
SOFTWARE Open Access

A privacy-preserving distributed filtering
framework for NLP artifacts
Md Nazmus Sadat1,2* , Md Momin Al Aziz1,2, Noman Mohammed1, Serguei Pakhomov3, Hongfang Liu4 and
Xiaoqian Jiang5

Abstract

Background: Medical data sharing is a big challenge in biomedicine, which often hinders collaborative research.
Due to privacy concerns, clinical notes cannot be directly shared. A lot of efforts have been dedicated to de-identifying
clinical notes but it is still very challenging to accurately locate and scrub all sensitive elements from notes in an automatic
manner. An alternative approach is to remove sentences that might contain sensitive terms related to personal information.

Methods: A previous study introduced a frequency-based filtering approach that removes sentences containing low
frequency bigrams to improve the privacy protection without significantly decreasing the utility. Our work extends this
method to consider clinical notes from distributed sources with security and privacy considerations. We developed a
novel secure protocol based on private set intersection and secure thresholding to identify uncommon and low-frequency
terms, which can be used to guide sentence filtering.

Results: As the computational cost of our proposed framework mostly depends on the cardinality of the intersection of
the sets and the number of data owners, we evaluated the framework in terms of these two factors. Experimental results
demonstrate that our proposed method is scalable in various experimental settings. In addition, we evaluated our framework
in terms of data utility. This evaluation shows that the proposed method is able to retain enough information for data analysis.

Conclusion: This work demonstrates the feasibility of using homomorphic encryption to develop a secure and efficient
multi-party protocol.

Keywords: Biomedical data security and privacy, Clinical notes de-identification, Homomorphic encryption

Background
Clinical notes represent an indispensable component of
electronic health records (EHRs), which contain import-
ant information (such as symptoms and medical history)
that structured data might not cover. Sharing clinical
notes can promote research, improve healthcare services,
and contribute to clinical decision support [1]. However,
it has been a very challenging task to de-identify such
data to mitigate the privacy risks. Due to the unstruc-
tured nature of notes, de-identification is not as straight-
forward as for the structured data. To satisfy the privacy
regulations of Health Insurance Portability and Account-
ability Act (HIPAA), we can remove the Protected

Health Information (PHI) defined in the HIPAA safe
harbor method. Traditionally, this is done through the
detection and scrubbing of 18 specific categories of PHIs
including name, social security number, dates, etc. Many
efforts have been devoted in this direction including
both the manual and the automatic approaches. Manual
approaches to identify PHI are prone to mistakes
(Neamatullah et al [2] shows the recall of 14 clinicians
to detect 130 clinical notes varied from 0.63 to 0.94) and
they are also expensive (e.g., ~$50/h to read and label
20 k words/hour in de-identifying MIMIC II database
[3]). Automated algorithms can save time and reduce
the human review efforts. Early systems used rule or
template based approaches to match and detect PHI [4].
Berman [5] developed a concept matching algorithm
that steps through confidential pathology text to replace
medical terms matching standard nomenclature code
with a synonymous term while keeping the high

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: sadat@cs.umanitoba.ca
1Department of Computer Science, University of Manitoba, Winnipeg, MB
R3T 2N2, Canada
2Department of Biomedical Informatics, University of California San Diego, La
Jolla, CA, USA
Full list of author information is available at the end of the article

Sadat et al. BMC Medical Informatics and Decision Making (2019) 19:183
https://doi.org/10.1186/s12911-019-0867-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-019-0867-z&domain=pdf
http://orcid.org/0000-0002-1674-8764
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:sadat@cs.umanitoba.ca

frequency “stop words” intact. However, the system
blocks too much and has a high false positive rate,
making the outputs hard to read [2]. Finley et al pro-
posed a similar method which was applied to de-identify
distributed semantic models [6]. Scrub system [7] used a
template-based approach to match components of high
privacy risk, which are then removed, generalized, or
replaced with made-up ones. This method can get rid of
explicit personally-identifiable information but it does not
handle combinations of fields and the results might still be
matched or linked to the identities of individuals [8].
Other researchers also treated text de-identification as

a classic Named Entity Recognition (NER) problem and
tried to solve it with machine learning models [9].
Szarvas et al used decision tree to take into consi-
deration of various features (length, frequency, etc.) to
detect PHIs [10]. Several research groups [2, 11] devel-
oped methods based on Support Vector Machine (SVM)
to classify sensitive attributes based on Part-of-speech
(POS) inputs. Another popular framework utilizes condi-
tional random fields (CRF), an extension of logistic
regression and considers correlations in the sentence to
predict PHIs [12, 13]. Latest methods in this direction
[14] using deep learning approaches reported improved
performance in detecting PHIs but the model requires
careful tuning of parameters for each dataset, which
makes it hard to be portable for collaborative research.
A recent method was proposed by Li et al [15] to filter

out rare sentences (frequency < 3) and sentences con-
taining bigrams under a certain frequency threshold
(frequency < 256). This method demonstrated good
performance in obtaining sentences with almost no PHIs
(evaluated by a manual review on sampled outputs)
while preserving a similar Type Unique Identity (TUI)
distribution of the original data, providing an alternative
and generalizable way to obtain useful data with
mitigated privacy risks. However, the method is only
designed to anonymize data from a single source. In
reality, collaborative research often involves more than
one party and poses new challenges to conduct filtering
in a global manner. In this paper, we propose a distrib-
uted and privacy-preserving method as an extension of
the single source model [15]. Our criterion for bigram
filtering is stricter than previous work [15] by taking dis-
tributional differences of local sites into consideration.
We will only keep sentences containing bigrams observed
at all collaboration sites and with sufficient global fre-
quency. Our proposed method can be easily generalized
to cover other NLP artifacts including unigram, trigram,
and n-gram. To develop such a global bigram-based filter-
ing method, appropriate protection needs to be enforced
on private set intersection, secure count aggregation,
and thresholding to ensure data confidentiality during
the process.

