirichlet allocation (LDA), Doc2Vec, Siamese long short term memory (LSTM) and a model based
on named entity recognition (NER). We also utilized graph embedding method to enhance the word representation by
capturing the semantic relations information from medical ontologies. Additionally, we used LIME algorithm to identify
which features (or words) are decisive for the prediction results and improved the model interpretability.

Results: Experiment results showed that our CNN model gained significant improvement compared to all other
conventional models on area under the receiver operating characteristic (AUROC), precision, recall and F1-score in our
test dataset. The AUROC of our CNN models gained approximately 3–7% improvement. The AUROC of CNN model
with graph-embedding and ontology based medical concept vectors was 0.8% higher than the model with randomly
initialized vectors and 1.5% higher than the one with pre-trained word vectors.

Conclusion: Our study demonstrates that CNN model with pre-trained medical concept vectors could accurately
identify target report-pairs with overlapping body sites and potentially accelerate the retrieving process for imaging
diagnosis quality measurement.
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Background
Imaging examinations are common, as well as effi-
cient, diagnostic tools in clinical practice worldwide.
Radiologists or sonographers perform examinations,
observe images and write reports for meaningful find-
ings, conclusions and opinions. Imaging examinations
are highly operator-dependent modality, and many
factors influence the interpretation of the images,
such as patients’ demographics, current health status
and medical histories. There could be discrepancies in
such complicated and heterogeneous information (e.g.,
the diagnosis in patient’s radiology report is different
than the one his/her really has), which may lead to
imprecise clinical decisions [1]. Although such dis-
crepancies could be inevitable due to the complexity
of imaging-diagnosis, quality measurement and im-
provement are still needed to minimize avoidable
error via a manual verification process. A common
objective and standardized verification process is to
retrospectively compare the reports of prior imaging
and follow-up pathology examinations [2]. However,
only few patients receiving imaging examinations on
certain body site will have surgical or pathologic bi-
opsy on the same site. To find these patients, quality
control staff will regularly and manually review
electrical medical records (EMRs) and scan related
examination reports, which is inefficient and time
consuming. In this study, we propose a machine
learning based approach to retrieve these patients
from EMRs more efficiently.
Formally, we aim to predict which of the provided

report pairs, imaging report and pathologic report,
contain overlapping body sites or regions based on
their textual semantic similarity. It is slightly different
from conventional text similarity cases where re-
searchers care about if two sentences have the same
meaning [3, 4]. We care about similar “body sites”,
site on the patient’s body where the anomaly has
been detected, rather than similar syntax or semantics
in general. For example, Table 1 shows a report-pair
in our study with original Chinese and translated
English. This report-pair contains overlapping body

sites — parotid gland, but only the pathology report
mentions “parotid gland” (腮腺), and the imaging re-
port describes the condition about “maxillofacial re-
gion” (颌面部). Parotid gland is anatomically located
in the maxillofacial regions, and thus, the report-pair
has similar “body site” and should be picked up. In
spite of their different forms, the methodology re-
mains unchanged — the model should extract fea-
tures from texts, calculate and judge if the pairs have
enough common information with certain criteria,
and then assign the pairs to certain nominal categor-
ies (match or mismatch).
We believe that developing a well-designed seman-

tic similarity algorithm should consider three main
aspects: textual features, algorithm and domain know-
ledge. Previous works using textual features to calcu-
late similarity are mainly based on corpus-based
methods such as bag-of-words and word embeddings.
Bag-of-words model, including vector space model
(VSM) [5], latent semantic analysis (LSA) [6], and la-
tent Dirichlet allocation (LDA) [7], treats the entire
text as a set of words and calculates the weight for
each word, thus transforms them into real-valued vec-
tors and then calculate the similarity on top of them
[8–10]. These methods need handcrafted features and
external lexical resources, which makes it difficult to
apply in domains without too much readily available
knowledge. Word embeddings are low-dimensional
real-valued vectors trained from large-scale unlabeled
text. Those vectors are able to capture semantic rela-
tionships among free text documents [4, 11].
Convolutional neural network (CNN) is a typical

artificial neural network algorithm which could auto-
matically learn, filter, cluster and combine features
without much human effort. It was originally invented
for computer vision [12] and subsequently been
shown to be effective in natural language processing
(NLP) tasks, such as sentence modeling [13], search
query retrieval [14], and semantic parsing [15]. CNN
models can nicely represent the hierarchical struc-
tures of sentences with their layer-by-layer convolu-
tional kernel and pooling, so as to capture the

Table 1 A report-pair in this study

Language Imaging report content Pathologic report content

English The solid hypoechoic area of the subcutaneous
tissues of maxillofacial region is 14.6mm× 10.4mm
and covered with a capsule. The boundary is clear
and the shape is regular.

