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Abstract

Background: Most healthcare data sources store information within their own unique schemas, making reliable
and reproducible research challenging. Consequently, researchers have adopted various data models to improve
the efficiency of research. Transforming and loading data into these models is a labor-intensive process that can
alter the semantics of the original data. Therefore, we created a data model with a hierarchical structure that
simplifies the transformation process and minimizes data alteration.

Methods: There were two design goals in constructing the tables and table relationships for the Generalized Data
Model (GDM). The first was to focus on clinical codes in their original vocabularies to retain the original semantic
representation of the data. The second was to retain hierarchical information present in the original data while
retaining provenance. The model was tested by transforming synthetic Medicare data; Surveillance, Epidemiology,
and End Results data linked to Medicare claims; and electronic health records from the Clinical Practice Research
Datalink. We also tested a subsequent transformation from the GDM into the Sentinel data model.

Results: The resulting data model contains 19 tables, with the Clinical Codes, Contexts, and Collections tables
serving as the core of the model, and containing most of the clinical, provenance, and hierarchical information. In
addition, a Mapping table allows users to apply an arbitrarily complex set of relationships among vocabulary
elements to facilitate automated analyses.

Conclusions: The GDM offers researchers a simpler process for transforming data, clear data provenance, and a
path for users to transform their data into other data models. The GDM is designed to retain hierarchical
relationships among data elements as well as the original semantic representation of the data, ensuring consistency
in protocol implementation as part of a complete data pipeline for researchers.
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Background
Healthcare data contains useful information for clinical
researchers across a wide range of disciplines, including
pharmacovigilance, epidemiology, and health services
research. However, most data sources throughout the
world store information within their own unique
schemas, making it difficult to develop software tools
that ensure reliable and reproducible research. One
solution to this problem is to create data models that
standardize the storage of both the data and the
relationships among data elements [1].

In healthcare, several commonly used data models in-
clude those supported by the following organizations:
Informatics for Integrating Biology and the Bedside
(i2b2) [2–4], Observational Health Data Sciences and In-
formatics (OHDSI, managing the OMOP [Observational
Outcomes Medical Partnership] data model) [5–7], Sen-
tinel [8–10], and PCORnet (Patient Centered Outcomes
Research Network) [11, 12], among others. The first,
and biggest, challenge with any data model is the process
of migrating the raw (source) data into the data model,
referred to as the “extract, transform, and load” (ETL)
process. The ETL process is particularly burdensome
when one has to support multiple, large data sources,
and to update them regularly [13].
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Some aspects of transforming raw data into a particu-
lar data model are straight-forward, including reorganiz-
ing variables and standardizing their names. However,
the most challenging aspect is standardizing the
relationships among data elements without changing
their meaning. Since different healthcare data sources
encode relationships in different ways, the ETL process
can lose information, or create inaccurate information.
The best example is the process of creating a visit, a
construct which, in most data models, is used to link
information (e.g., diagnoses and procedures) on a per
patient basis.
Visits are challenging because administrative claims

allow facilities and practitioners to invoice separately for
their portions of the same medical encounter, and allow
practitioners to bill for multiple interactions on a single
invoice [14]. Within the practitioner bills, individual pro-
cedures are linked to diagnosis codes, procedure modi-
fiers, and costs. Consequently, a visit should link both
the facility and the practitioner information without
changing the existing practitioner-specified relationships
between procedures, modifiers, diagnoses, and costs.
Even electronic medical records can be challenging
when each interaction with a different provider (e.g.,
nurse, physician, pharmacist, etc.) is recorded separately,
requiring decisions to be made about defining a visit.
To minimize the need to encode specific relationships

that may not exist in the source data, we created a data
model with a hierarchical structure that minimizes
changes to the meaning of the original data. This data
model can serve both as a stand-alone data model for
clinical researchers using observational data, as well as a
storage model for later conversion into other data
models.

Methods
In designing the Generalized Data Model (GDM) the
primary use case was to allow clinical researchers
using commonly available observational datasets to
conduct research efficiently using a common frame-
work. In particular, the GDM was designed to allow
researchers to reuse an extensive, published body of
existing algorithms for identifying clinical research
constructs, including visits, that are expressed in the
native vocabularies of the raw data. These algorithms
require code sets, and may also require temporal
logic (e.g., before, after, during, etc.), sequencing in-
formation (e.g., first, last, etc.), and provenance infor-
mation (e.g., inpatient, outpatient, etc.). The GDM
specifically considered both oncology research, which
has its own specific vocabularies, and health services
research. However, the model was designed so that
these specific focus areas would not limit the design
or use of the model.