Existing works and their limitations
A critical step for our distributed bigram filtering model
is to find what the bigrams in common are among all
collaborative sites in a privacy-preserving manner.
Although there are several studies on 2-party private set
intersection [16, 17], only a few works have been done
to solve multi-party private set intersection (MPSI)
problem. Earlier approaches for MPSI have some limita-
tions. In [18], the dataset size of each party must be
equal. Another approach suffers from approximation
errors [19]. A recent work has shown the feasibility of
handling n > 2 parties [20]. In this work [20], each data
owner constructs a Bloom filter from their data (using
only the words or bigrams, not the count associated with
them). Data owners send the encrypted (exponential
ElGamal encryption scheme) Bloom filter to a service
provider. All encrypted Bloom filters are securely added
by the service provider without decrypting, which results
in an encrypted Integrated Bloom Filter (IBF). Then, the
service provider constructs a randomized n-subtraction
of IBF (encrypted), where n is the number of parties.
The service provider broadcasts this encrypted random-
ized n-subtraction of IBF to all the data owners. Finally,
all data owners jointly decrypt it and compute the set
intersection: if an element x is in the set intersection, the
corresponding array locations in the encrypted random-
ized n-subtraction of IBF, where x is mapped by k hash
functions is an encryption of 0; otherwise, is an encryp-
tion of random integer. Their approach [20] demon-
strated good performance for set sizes range from 64 to
16,384. However, this approach may not scale well with
millions of records, which is common in real world
applications. With a much larger set, to reduce the prob-
ability of false positives, the size of the Bloom filter
should be large enough compared to the number of
items to be inserted into it. In their approach, runtime is
dominated by the encryption and decryption of Bloom
filter. Constructing, encrypting, and transferring such
large Bloom filters (that can deal with millions of records
with a minimal probability of false positives) will introduce
huge computation and communication overhead.
Our problem specification is different from these works

on private set intersection mentioned here, which do not
involve any secure thresholding operations. We are de-
scribing these works just to give an overview of state-of-
the-art solutions of the related problems. To the best of
our knowledge, there is no secure protocol for sensitive
information filtering that combines private set intersection
and secure thresholding.
The major contributions of this article are summarized

as follows:

1. We propose a novel framework based on private
set intersection and secure thresholding to identify

Sadat et al. BMC Medical Informatics and Decision Making (2019) 19:183 Page 2 of 10

uncommon and low-frequency bigrams, which
can be used to remove sentences from clinical notes
that might contain privacy sensitive terms. The
proposed framework takes into consideration
distributional differences of local sites. In addition,
the framework is highly generalizable: it can be
used for any other type of NLP artifact.

2. The proposed framework demonstrates the
feasibility of using homomorphic encryption to
develop a secure and efficient multi-party protocol.
For the homomorphic operations, we leverage a
Single Instruction, Multiple Data (SIMD) scheme
that significantly boosts the performance of the
proposed framework.

3. Our proposed method can simultaneously
guarantee data privacy and preserve data utility for
analysis. It is able to retain enough information for
data analysis.

To the best of our knowledge, this is the first privacy-
preserving work to de-identify clinical notes from dis-
tributed sources.

Implementation
System overview
We developed a secure and privacy-preserving frame-
work for bigram-based filtering to simultaneously meet
two goals: multiparty private set intersection and secure
thresholding.

Architecture and entities
There are three types of entities in our system. Figure 1 rep-
resents the system architecture of our proposed framework.

� Data owner: Data owners might be any hospital,
clinical research facility, or federal (or, provincial)
health science institute that possess clinical datasets.
Our proposed system supports any number of data
owners.

� Crypto Service Provider (CSP): Cryptographic Service
provider manages public and private keys. CSP also
manages salt for hashing (refer to Security Analysis,
Security of Hashing for more details). Each data
owner receives a public key, a private key, and an
evaluation key from the CSP. Data owners use
public key to encrypt their data (count of bigram),
and use private key to decrypt the encrypted response
from the central server.

� Central Server: The central server coordinates the
system protocol. It maintains communications with
all other entities of the system. It receives encrypted
data (hash and encrypted count of bigram) from the
data owners, performs computations locally, and
finally sends the encrypted result to the data owners.

Threat model
In this work, our goal is to ensure that each data
owner knows the thresholded set intersection as a re-
sult of the protocol. Data owners should not know
the elements of other data owners’ dataset (elements
that are not in the intersection). We consider the
central server as a semi-honest party (also known as
honest-but-curious). It follows the protocol but may
attempt to scoop additional information from the ser-
ver logs or received messages. We also assume that
the data owners do not collude. These assumptions
are standard and have been adopted by several earlier
works [21, 22].

Problem specification
The objective of this study is to identify the globally
infrequent common bigrams of participating parties
based on a threshold value. In the first phase of the
system protocol, all the parties jointly identify the
common bigrams. Then, data owners send counts of
the common bigrams to the central server. Consider
the example of Table 1. Here, data owner A sends E
(count of bigram Flu-fever = 10), E (count of bigram
Cancer-pain = 15), and E (count of bigram Diabetes-glau-
coma = 20), where E denotes an encryption algorithm.
After receiving counts from all data owners, the central
server performs addition over the bigram counts. If the
total count for a specific bigram is less than a predeter-
mined threshold, then that bigram is considered privacy-
sensitive, and this information can be used to guide sen-
tence filtering of clinical notes. The intuition behind this
filtering is: the more potentially identifying a bigram is,
the rarer it will be.