The specimen for pathological examination contains
one mass. The size of mass is 1.2 × 1 × 1 cm, the color
is gray red and the capsule is complete. (Parotid gland)
favor a diagnosis of pleomorphic adenoma. The lesion
contains abundant cells without a clear limit out of the
surrounding tissue.

Chinese 颌面部所指处皮下见实质性低回声区
14.6 mm× 10.4 mm, 边界清, 有包膜, 形态规则。

肿块一枚, 大小1.2*1*1 cm, 灰红色, 包膜完整。
(腮腺)多形性腺瘤, 细胞丰富, 与周围组织分界不清。
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semantic patterns at different layers [16]. CNN has
also been demonstrated to be effective in capturing
the semantic similarities between text pairs and thus
able to perform well on text matching tasks [17, 18].
Moreover, domain ontologies contain lots of seman-

tic relations which represent the body of knowledge.
In the medical domain, there are a number of popu-
lar biomedical ontologies, such as MeSH (Medical
Subject Headings) for indexing literature, the ICD
taxonomy (International Classification of Diseases) for
public health surveillance and billing purposes, and
SNOMED-CT for aggregating medical terms across
sites of healthcare. All these ontologies use graph struc-
tures [19] to represent the relationships among medical
concepts. However, it is not straightforward to use this
extra knowledge by conventional machine learning
methods. Graph embedding technology embeds edge and
node information of graphs into low dimensional dense
vectors [20], and we believe it has a great potential to fa-
cilitate the utility of those ontologies.
In this study, we propose an end-to-end solution based

on CNN to help physician and clinical quality control
staff efficiently retrieve patients’ examination reports for
imaging diagnosis verification process. The input of the
model is imaging and pathology report-pairs from cer-
tain patients, and the output is the corresponding label
indicating whether the report-pairs contain overlapping
body sites. We compared accuracy of our model (with
different word embedding methods) with conventional
approaches such as keyword mapping, latent semantic
analysis (LSA) [6], latent Dirichlet allocation (LDA) [7],
Doc2Vec [21], Siamese LSTM [22] and a method based
on named entity recognition (NER) [23]. Moreover, we
further applied the LIME algorithm [24] to identify the
features contribute most to the final results, and
imporved the model interpretability.

Methods
Technical workflow
Figure 1 shows the workflow of identifying matching
body sites from medical report-pairs. We removed all
punctuations, numbers, and stop words from the raw

report texts, then used Jieba,1 a Chinese segmentation tool,
to transform entire texts into sequence of words for CNN
model training. The study and data use were approved by
the Human Research Ethics Committees of Tongren
Hospital, Shanghai Jiao Tong University, Shanghai, China.

Data description
We included 4262 imaging reports and 2141 pathology
reports from the EMRs of 1926 patients who admitted
to Shanghai Tongren Hospital and had ultrasonic exami-
nations between 1st May 2017 and 31st July 2017, which
finally resulted in 16,354 report-pairs. All report texts
were de-identified. Each pair contained two pieces of
report, one is imaging report and the other is pathology
report. Three physicians were recruited to annotate
whether each report-pair contains overlapping body sites
independently, the kappa coefficient between each pair
of two physicians is 0.95, 0.95, 0.97 respectively. The
overall rate of positive pairs (which contain overlapping
body sites) was 14.8% (2415/13,939). We randomly split
the data into 80% for training and 20% for testing.