Design goals
We initiated development of the GDM to make ETL
specification and implementation easier for users who
work with data models. There were two primary goals in
defining the standard tables and table relationships for
the GDM, described below.

Focus on clinical codes in their original vocabularies
For clinical research, transparency and reproducibility
are critically important. Therefore, the model is fo-
cused on the original (source) vocabularies to prevent
the loss of the original semantic expression of the
underlying clinical information. We also wanted all
clinical codes (e.g., International Classification of
Diseases [ICD], Current Procedural Terminology,
National Drug Codes, etc.) to be easy to load into the
data model and easy to query, because they represent
the majority of electronic clinical information. Hence,
the key organizing structure of the GDM is the place-
ment of all clinical codes in a central “fact” table.
This is not unlike the i2b2 data model that uses a
fact table to store all “observations” from a source
data set; however, the GDM was not designed as a
star schema despite the similar idea of locating the
most important data at the center of the data model.
We also considered interoperability as part of the de-

sign, but it was of secondary importance. Interoperabil-
ity, like the construction of visits, requires establishing
new connections (“mappings”) between the source vo-
cabularies and a standard vocabulary such that a single
query can operate across all data sources regardless of
the source vocabulary. For international studies using
different vocabularies, this might be a useful tool.
However, given that every code isn’t yet mapped to a
standard (e.g., OMOP has little in the way of procedure
code mappings), and the maintenance required to
support and update mappings, we designed the GDM to
incorporate reliable cross-vocabulary mappings where
they exist.

Retain hierarchical information with provenance
The second goal was to capture important hierarch-
ical relationships among data elements within a rela-
tional data structure. Based on the review of
numerous data sources including Medicare, Surveil-
lance Epidemiology and End Results (SEER) Medicare,
Optum, Truven, JMDC (Japanese claims), and Clinical
Practice Research Datalink (CPRD), we decided on a
two-level hierarchy for grouping clinical codes, with
the lower level table called Contexts and the higher-
level table called Collections. This was based on com-
mon data structures where many related codes are
recorded on a single record in the source data (Con-
texts table), and where these records are often
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grouped together (Collections table) based on clinical
reporting or billing considerations. See Results for
table definitions, and Fig. 1 for a visual depiction of
the hierarchical structure of the Contexts and Collec-
tions tables.
Our review of data sources suggested that the data

model needed to support relatively few relationship
types. The primary relationship represents data that is
reported together or collected at the same time. One
example of this includes a “line”, which occurs in claims
data when one or more diagnosis codes, a procedure
code, and a cost are all reported together. Another
example includes laboratory values assessed at the same
time (e.g., systolic and diastolic blood pressure) which
could be considered to be co-reported. Also, a set of
prescription refills could represent a linked set of re-
cords. Even records that contain pre-coordinated expres-
sions (i.e., a linked set of codes used to provide clinical
information akin to an English sentence) could also be
stored in order by associating the codes with a single
Context record.
We also included the provenance for each clinical

code as part of Contexts, recording not only the type
of relationship among elements within a Context as
discussed above, but also the source file from which
the data was abstracted. To minimize the loss of
information when converting from the GDM to a
data model that uses visits for organizing and consoli-
dating most data relationships, the GDM does not
require explicit visits (see Results). This is important
because visits are not consistently defined among
other data models, particularly for administrative
claims data (see Discussion).

Other considerations
There are several other considerations made in building
this data model, some of which were borrowed or
adapted from other data models. For example, in
addition to the cost table, we borrowed the OMOP idea
to store all codes as “concept ids” (unique numeric iden-
tifiers for each code in each vocabulary to avoid conflicts
between different vocabularies that use the same code).
We also expanded upon the idea of OMOP “type_con-
cept_ids” to track provenance within our data model.
Finally, we allow flexibility in storing enrollment
information in the Information Periods table using a
“type_concept_id” so that the data can be used for
different purposes (e.g., if a protocol does not require
drug data, then enrollment in a drug plan should not be
required). We also wanted to facilitate a straightforward,
subsequent ETL process to other data models, including
OMOP, Sentinel, and PCORnet.
We adapted the Payer Reimbursements table from the

OMOP version 5.2 Cost table because it was the only
data model with a cost table, and because we contrib-
uted substantially to its design. However, unlike the
single OMOP cost table, we created two tables to ac-
commodate both reimbursement-specific information,
which has a well-defined structure, and all other kinds
of economic information, which requires a very flexible
structure. (The OMOP version 5.31 Cost table was rede-
signed to be more flexible, coincidentally resembling the
GDM Costs table.)