Preliminaries
Homomorphic encryption
The concept of an encryption scheme that can per-
form arbitrary computation on encrypted data was
first proposed by Rivest et al [23] in 1978. Many trad-
itional homomorphic encryption schemes are either
additively homomorphic (Paillier [24]), or multiplica-
tively homomorphic (ElGamal [25]). However, such

Table 1 Identification of globally infrequent bigrams

Data Owner Frequency of the
bigram Flu-fever

Frequency of the
bigram Cancer-pain

Frequency of the
bigram Diabetes-
glaucoma

A 10 15 20

B 20 15 10

C 5 15 25

Total 35 45 55

Let us consider the data of the above table. Assume, the threshold value is 40.
Since total count of Flu-fever (35) is less than the threshold value (40), it will
not be considered privacy-sensitive

Sadat et al. BMC Medical Informatics and Decision Making (2019) 19:183 Page 3 of 10

restriction to one single algebraic operation is very
inconvenient for general purpose applications. Lately,
researchers are adopting lattice cryptosystems, which
leverage ring homomorphism (addition and multiplica-
tion) [26, 27]. The cryptosystem in [28] is a Somewhat
Homomorphic Encryption (SWHE) scheme that can
compute a bounded number of homomorphic func-
tions. Other recent RLWE-based SWHE cryptosystems
include BGV [29], FV [30], and YASHE [31]. While
these systems are intrinsically similar, there are diffe-
rences and trade-offs. Interested readers can refer to
[32] for more details.
In this work, we used the FV cryptosystem (other

RLWE-based system will work in a similar manner),
which consists of the following functionalities:

� KeyGen (params): Given the system parameters
params as input, Keygen generates a public-private
key pair and an evaluation key (pk, sk, evk).

� Enc (pk, m): An encryption algorithm encrypts a
plaintext message m using the public key pk.

� Dec (sk, c): Let, c be the encryption of a plaintext m.
A decryption algorithm outputs m, given private key
sk and ciphertext c as input.

� Add(c1, c2): Let c1, c2 be the ciphertexts for messages
m1, m2 respectively. Given, c1, c2 as input, a

homomorphic addition operation Add computes the
encrypted sum of m1, m2.

� Mult(c1, c2): Let c1, c2 be the ciphertexts for
messages m1, m2 respectively. Given, c1, c2 as input,
a homomorphic multiplication operation Mult
computes the encrypted product of m1, m2.

� ReLin(cmult, evk): The objective of relinearization
operation ReLin is to reduce the size of a given ciphertext
cmult back to (at least) 2. Relinearization is performed
when the size of the ciphertext increases substantially by
multiplication operations. Relinearization operation
requires the evaluation key evk.

There is a recent application of homomorphic encryp-
tion, which can securely perform genome search on a
semi-honest cloud server [33].

Ciphertext packing
The considerable computational overhead of homomorphic
encryption results from the large ciphertexts. As homo-
morphic operations have to operate on these large cipher-
texts, they can be quite slow. The primary solution to deal
with this issue is to work with packed ciphertexts, which
refer to the ciphertexts that encrypt a vector of plaintext
values [34, 35]. Homomorphic operations can be performed
on these vectors component-wise in a Single Instruction,

Fig. 1 Block diagram of the system architecture. Only encrypted summary statistics are delegated to the central server to conduct the bigram
filtering, which returns to individual data owners with encrypted bigrams (that are both common and frequent enough in a global manner).
This block diagram was drawn by the authors

Sadat et al. BMC Medical Informatics and Decision Making (2019) 19:183 Page 4 of 10

Multiple Data (SIMD) manner. Depending on the memory
allowance, this mechanism can significantly boost the per-
formance due to parallelization.
Consider the plaintext elements in a polynomial

quotient ring m ∈ Rt = Zt/(X
n + 1) and ciphertext ele-

ments in Rq = Zq/(X
n + 1). Here, q and t are positive

integers (q > t, q > 1, see [30]), Zq represents the set
of integers ð− q

2 ;
q
2� , and Xn + 1 is an irreducible poly-

nomial of degree n. Using ciphertext packing, we can
encrypt n plaintext values in a single ciphertext for a
single instruction execution.
Since a packed ciphertext is essentially the same as

a standard ciphertext, the basic homomorphic opera-
tions still work, for instance, homomorphic addition
by adding ciphertexts. Ciphertext packing thus facili-
tates SIMD-type homomorphic computation, which is
capable of computing the same function over many
inputs at once. The usage of ciphertext packing in
our proposed framework is elaborated in Detailed
System Protocol.
We apply ciphertext packing to minimize both com-

putational and communication overhead. The data
owners group their counts of bigrams into vectors of
length n, encrypt them, and send Cardinality of Inter-
section of Sets/ n ciphertexts to the central server (see
Detailed System Protocol). Then the packing mechan-
ism allows the central server to perform computation
on n items simultaneously, which results in n-fold im-
provement in computation and communication both.
In our case, n equals to 4096, which leads to a sig-
nificant time cost reduction over the naive homo-
morphic encryption method.

Hash functions
Hash functions are one of the fundamental crypto-
graphic primitives. Hash functions can compute a di-
gest of a given message, which is a fixed-length bit
string. For a given message, the message digest (also

known as hash value or hash) can be considered as
an unique representation of that message. In this
work, we have used SHA-256, which is a member of
Secure Hash Algorithm (SHA) family. The length of
message digest for SHA-256 is 256 bits [36]. Security
of hashing is discussed in detail in Security Analysis,
Security of Hashing.