CNN model for text similarity detection
The structure of our model (showed in Fig. 2) can be
divided into three parts: input layer, feature extraction
layer and fully connected layer.
The input layer mapped each word into a dense vector

(with 128 dimensions) and transformed each report into
a dense matrix. Each dense vector represented the
semantic information of corresponding word, the values
of which could be updated during training. We used two
strategies to initialize word vectors: randomly initialized
vectors and pre-trained (word2vec model trained by
skip-gram and negative sampling method) word vectors
using Baidu Encyclopedia corpora obtained from
github.2 We set the window length to be 3, 4 and 5, for
the convolution filters, and adopted 32 convolution fil-
ters for each window size. Then we applied max-pooling
operations and obtained a new feature vector for two

Fig. 1 Workflow of detecting text semantic similarity

1https://github.com/fxsjy/jieba
2https://github.com/Embedding/Chinese-Word-Vectors
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reports respectively. We concatenated the two feature
vectors and passed it to a fully connected layer and a
output layer to calculate the likelihood of containing
overlapping body sites. We set cross-entropy as the loss
function and performed mini-batch stochastic gradient
descent to train the model.

Medical concept vectors using ontology-based graph
embedding
We utilized graph embedding method as a third word vec-
tor initialization strategy to enhance the word representa-
tion by capturing the semantic relations information from
medical ontologies. We used CMeSH (Chinese Medical
Subject Headings), a Chinese version of MeSH, which
contains about 391,892 medical concepts and 2,047,749
relations, to train our medical concept vectors. We ran-
domly generated word sequences by sampling neighbor
concepts along the edge of relation in CMeSH with a
length of 10. The sampling process basically follows the
procedure in node2vec [20], which was composed of two
major steps: 1) for every node (medical concept) V, adding
its direct (1st order) neighbors to the sampling set MV ; 2)
let Vm be the m-th order neighbor of V and V 1

m be the dir-

ect neighborhood of Vm, then we randomly sample one
node from V 1

m and add it to MV . In our experiments, we
set m to be 9 and sampled a word sequence for each node.
And we feed the sequence set MV into word2vec model
with skip-gram method [25] to train the medical concept
vectors.

Model evaluation
We compared the performance of our CNN model with
the following six baseline models:

� Keyword mapping. We used the vocabulary from
CMeSH as a medical dictionary to filter the original
text. All words outside the dictionary were discarded
and Jaccard similarity coefficient was calculated
based on the key words remained in the two report
texts

� Latent Semantic Analysis (LSA). For this approach
we collected all reports and construct bag-of-words
representation vectors for each of them. Then
singular value decomposition was performed on the
matrix concatenating all bag-of-words vectors to
reduce the dimensionality of the vector

Fig. 2 CNN-based neural network for text similarity detection
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representations and cosine similarity was measured
on those vectors from the reduced-dimension space

� Latent Dirichlet Allocation (LDA). This approach
constructed the bag-of-words representations for
the reports. It assumed that each report was a
mixture of a set of “topics” and each topic was a
mixture of the set of words in the vocabulary.
Cosine similarity was measured on their topic
composition vectors.

� Doc2Vec. Doc2Vec is an extension to the
Word2Vec model [26], where a document vector is
trained together with the word vectors in the
continuous bag-of-words model. Cosine similarity
was measured on the learned document vectors.

� Siamese long short term memory (LSTM). Siamese
LSTM is often used for text similarity systems. It
uses two LSTM networks to encode two sentences
respectively, then calculate Manhattan distance
between the encoded hidden vectors to decide
whether the two sentences are similar or not. The
training process is supervised.

� Named Entity Recognition (NER). We used
another annotated Chinese clinical EMR corpus
from Shanghai Tongren Hospital. This corpus
contains 46,665 sentences and 89,231 entities of
four types: symptoms, diseases, lab tests and body
structures. We trained a DNN-based NER model
with random initialized word embedding [23] and
then adopted this model to identify all the
entities in the original report texts. We only keep
these entity words and construct bag-of-words
representation vectors for each of the reports.
Cosine similarity was measured on their entity
representation vectors.

All models were trained on the training set and
evaluated on the testing set. We performed receiver
operating characteristic (ROC) curve analysis for each
model and calculated the AUC score. We calculated
precision, recall and F1-score based on the cutoff
value equal to the ratio of the positive pairs in the
whole dataset. Report-pairs with similarity score
higher than the cutoff value will be labeled positive in
all of our models. We used bootstrapping method
with 50 times repeated samplings to estimate mean
and standard deviation (std) of our model perfor-
mances. Because of data imbalance, we reported both
overall performance (marco average) and performance
for each class group.