Test data
We tested the data model on three very different types
of commonly available data used by clinical researchers:

Fig. 1 Relationships Among the Collections, Contexts, and Clinical Codes Tables. Note: EHR = electronic health record. HCPCS = Healthcare
Common Procedure Coding System. NDC = National Drug Code. ICD = International Classification of Diseases. Figure does not contain specific
data, but is intended to show the conceptual relationships among data elements across tables
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administrative claims data, EHR data, and cancer
registry data. Claims in the United States are generally
submitted electronically by the provider to the insurer
using the American National Standards Institute (ANSI)
837P and 837I file specifications, which correspond to
the CMS-1500 and UB04 paper forms [15]. Remittance
information is sent from the insurer to the provider
using the 835P and 835I specifications. However, actual
claims data used for research is provided in a much
simpler format. Based on experience developing and
supporting software for submitting claims to insurers as
well as creating ETL specifications for multiple commer-
cial claims and EHR datasets using the OMOP data
model, we determined that Medicare data is the most
stringent test for transforming claims data because it
contains the most information from the 837 and 835
files. For EHR data, we used the Clinical Practice Re-
search Datalink (CPRD) data, because it is widely used
for clinical research [16]. Finally, as part of our focus on
oncology research, we included Surveillance, Epidemi-
ology, and End Results (SEER) data [17] because SEER
provides some of the most detailed cancer registry data
available globally to clinical researchers which is challen-
ging to incorporate into data models.
More specifically, we implemented a complete ETL

process for the Medicare Synthetic Public Use Files
(SynPUF). The SynPUF data are created from a 2.1-
million-patient sample of Medicare beneficiaries from
2008 who were followed for three years, created to fa-
cilitate software development using Medicare data
[18, 19]. We also implemented an ETL for SEER data
linked to Medicare claims data [20] for 20,000 pa-
tients with small cell lung cancer, as part of an
ongoing research project to describe patterns of care
in that population. Finally, we developed a complete
ETL for 140,000 CPRD patients for an ongoing re-
search project evaluating outcomes associated with
adherence to lipid-lowering medications. We also
tested the feasibility of an ETL process to move Syn-
PUF data from the GDM to the Sentinel data model
(version 6.0) to ensure that the model did not contain
any structural irregularities that would make it diffi-
cult to move data into other data model structures.
Finally, we conducted a test of information loss in the

context of applying quality control to a study of meso-
thelioma patients. We conducted two analyses by separ-
ate people based on a written specification document
using SEER Medicare data. The first was conducted
using the source data and a combination of SAS and R
code, and the second was conducted using the GDM
version of the data and proprietary software. The ana-
lysis required the use of several SEER-specific fields, in-
cluding the tumor sequence (first primary), histology,
reporting type (microscopic confirmation), reporting

source (not at death or autopsy), and tumor location
data.

ETL software
Our ETL process focused on the extraction of the source
data and the transformation to the GDM data model,
and saved tables as .csv files (i.e., it focused primarily on
the E and T parts of the ETL). The ETL processes were
built using R (version 3.4.4) and the data.table package
(version 1.11.6) [21]. R was selected because it is an
open-source, cross-platform software package; because
of its flexibility for composing ETL functions; and be-
cause of the availability of the data.table package as an
in-memory database written in C for speed. The package
itself is modular, and allows users to compose arbitrary
ETL functions. Although the approach is different, the
process is conceptually related to the dynamic ETL
described by Ong, et al. [22]

Results
The resulting data model contains 19 tables (see hier-
archical view in Fig. 2). Details of the tables are provided
in Additional file 1, and the most up-to-date version is
available on a GitHub repository [23]. This repository
will also contain links to any publicly available ETL
specifications that we develop.