Detailed system protocol
At the system initialization phase, data owners receive
public and private keys from the CSP. Also, the central
server receives only the public key. Then, each data
owner sends the hashes of bigrams to the central server.
After receiving the hashes from each data owner, the
central server computes the intersection of the hashes.
Then, the central server sends the elements of this inter-
section to data owners. Figure 2 shows the flow diagram
of our protocol.
Upon receiving the intersection of the hashes from

the central server, data owners encrypt the local
frequency of the intersected bigrams by using the
ciphertext packing technique. To do so, they follow
the order received from the central server. Figure 3
illustrates this technique for a data owner and
indicates the difference with naive homomorphic en-
cryption approach. After encrypting the counts, data
owners send the packed ciphertexts to the central ser-
ver, where the encrypted global frequency will be
computed.
After receiving the ciphertexts, the central server per-

forms homomorphic addition operation on these packed
ciphertexts. So, at the end of this addition process, the
resulting output looks like the table below. Here, E rep-
resents the encryption function.
In Table 2, E(C11) denotes the encrypted count of

bigram B1 contributed by data owner 1. E(C12) denotes
the encrypted count of B1 contributed by data owner 2,
E(C13) denotes the encrypted count of B1 contributed
by data owner 3, and so on.

Fig. 2 Flow diagram for the proposed system protocol. The order of the execution runs in a top down manner in key distribution and computation phases

Sadat et al. BMC Medical Informatics and Decision Making (2019) 19:183 Page 5 of 10

Now, we need to meet the thresholding requirement
for the sum of homomorphically encrypted counts. For
each of the records, we check the following inequality.

E C11ð Þ þ E C12ð Þ þ E C13ð Þ þ⋯ > threshold

Solving this problem involves both addition and com-
parison. It is known that in arithmetic circuits, addition
is cheap but comparison is not trivial. To avoid the com-
parison operation in the arithmetic circuit, we formulate
the problem in the following way,

E C11ð Þ þ E C12ð Þ þ E C13ð Þ þ⋯−threshold

After performing the above mentioned homomorphic
operation, the central server sends to the data owners
r*(E(C11) + E(C12) + E(C13) +⋯− threshold), where r is
a random number drew by the central server. After

decrypting it, if a data owner gets a random negative
number (or zero), she will understand that the sum of
counts of the corresponding record is less than (or
equal to) the threshold. Similarly, if a data owner gets a
random positive number, she will understand that the
sum of counts of the corresponding record is greater
than the threshold. Multiplying every coefficient of the
resulting ciphertext by same random number may ex-
pose some additional information about other data
owners’ counts. So, we multiply the resulting ciphertext
with a random polynomial, all of whose coefficients are
randomly generated.
Although polynomial addition and subtraction are co-

efficient-wise by nature, polynomial multiplication in Rt
(and Rq) is a convolution product of the coefficients. An
effective technique to transform convolution product into
coefficient-wise product in polynomial ring is the Num-
ber-Theoretic Transform (NTT), a specialization of Fou-
rier transform for finite rings. One important property of
NTT is that it works in the same ring as lattice cryptosys-
tems do. Therefore, NTT can be used to improve the effi-
ciency of the polynomial operations [37]. To ensure that
the products in the ciphertext space be translated into co-
efficient-wise products in plaintext space, we perform an
inverse-NTT operation to plaintext before encryption and
a NTT operation after decryption.

Fig. 3 Usage of ciphertext packing in our proposed method. Here, n is the degree of the polynomial, which indicates the number of slots for parallel computing

Table 2 Secure count aggregation at central server

Bigram Encrypted Global Frequency

B1 E(C11) + E(C12) + E(C13) + ⋯

B2 E(C21) + E(C22) + E(C23) + ⋯

B3 E(C31) + E(C32) + E(C33) + ⋯

⋮ ⋮

Sadat et al. BMC Medical Informatics and Decision Making (2019) 19:183 Page 6 of 10

Results
Experimental settings
Dataset
We used the MIMIC-III (Medical Information Mart for
Intensive Care), an openly available dataset comprising
of de-identified health data associated with ~ 40 k critical
care patients [38]. To be specific, we used NOTEE-
VENTS table of this database, which contains de-identi-
fied clinical notes including nursing and physician
notes, and reports on ECG, radiology, and discharge
summary. There are 2,083,180 rows in NOTEEVENTS
table.

Dataset preprocessing
The text column of NOTEEVENTS table represents the
contents of the clinical notes. At first, we removed the
stop words from the entries of this column. We also re-
moved any standalone symbol/character, numerical values
including temporal expressions (e.g., 4:10 AM, 9:50 PM).

Evaluation environment
Experiments were performed on Google Compute Engine
(GCE) and Amazon EC2 cloud server. GCE is a cloud
computing service that provides virtual machines running
in Google’s data centers.
In GCE, we used a n1-standard-8 machine with Ubuntu

16.04.3 LTS. For Amazon EC2, the configuration was
r3.xlarge with Ubuntu 16.04.2 LTS. The central server was
hosted in Amazon EC2 and the CSP and the data owners
were hosted in GCE. Each entity of the system architec-
ture communicated with others through TCP (Transmis-
sion Control Protocol).

Implementation
To hash the words, SHA-256 (OpenSSL version 1.0.2 g)
was used. To encrypt the bigram counts, we use FV
scheme [30]. For FV implementation, we choose NFLlib
[39]. NFLlib [39] is an efficient and scalable C++ library
for ideal lattice cryptography. In our implementation,
the computation and communication tasks are processed
in parallel whenever possible. We used OpenMP for this
purpose. An open-source implementation of our
proposed framework is available at GitHub.