Model interpretability
We further explored the LIME algorithm to improve the
interpretability of our model. LIME, proposed by Guestrin
et al. [24], can be used to explain the predicted results of
machine learning models. The basic idea of LIME algo-
rithm is to define “interpretation” using another model,
usually a linear model or a decision tree. We adopted
LIME algorithm to identify which keywords from report-
pairs our CNN model took to give final results. Specific-
ally, for a given report-pair, we first fixed the content of
imaging report and generated new samples of pathology
report by randomly deleting words. Then, we trained a
LIME model on the generated pairs and calculated the
relative importance for each word in the pathology report.
Similarly, we also fixed the content of the pathology re-
port, randomly generated the pairs and trained another
LIME model for the pathology report. We represented the
relative importance of the keywords in a visual way.

Fig. 3 ROC Curve of different models
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Results
Model performance
Table 2 showed both average and class-level perfor-
mances for all models and Fig. 3 showed the corre-
sponding ROC curves. The AUC score of our CNN
models with both randomly initialized vectors and pre-
trained word vectors were superior than that of any
other baseline models, and gained approximately 3–7%
improvement. In particular, the AUC score of CNN
model with medical concept vectors was 0.8% higher
than the model with randomly initialized vectors and
1.5% higher than the one with pre-trained word vectors.
We have done t-test to the AUC results from 50 inde-
pendent runs of CNN with or without pre-trained med-
ical concept vectors and the p-value is smaller than
0.001, which suggests the improvement is significant.

Not surprisingly, keyword mapping model had the worst
performance among all models.

LIME experiment
We randomly selected two report-pairs which contain
overlapping body site in the test sets and process
through LIME model. Table 3 shows the original text
for two sample pairs (sample pair No. 1 and No. 2)
and Table 4 shows the corresponding results. For
sample pair No. 1, the importance scores of words,
“fetal membrane” (胎膜) and “umbilical cord” (脐带)
in the pathology report, and “fetus” (胎儿) and “fetal
heart” (胎心) in the imaging report, were relatively
high with a score of 0.15 and 0.14, 0.12 and 0.03 re-
spectively. The result indicated that the existence of
these four words might account for the positive

Table 3 The original text of selected samples

Sample
pair No.

Imaging report content
(Chinese)

Imaging report content
(English)

Pathologic report content
(Chinese)

Pathologic report content
(English)

1 宫内见1个胎儿, 胎位头位, 胎方
位LOP。双顶径81, 枕额径101,
腹前后径92, 腹左右径83, 股骨
长60, 肱骨长52。胎心胎动见,
胎心133次/分, 胎心律齐。胎盘
位于后壁, 厚度35, 分级II, 胎盘
下缘距宫颈内口> 54。羊水指
数31 + 31 + 36 + 39。胎儿脐血
流指数:PI = 0.93, RI = 0.63, S/D =
2.71
单胎头位。胎儿迟发畸形的检
查受多因素影响, 超声无法检出
所有胎儿异常。此检查仅限于
胎儿生长监测。

One fetus can be observed in
the uterus. The position of the
fetus is cephalic position, the
orientation is LOP, the biparietal
diameter is 81, the occipitofrontal
diameter is 101, the
anteroposterior trunk diameter is
92, the transverse trunk diameter
is 83, the femur length is 60, the
humeral length is 52. Fetal heart
rate and fetal movement can be
observed. The fetal heart rate us
133 beats per minute and the
heart rhythm is regular. The
placenta is located in the
posterior wall. The thickness of
the placenta is 35, grade II. The
distance between the placental
margin and the internal cervical
os is > 54. The Amniotic fluid
index is 31 + 31 + 36 + 39. Fetal
umbilical artery plow index: PI =
0.93, RI = 0.63, S/D = 2.71.
Singleton and cephalic
presentation. The examination of
fetal delayed malformation is
affected by many factors, and
ultrasound cannot detect all fetal
abnormalities. This examination is
limited to fetal growth
monitoring.

胎盘组织重600g, 大小21*17*3
cm, 胎膜完整, 切面灰红色, 母
面小叶完整, 子面光滑, 相连脐
带长35cm, 直径1.2 cm, 血管三
根。(胎盘)孕晚期胎盘一个, 绒
毛发育良好, 脐带及胎膜未见
明显异常。

The weight of placental tissue is
600 g, the size is 21 × 17 × 3 cm,
the fetal mem-brane is intact, the
cut sur-face is gray-red, the
lobules of maternal surface are
intact, and the daughter surface
is smooth. The length of the
umbilical cord is 35 cm, the
diameter is 1.2 cm, and three
blood vessels can be observed.
(Placenta) favor a diagnosis of
previa of late pregnancy, the villi
are well-developed, and no
obvious lesion is observed in
umbilical cord and fetal
membrane.

2 甲状腺大小正常, 包膜清晰完
整, 内部回声分布均匀, CDFI:腺
体内部血流信号未见明显异
常。甲状腺右叶内可见数个低
回声区, 大者大小23.5*13.2 mm,
形态规则, 边界清晰, 内部回声
不均匀。

The size of thyroid gland is
normal, the capsule is clear and
intact, and the echogenicity is
homogeneous. CDFI: There is no
obvious abnormality of blood
flow signal in the gland. There
are several hypoechoic areas in
the right lobe of the thyroid. The
size of the lesion is 23.5 × 13.2
mm, the shape is regular, the
boundary is clear, and the
echogenicity is inhomogeneous.

甲状腺组织, 大小4.5*2.5*1.5 cm,
切面见结节两枚, 直径1-2 cm,
灰红色, 质软。(甲状腺右叶)结
节性甲状腺肿伴滤泡性腺瘤形
成。

The specimen for pathological
examination contains one thyroid
tissue. The size of the tissue is
4.5 × 2.5 × 1.5 cm. Two thyroid
nodules can be observed from
the cut surface. The diameter of
the nodules is 1 to 2 cm, the
color are grey red, the texture is
soft. (The right lobe of the
thyroid) favor a diagnosis of
nodular goiter combined with
follicular adenoma.
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judgement with a prediction of 0.77 by our CNN
model. “Fetal membrane”, “umbilical cord” and “fetal
heart” were all body structures contained by “fetus”,
and our CNN model was able to automatically and
reasonably extract semantic features from texts and
make judgements. For sample pair No. 2, the word
“Thyroid” (甲状腺) which exist in both reports, con-
tributes most to the result, with a score of 0.16 and
0.19 respectively. “Tubercle” (结节) and “Glandular
body” (腺体) are sub-structures of thyroid gland and
also contributed much to the final result. The LINE
algorithm could efficiently locate the most related
words from text pairs and provide meaningful expla-
nations of our model behaviors.

Discussion
In this paper, we proposed a direct end-to-end CNN
model to judge whether two reports contained matching
body sites. Comparing with conventional language
models based on handcrafted textual features (keywords
and bag-of-words), automatically generated features
(bag-of-words extracted by our NER model and word
embeddings) and neural network model with LSTM
structure, our CNN model provided more flexibility in
exploring the semantic information contained in medical
documents and yield better performance. In addition, we
compared three strategies to generate word vectors for
our CNN model: randomly initialized vectors, pre-
trained word vectors and graph embedding and CMeSH
based medical concept vectors. Our CNN model with

medical concept vectors outperformed the other two
methods and an significant improvement was observed.
Many factors might contribute to the advantage of

CNN model. First, our CNN model is a supervised
learning model and could automatically adapt feature
representations to task objectives. For LSA, LDA and
Doc2Vec, we learn feature representations in an un-
supervised way, semantic information and co-occurrence
relationship of words or characters are weakly correlated
with current learning objectives. Second, our CNN
model could extract syntactic and semantic information
from both local semantic patterns and hierarchical struc-
tures of the sentences. For example, body sites could be
described by physicians using anatomy terms and their
relative locations. Thus, information at word-level or
chunk-level is more important than information at sen-
tence-level or document-level. This could explain why
the performance of our CNN model was higher than
Siamese LSTM model. Even though Siamese LSTM per-
forms better on precision than CNN model with ran-
domly initialized vectors, it’s F1-score was significantly
lower than our CNN. Third, we used end-to-end train-
ing strategy, which updated feature representations and
optimized weights simultaneously.
We used graph embedding method to utilize domain

knowledge from CMeSH and gained a significant perform-
ance boost. CMeSH, just like other domain-specific ontol-
ogies, organizes and represents the body of knowledge
using concepts and their relations. For example, concept
“parotid gland” is a sub-class of concept “salivary glands”,
concept “salivary glands” is a sub-class of both concepts