Experimental results
It is evident from the description of our proposed
method that the runtime mostly depends on the cardin-
ality of the intersection of the sets and the number of
data owners. We evaluated our proposed method in
terms of these two factors. Tables 3 and 4 show the ex-
perimental results. These tables report computation time
for intersecting hashes, encryption, homomorphic oper-
ation, decryption, and network communication costs.
However, the total time reported here does not include
cost for system initialization, for instance, reading and
parsing configuration file, reading input data file, TCP
socket setup and shutdown etc.

Communication cost
The total number of bigrams was about 15 million.
These were equally distributed among three data owners
for the experiments shown in Table 2. Each data owner
was given 4 million bigrams along with common ones as
shown in the first column of Table 2. For five different
settings, the sizes of encrypted data for each data owner
were 46.3, 51, 55.6, 60.2, and 64.8MB respectively. The
sizes of the files containing hashes (for each data owner)
were 341, 351, 360, 370, and 379MB respectively. For
the experiments shown in Table 3, bigrams were distrib-
uted equally among the six data owners (3,518,464 each).
The size of the encrypted data for each data owner was
46.3MB. The size of the file containing hash (for each
data owner) was 218MB.

Discussion
Concept distribution analysis
Now, we show that the proposed method is able to re-
tain enough information for data analysis. We compare
the concept distribution of clinical notes and sanitized
sentence repository constructed by eliminating sentences
of the clinical notes that contain low frequency bigrams
(frequency less than or equal to a specified threshold).
Due to the significant computations involved, we
sampled 800 clinical notes for this experimentation. The
results of concept distribution analysis are reported in
Table 5. Each concept is expressed as a Type Unique
Identity (TUI) defined by UMLS [40]. The difference of
the TUI distribution is not too large when the threshold

Table 3 Experimental results for different cardinality of intersection of sets. In the five different settings, cardinality is increased by
1% of the entire dataset. The number of data owners is a constant [3]. The numbers are in seconds

Cardinality of Intersection Intersecting Hashes (s) Encryption (s) Homomorphic Operation (s) Decryption (s) Network Comm. (s) Total Time (s)

1,515,520 (~ 10%) 4.63 8.11 55.43 6.73 0.48 75.38

1,667,072 (~ 11%) 4.69 8.92 61.19 7.06 0.52 82.38

1,818,624 (~ 12%) 4.98 9.70 66.63 7.88 0.54 89.73

1,970,176 (~ 13%) 5.07 10.97 72.21 8.49 0.59 97.33

2,121,728 (~ 14%) 5.20 11.32 77.65 9.34 0.60 104.11

Sadat et al. BMC Medical Informatics and Decision Making (2019) 19:183 Page 7 of 10

is small but it gets larger at an increasing threshold.
However, this is not a critical issue because we can
maintain the original distribution by oversampling the
filtered corpus using sentences that contain one or more
TUIs. This is a standard combinatorial optimization
problem but we do not explore it in this paper.

Security analysis
In this section, we analyze the security of our proposed
framework.

Security of encryption
To evaluate the security of a lattice cryptosystem, a
widely used measure is root-Hermite factor . Lindner
and Peikert showed a mathematical relationship between
root-Hermite factor and security level λ (in bits) [41].

is given by, where c ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ln ð1=ϵÞ
Π

q

and s ¼ σ
ffiffiffiffiffiffiffi

2Π
p

.

n, q, and s represent the degree of the polynomial ring,
ciphertext modulus, and scale parameter of the error

distribution respectively. σ denotes the standard deviation
of the error distribution, and ϵ is the attacker advantage.
For our experiments, we choose n = 212, q = 2120,

σ = 3, ϵ = 2−32. According to root-Hermit factor meas-
ure, our proposed method guarantees 142 bit security.

Security of hashing
One of the primary security requirements of hash function
is one-wayness: given a hash output h, it must be computa-
tionally infeasible to find an input m such that h=H(m). In
other words, given a message digest, an adversarial cannot
find out the matching message m from H−1(h) =m. There
exist some cryptanalytic attacks against one-way hashing
that try to break the security properties of the hash function.
Brute-force attack (also known as exhaustive search) is a
type of cryptanalytic attack. Let (m, h) denote the pair of in-
put message and output hash value, and let M = {m1,m2, ..
…,mk} be the message space of all possible messages mi.
Such an attack checks for every element of M if H(mi) = =
h. If an equality holds, a possible input message is found.
This type of attack is impractical for a large message space.
A similar one is called dictionary attack, which tries all the
input messages in a pre-arranged listing, generally derived
from a list of words such as in a dictionary (hence the term
dictionary attack), which has a smaller space to search.
There is a variant of dictionary attack, known as Rainbow
table attack [42], which uses a precomputed table (rainbow

Table 4 Experimental results for different number of data owners. The cardinality of intersection of sets is fixed, which is 1,515,520.
The numbers are in term of seconds

Number of Data Owners Intersecting Hashes (s) Encryption (s) Homomorphic Operation (s) Decryption (s) Network Comm. (s) Total Time (s)

2 1.69 8.17 54.72 6.29 0.32 71.19

3 2.72 8.19 55.49 6.33 0.39 73.12

4 3.53 8.28 55.51 6.60 0.46 74.38

5 4.63 8.22 56.36 6.67 0.53 76.41

6 5.36 8.24 58.01 7.11 0.60 79.32

Table 5 Comparison of TUI Proportion Distribution

TUI Original Clinical Note Threshold = 1 Threshold = 2 Threshold = 4 Threshold = 8 Threshold = 16