Table 4 Sample-level feature importance of sample pair 1 and 2 for both imaging and pathologic report provided by LIME
algorithm

Sample pair No. Imaging report Pathologic report

Word-Chinese Word-English Feature importance of
word

Word-Chinese Word-English Feature importance
of word

1 (Prediction probability =
0.77)

胎膜 Fetal
membranes

0.15 胎儿 Fetus 0.12

脐带 Umbilical cord 0.14 胎心 Fetal heart 0.03

胎盘 Placenta 0.06 羊水 Amniotic fluid 0.03

毛发 Hair 0.04 头位 Head position 0.02

小叶 Lobule 0.02 股骨 Femur 0.01

面灰 Face ash 0.01 单胎 Single fetus 0.01

2
(Prediction probability = 0.83)

甲状腺 Thyroid 0.19 甲状腺 Thyroid 0.16

结节 Tubercle 0.15 腺体 Glandular
body

0.14

滤泡 Follicular 0.08 右叶 Right lobe 0.07

右叶 Right lobe 0.03 包膜 Envelope 0.03

腺瘤 Adenoma 0.01 回声 Echoes 0.01

切面 Section 0.01 血流 Blood flow 0.01

Zheng et al. BMC Medical Informatics and Decision Making          (2019) 19:156 Page 8 of 11



“exocrine glands” and “mouth”, and concept “salivary
glands” contains sub-class concepts “parotid gland”, “saliv-
ary ducts” and “sublingual gland”. In our study, the affili-
ation information of anatomy terms extracted by graph
embedding method was quite useful to judge overlapping
body sites, and could explain for the higher performance.
To validate that our model could correctly find related

semantic or anatomy information and make judgement as
expected, we used LIME algorithm and analyzed two con-
crete examples. From the results we could see our CNN
model chose reasonable keywords as the basis to give the
predictions. In real world, we can incorporate these expla-
nations of model behaviors into the computer-aided deci-
sion supporting system so as to further remind the clinical
quality control staff why our model give such results.

Our CNN model still has several limitations. We per-
formed an error analysis of our model and find several
typical mis-classifications. Table 5 shows two sample pairs
from the analysis, sample pair No.3 is a case of false-nega-
tive and No.4 is a case of false-positive. Sample pair No.3
indicates that our model could not correctly identify
spatial relationship between body structures. In sample
pair No.3, the imaging report described a mass observed
in the ventral side of the inferior pole of left kidney, and
the pathologic report described a lesion from left adrenal
gland. This report-pair does not share common anatom-
ical terms, but both left kidney and adrenal gland are adja-
cent body structures in local anatomy space, and thus the
report-pair shares common body site. Sample pair No.4
indicate that our model is insensitive to direction

Table 5 Sample pairs from error analysis

Sample
pair No.

Imaging report
content (Chinese)

Imaging report
content (English)

Pathologic report
content (Chinese)

Pathologic report
content (English)

True
label

Predict
label

3 于左肾下极腹侧可见多个囊
性为主的混合性回声, 相互
融合, 较大之一约17.1 × 17.0
mm(局部凸向肾外), 靠近肾
盏之一大小约14.2 × 14.6
mm, 形态欠规则, 表面光整,
境界欠清, 囊内无回声透声
尚可, 分布欠均, 可见分隔样
回声, 间隔及囊壁未见明显
增粗, 囊内及囊壁可见点
状、带状强回声, 团块后方
回声无明显改变, CFI示未见
明显血流信号。

Multiple cystic mixed echoes
can be observed in the
ventral side of the inferior
pole of left kidney, which
fuse with each other. The
largest one is about 17.1 ×
17.0 mm (which protrudes
out locally from the kidney),
and the one near the renal
pelvis is about 14.2 × 14.6
mm. The shape of the cysts
is irregular, the surface is
smooth, and the boundary is
not clear. There are no
echoes in the cysts, the
sound transmission is normal,
but the echogenicity is
inhomogeneous, and
septations can be observed.
There is no obvious
thickening for both
septations and walls of the
cysts. Punctate and banded
strong echoes can be
observed inside the cysts and
on the wall of the cysts.
There is no obvious lesion
behind the cysts, and CFI
showed no obvious blood
flow signal.

肿物两枚, 直径1cm, 暗黄
色, 质中。另见肾上腺组
织, 大小2.5*1.5*1.5 cm, 暗红
色, 质中。(左肾上腺)倾向
皮质结节状增生。

The specimen for
pathological examination
contains two masses and
one adrenal tissue. The
diameter of masses is 1 cm,
the color is dark yellow, and
the texture is medium level.
The size of adrenal tissue is
2.5 × 1.5 × 1.5 cm, the color is
dark red, and the texture are
medium level. (Left adrenal
gland) favor a diagnosis of
nodular adrenal cortical
hyperplasia.

True False

4 左侧腋下见数个淋巴结样回
声区, 大者11mm*5mm, 边
界清, 有包膜, 形态规则, 内
部结构清晰, 未见明显血流
信号。左侧腋下可见多个淋
巴结。

There are several lymphoid
echoes under the left armpit,
the largest one is 11 mm× 5
mm, the boundary is clear,
the capsule is regular, the
internal structure is clear.
There is no obvious blood
flow signal. Multiple lymph
nodes can be seen in the left
armpit.

脂肪组织, 大小3.5*3*1 cm,
找见淋巴结两枚。(右腋下
淋巴结)淋巴结(0/1)未见癌
转移。免疫组化:(右腋下淋
巴结)淋巴结(0/1)未见癌转
移。

The specimen for
pathological examination
contains one fat tissue. The
size of fat tissue is 3.5 × 3 × 1
cm, and two lymph nodes
can be seen in the tissue.
(The lymph node of right
armpit) lymph node (0/1)
show no metastasis.
Immunohistochemical
staining method: (the lymph
node of right armpit) lymph
node (0/1) show no
metastasis.

False True
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information. In sample pair No.4, both imaging report and
pathology report described the lymph node of armpit, but
the one of imaging report is from left armpit and the one
of pathology report is from right armpit, and thus this re-
port-pair share no common region. There are other limi-
tations including: first, Chinese word segmentation using
Jieba was imperfect and might induce errors in segmenta-
tions, especially for medical terms; second, there is no
Chinese version of SNOMED-CT or UMLS (Unified
Modeling Language), and thus we only performed graph
embedding on CMeSH, which has relatively small number
of concepts and relations; third, we only evaluated our
model on Chinese medical reports, but it could be easily
move onto other language scenarios without language-
specific optimizations.
In this paper we only focused on identifying whether a

pair of reports contain overlapping body sites. We
treated it as a binary classification problem, trained a
CNN model and used graph embedding based on
CmeSH ontology. In future, we could: first, consider it
as a ranking problem, annotate and train a machine
learning model to identify whether report A is more
similar to report B than report C (e.g., by checking the
number of overlapping body parts); second, try different
graph embedding methods and combination of medical
ontologies; third, validate the end-to-end architecture in
other language tasks.
The proposed technique in this paper can be used for

matching the reports of medical images from different
resources and help better consolidate the heterogeneous
patient clinical information and improve the efficiency
of clinicians. Fundamentally, our study provides a
generalizable architecture to detect information discrep-
ancies from different sources of routinely collected clin-
ical data. With the increasing secondary use of clinical
data, many commercial software was developed for
similar purpose but with different data sources and algo-
rithms, for example, IBM Watson Imaging Clinical
Review.3 Moreover, as Wang et al. [27] have envisioned,
improving the quality of clinical data is one key aspect
to make artificial intelligence tools really useful in clin-
ical practice. The effective consolidation of clinical data
can help us better reconcile them, detect potential errors
and thus improve the data quality.

Conclusion
In this paper we proposed a convolutional neural net-
work-based model to identify report-pairs of imaging ex-
aminations and pathologic examinations which contain
overlapping exam body sites by detecting semantic
similarity. Our model exhibited superior performance

compared to other conventional models such as key word
mapping, LSA, LDA, Doc2Vec, Siamese LSTM and a
method based on NER. We also leveraged graph embed-
ding method to utilize external information from medical
ontologies and gained further improvement. In addition,
we adopted LIME algorithm to analyze our model behav-
ior in a visible way. The results indicated our model was
able to automatically and reasonably extract semantic fea-
tures from texts and make accurate judgements. It could
help retrieve patients or reports for imaging diagnosis
quality measurement in a more efficient way.
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