T007 0.2627 0.2012 0.1601 0.1421 0.0922 0.0428

T023 5.8168 4.4492 3.5281 2.9490 2.5213 2.1758

T033 7.7646 5.3959 4.8470 3.6402 3.1259 2.5570

T047 7.6978 5.4338 4.8742 3.7598 3.3876 2.8825

T060 2.5509 1.8672 1.6446 1.4018 1.1242 0.9680

T074 1.5871 1.2046 1.0991 0.9302 0.8257 0.6724

T093 0.9824 0.7123 0.6594 0.5846 0.5197 0.4925

T109 4.1908 2.8163 2.7084 2.8069 2.6024 1.6447

T121 1.2840 0.8898 0.8983 0.7719 0.5971 0.6253

T170 0.7523 0.5182 0.4450 0.3165 0.2764 0.1284

T184 3.5566 2.4968 2.2498 1.8443 1.4265 0.6895

T201 1.8249 1.1075 0.9960 0.9173 0.8441 0.8437

Sadat et al. BMC Medical Informatics and Decision Making (2019) 19:183 Page 8 of 10

Table [42] that contains elements up to a certain length con-
sisting of a limited set of characters) for reversing hash func-
tions. This attack requires less computation time but more
storage compared to brute-force attack. Addressing above
mentioned attacks, we used salt to randomize the hashing.
In cryptography, salt refers to random data that are used as
an additional input to a hash function. Salt was generated by
the CSP and provided to data owners before each hashing
process, making these attacks computationally infeasible.
Another desirable property of a hash function is colli-

sion resistance. A hash function is said to be collision re-
sistant if it is computationally infeasible to find two
different inputs m1 ≠m2 with H(m1) = =H(m2). It seems
if the hash function has an output length of b bits, we
have to check about 2b messages. However, it turns out
that an attacker needs only about 2b/2 messages. This is
a quite surprising result, which is due to the birthday at-
tack. This attack is based on the birthday paradox, which
is a powerful tool that is often used in cryptanalysis.
Collision search for a hash function H() is exactly the

same problem as finding birthday collisions among party
attendees: how many people are required at a birthday
party such that there is a significant chance that at least
two attendees have the same date of birth?. The question
is how many messages (m1,m2,……,mk) does an attacker
need to hash until he has a chance of finding H(mi) = =
H(mj) for some mi and mj that he chooses. The most sig-
nificant consequence of the birthday attack is that the
number of messages needed to hash to find a collision is
approximately equal to the square root of the number of

possible output values, i.e., about
ffiffiffiffiffiffi

2b
p

¼ 2b=2 . Hence, for
a security level of u bit, the hash function needs to have
an output length of 2u bit. In order to prevent collision
attacks based on the birthday paradox, the output length
of a hash function must be at least 128 [36]. As mentioned
previously, we are using SHA-256 in this work, which has
output length 256.
In 2004, collision-finding attacks against MD5 and

SHA-0 were demonstrated by Xiaoyun Wang [43]. One
year later, it was claimed that the attack could be ex-
tended to SHA-1 and a collision search would take 263

steps, which is considerably less than the 280, achieved
by the birthday attack (the output width in this case is
160 bit). In this work, we are using SHA-2 (precisely,
SHA-256) against which no attacks are known to date.

Conclusion
In this article, we proposed a novel protocol to achieve
the joint mission of private set intersection and secure
thresholding for a distributed data de-identification task.
We extended a previous filtering-based method to cover
data from distributed sources and demonstrated the
feasibility of using homomorphic encryption to develop

an efficient multi-party protocol for distributed data de-
identification. Experimental results show that our pro-
posed method can simultaneously guarantee data privacy
and preserve data utility for analysis.
To the best of our knowledge, this is one of the pio-

neering privacy-preserving initiatives to de-identify clin-
ical notes in a distributed environment. We have open
sourced our code in GitHub with a GNU general public
license, along with a software manual for compiling and
running it.

Availability and requirements
Project name: A Privacy-preserving Distributed Filtering
Framework for NLP Artifacts.
Project home page: https://github.com/Nazmus-Sadat/th_

mpsi
Operating system: Linux.
Programming language: C++.
License: GNU general public license.

Abbreviations
CSP: Crypto Service Provider; EHR: Electronic Health Record; GCE: Google
Compute Engine; HIPAA: Health Insurance Portability and Accountability Act;
IBF: Integrated Bloom Filter; MIMIC-III: Medical Information Mart for Intensive
Care; MPSI: Multi-party private set intersection; NER: Named Entity
Recognition; NTT: Number-Theoretic Transform; PHI: Protected Health
Information; SHA: Secure Hash Algorithm; SIMD: Single Instruction, Multiple
Data; SWHE: Somewhat Homomorphic Encryption; TCP: Transmission Control
Protocol; TUI: Type Unique Identity; UMLS: Unified Medical Language System

Acknowledgements
Not applicable.

Authors’ contributions
All authors approved the final manuscript. MNS, MMA, and XJ designed the
method. MNS implemented the protocol and devised experiments. MNS and
XJ wrote the majority of the manuscript. NM, SP, HL, and XJ provided
detailed edits and critical suggestions.

Funding
This work was funded in part by NIBIB U01 EB023685, NSERC Discovery
Grants (RGPIN-2015-04147), NIH U01TR002062, and University Research
Grants Program (URGP) from the University of Manitoba.
Xiaoqian Jiang was supported in part by the CPRIT RR180012, UT Stars
award, the National Institute of Health (NIH) under award number
U01TR002062, R01GM114612, R01GM118574, R01GM124111.

Availability of data and materials
The clinical notes used in the experiment are available from MIMIC-III (Med-
ical Information Mart for Intensive Care), an openly available dataset [38].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer Science, University of Manitoba, Winnipeg, MB
R3T 2N2, Canada. 2Department of Biomedical Informatics, University of
California San Diego, La Jolla, CA, USA. 3Department of Pharmaceutical Care
& Health Systems, University of Minnesota, Minneapolis, MN, USA.

Sadat et al. BMC Medical Informatics and Decision Making (2019) 19:183 Page 9 of 10

https://github.com/Nazmus-Sadat/th_mpsi
https://github.com/Nazmus-Sadat/th_mpsi

4Department of Health Sciences Research, Mayo Clinic College of Medicine,
Rochester, MN, USA. 5School of Biomedical Informatics, University of Texas
Health Science Center at Houston, Houston, TX, USA.

Received: 2 December 2018 Accepted: 4 July 2019

References
1. Demner-Fushman D, Chapman WW, McDonald CJ. What can natural

language processing do for clinical decision support? J Biomed Inform.
2009;42:760–72.

2. Neamatullah I, Douglass MM, Lehman L-WH, Reisner A, Villarroel M, Long
WJ, et al. Automated de-identification of free-text medical records. BMC
Med Inform Decis Mak. 2008;8:32.

3. Douglass M, Clifford GD, Reisner A, Moody GB, Mark RG. Computer-assisted
de-identification of free text in the MIMIC II database. Comput Cardiol. 2004;
2004:341–4.

4. Beckwith BA, Mahaadevan R, Balis UJ, Kuo F. Development and evaluation
of an open source software tool for deidentification of pathology reports.
BMC Med Inform Decis Mak. 2006;6:12.

5. Berman JJ. Concept-match medical data scrubbing. How pathology text can
be used in research. Arch Pathol Lab Med. 2003;127:680–6.

6. Finley GP, Pakhomov SVS, Melton GB. Automated De-Identification of
Distributional Semantic Models: AMIA Annual Symposium; 2016.

7. Sweeney L. Replacing personally-identifying information in medical records,
the scrub system. Proc AMIA Annu Fall Symp. 1996:333–7.

8. Sweeney L. Guaranteeing anonymity when sharing medical data, the
Datafly system. Proc AMIA Annu Fall Symp. 1997:51–5.

9. Meystre SM, Friedlin FJ, South BR, Shen S, Samore MH. Automatic de-
identification of textual documents in the electronic health record: a review
of recent research. BMC Med Res Methodol. 2010;10:70.

10. Szarvas G, Farkas R, Busa-Fekete R. State-of-the-art anonymization of medical
records using an iterative machine learning framework. J Am Med Inform
Assoc. 2007;14:574–580.

11. Guo Y, Gaizauskas R. Identifying personal health information using support
vector machines. i2b2 workshop on łdots. 2006; Available: ftp://ftp.dcs.shef.
ac.uk/home/robertg/papers/amia06-deident.pdf

12. Gardner J, Xiong L. HIDE: An Integrated System for Health Information DE-
identification: EDBT. IEEE; 2008. p. 254–9.

13. Wellner B, Huyck M, Mardis S, Aberdeen J, Morgan A, Peshkin L, et al.
Rapidly retargetable approaches to de-identification in medical records. J
Am Med Inform Assoc. 2007;14:564–73.

14. Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes
with recurrent neural networks. J Am Med Inform Assoc. 2017;24:596–606.

15. Li D, Rastegar-Mojarad M, Elayavilli RK, Wang Y, Mehrabi S, Yu Y, et al. A
frequency-filtering strategy of obtaining PHI-free sentences from clinical
data repository. Proceedings of the 6th ACM Conference on Bioinformatics,
Computational Biology and Health Informatics. ACM; 2015. pp. 315–324.

16. Wang XA, Xhafa F, Luo X, Zhang S, Ding Y. A privacy-preserving fuzzy interest
matching protocol for friends finding in social networks. Soft Computing. 2018.
pp. 2517–2526. doi: https://doi.org/10.1007/s00500-017-2506-x

17. Chen H, Laine K, Rindal P. Fast Private Set Intersection from Homomorphic
Encryption. Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security - CCS ‘17; 2017. https://doi.org/10.1145/3133
956.3134061.

18. Kissner L, Song - Crypto D. Privacy-preserving set operations, vol. 2005:
Springer; 2005. Available: http://link.springer.com/content/pdf/10.1
007/11535218.pdf#page=251

19. Egert R, Fischlin M, Gens D, Jacob S, Senker M, Tillmanns J. Privately
Computing Set-Union and Set-Intersection Cardinality via Bloom Filters.
Information Security and Privacy. Springer, Cham; 2015. pp. 413–430.

20. Miyaji A, Nakasho K, Nishida S. Privacy-Preserving Integration of Medical
Data. J Med Syst. Springer US. 2017;41:37.

21. Nikolaenko V, Weinsberg U, Ioannidis S, Joye M, Boneh D, Taft N. Privacy-
preserving ridge regression on hundreds of millions of records. Security and
Privacy (SP), 2013 IEEE Symposium on. IEEE; 2013. p. 334–48.

22. Sadat MN, Aziz MMA, Mohammed N, Chen F, Jiang X, Wang S. SAFETY: secure
gwAs in federated environment through a hYbrid solution. IEEE/ACM Trans
Comput Biol Bioinform. 2018. https://doi.org/10.1109/TCBB.2018.2829760.

23. Rivest RL, Adleman L, Dertouzos ML. On data banks and privacy
homomorphisms. Foundations of secure computation. 1978;4:169–80.

24. Paillier P. Public-key cryptosystems based on composite degree residuosity
classes. Advances in cryptology—EUROCRYPT’99. Springer; 1999. pp. 223–238.

25. ElGamal T. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans Inf Theory IEEE. 1985;31:469–72.

26. Melchor CA, Barrier J, Fousse L. XPIR: Private information retrieval for
everyone. on Privacy Enhancing; 2016; Available: https://hal.archives-
ouvertes.fr/hal-01396142/. hal.archives-ouvertes.fr

27. Dowlin N, Gilad-Bachrach R, Laine K, Lauter K, Naehrig M, Wernsing J.
Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy: International Conference on Machine Learning
ICML; 2016. p. 201–10.

28. Naehrig M, Lauter K, Vaikuntanathan V. Can homomorphic encryption be
practical? Proceedings of the 3rd ACM workshop on Cloud computing
security workshop: ACM; 2011. p. 113–24.

29. Brakerski Z, Gentry C, Vaikuntanathan V. (Leveled) fully homomorphic
encryption without bootstrapping. Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference on - ITCS ‘12. New York: ACM
Press; 2012. pp. 309–325.

30. Fan J, Vercauteren F. Somewhat Practical Fully Homomorphic Encryption.
IACR Cryptology ePrint Archive. 2012;2012:144.

31. Bos JW, Lauter KE, Loftus J, Naehrig M. Improved Security for a Ring-Based Fully
Homomorphic Encryption Scheme: IMA Int Conf. Springer; 2013. p. 45–64.

32. Acar A, Aksu H, Selcuk Uluagac A, Conti M. A Survey on Homomorphic
Encryption Schemes: Theory and Implementation. arXiv. 2017; Available:
http://arxiv.org/abs/1704.03578. Accessed 21 Jan 2018

33. Zhou TP, Li NB, Yang XY, Lv LQ, Ding YT, Wang XA. Secure Testing for
Genetic Diseases on Encrypted Genomes with Homomorphic Encryption
Scheme Secur Commun Netw. 2018. pp. 1–12. doi:https://doi.org/10.1155/2
018/4635715

34. Smart NP, Vercauteren F. Fully homomorphic SIMD operations. Des Codes
Cryptogr Springer US. 2014;71:57–81.

35. Brakerski Z, Gentry C, Halevi S. Packed Ciphertexts in LWE-Based
Homomorphic Encryption. Public-Key Cryptography – PKC 2013. Berlin:
Springer; 2013. p. 1–13.

36. Paar C, Pelzl J. Understanding Cryptography: A Textbook for Students and
Practitioners: Springer Science & Business Media; 2009.

37. Chen DD, Mentens N, Vercauteren F, Roy SS, Cheung RCC, Pao D, et al.
High-speed polynomial multiplication architecture for ring-LWE and SHE
cryptosystems. IEEE Trans Circuits Syst I Regul Pap. 2015;62:157–66.

38. Johnson AEW, Pollard TJ, Shen L, Lehman L-WH, Feng M, Ghassemi M, et al.
MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035.

39. Aguilar-Melchor C, Barrier J, Guelton S, Guinet A, Killijian M-O, Lepoint T.
NFLlib: NTT-Based Fast Lattice Library. Topics in Cryptology - CT-RSA 2016.
Cham: Springer; 2016. p. 341–56.

40. Volk M, Ripplinger B, Vintar S, Buitelaar P, Raileanu D, Sacaleanu B. Semantic
annotation for concept-based cross-language medical information retrieval.
Int J Med Inform. 2002;67:97–112.

41. Lindner R, Peikert C. Better key sizes (and attacks) for LWE-baAvailable:sed
encryption. CT-RSA: Springer; 2011. http://link.springer.com/content/pdf/10.1
007/978-3-642-19074-2.pdf#page=330

42. Oechslin P. Making a Faster Cryptanalytic Time-Memory Trade-Off. Advances
in Cryptology - CRYPTO 2003. Berlin: Springer; 2003. p. 617–30.

43. Wang X, Feng D, Lai X, Yu H. Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD. IACR Cryptology ePrint Archive. 2004;2004:199.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Sadat et al. BMC Medical Informatics and Decision Making (2019) 19:183 Page 10 of 10

ftp://ftp.dcs.shef.ac.uk/home/robertg/papers/amia06-deident.pdf
ftp://ftp.dcs.shef.ac.uk/home/robertg/papers/amia06-deident.pdf
https://doi.org/10.1007/s00500-017-2506-x
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
http://link.springer.com/content/pdf/10.1007/11535218.pdf#page=251
http://link.springer.com/content/pdf/10.1007/11535218.pdf#page=251
https://doi.org/10.1109/TCBB.2018.2829760
https://hal.archives-ouvertes.fr/hal-01396142/
https://hal.archives-ouvertes.fr/hal-01396142/
http://hal.archives-ouvertes.fr
http://arxiv.org/abs/1704.03578
https://doi.org/10.1155/2018/4635715
https://doi.org/10.1155/2018/4635715
http://link.springer.com/content/pdf/10.1007/978-3-642-19074-2.pdf#page=330
http://link.springer.com/content/pdf/10.1007/978-3-642-19074-2.pdf#page=330

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Existing works and their limitations

	Implementation
	System overview
	Architecture and entities
	Threat model

	Problem specification
	Preliminaries
	Homomorphic encryption
	Ciphertext packing
	Hash functions

	Detailed system protocol

	Results
	Experimental settings
	Dataset
	Dataset preprocessing
	Evaluation environment
	Implementation

	Experimental results
	Communication cost

	Discussion
	Concept distribution analysis
	Security analysis
	Security of encryption
	Security of hashing

	Conclusion
	Availability and requirements
	Abbreviations

	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