Tables
Clinical data
The Clinical Codes, Contexts, and Collections tables
make up the core of the GDM (as shown in Fig. 1). All
clinical codes are stored in the Clinical Codes table. Each
row of the Clinical Codes table contains a single code
from the source data. In addition, each row also contains
a patient id, the associated start and end dates for the
record, a provenance concept id, and a sequence
number. The sequence number allows codes to retain
their order from the source data, as necessary. The most
obvious example from billing data is diagnosis codes that
are stored in numbered fields (e.g., diagnosis 1, diagnosis
2, etc.). But any set of ordered records could be stored
this way, including groups of codes in a pre-coordinated
expression. Grouping together ordered records in the
Clinical Codes table is accomplished by associating them
with the same id from the Contexts table. The proven-
ance id allows for the specification of the type of record
(e.g., admitting diagnosis, problem list diagnosis, etc.).
The Contexts table allows for grouping clinical codes

and storing information about their origin. The record
type concept id identifies the type of group that is stored.
Examples might include lines from claims data where
diagnoses, procedures, and other information are grouped,
prescription and refill records that might be in electronic
medical record or pharmacy data, or measurements of
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some kind from electronic health record or laboratory
data (e.g., systolic and diastolic blood pressure, or a la-
boratory panel). In addition, the table stores the file
name from the source data, the Center for Medicare
and Medicaid Services place of service values [27] (used
for physician records since facility records to not have a
place of service in claims data), and foreign keys to the
care site and facility tables. The Contexts table also
contains a patient id and both start and stop dates
which could be different from the start and stop dates
of the individual records from other tables to which the
Contexts record is linked (e.g., a hospitalization may
have different start and stop dates than the individual
records within the hospitalization, as might occur with
an in-hospital procedure performed on a single day of a
multi-day hospitalization).

The Collections table represents a higher level of
hierarchy for records in the Contexts table. That is,
records in the Collections table represent groups of
records from the Contexts table. This kind of group-
ing occurs when multiple billable units (“lines” or
“details”) are combined into invoices (“claims”). It also
occurs when prescriptions, laboratory measures, diag-
noses and/or procedures are all recorded at a single
office visit. In short, a Collection is typically a “claim”
or a “visit” depending on whether the source data is
administrative billing or electronic health record data.
By using a hierarchical structure, the model avoids
the requirement to construct “visits” from claims data
which often leads to inaccuracy, loss of information,
and complicated ETL processing. In the simplest pos-
sible case, it is possible to have a single record in the

Fig. 2 Hierarchical View of the Generalized Data Model. Note: Table names and key relationships among tables are depicted above. See
Additional file 1 for more detail on tables. Tables in green serve as lookup tables across the database. There is a single Addresses table for unique
addresses with relationships to Patients, Practitioners, and Facilities, and a single Practitioners table with relationships to Patients and Contexts
Practitioners. The Contexts Practitioners table allows multiple practitioners to be associated with a Context record
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Clinical Codes table which is associated with a single
Context record, which is associated with a single Col-
lection record, as shown in Fig. 1 for a drug record.
The critical part of the ETL process, moving data
into the Clinical Codes, Contexts, and Collections ta-
bles, is described in Fig. 3 for the SynPUF data.
The Details tables capture domain-specific information

related to hospitalizations, drugs, and measurements.
The Admissions Details table stores admissions and
emergency department information that doesn’t fit in
the Clinical Codes, Contexts, or Collections tables. It
is designed to hold one admission per row. Each
record in the Collections table for an inpatient
admission links to this table. The Drug Exposure De-
tails and Measurement Details contain information
about medications and measurements (e.g., laboratory
values). The Clinical Codes table contains foreign
keys to these tables. We should also note that these
two tables could be combined with the Clinical Codes
table to make one larger table and improve query
times on some database platforms. While this might
require some minor modifications to the query, it
wouldn’t change the underlying logic of the data
model.

Patient data
The Patients table includes information about birth date,
sex, race, ethnicity, address (via the Addresses table) and
primary care provider (via Practitioners table). The Pa-
tient Details table allows a more flexible structure for
timeless information like family history or simple genetic
information. The Information Periods table captures pe-
riods of time during which the information in each table
is relevant. This can include multiple records for each
patient, including records for different enrollment types
(e.g., Medicare Part A, Medicare Part B, or Medicare
Managed Care) or this can be something as simple as a
single date range of “up-to-standard” data as provided
by the Clinical Practice Research Datalink. This table in-
cludes one row per patient for each unique combination
of information type and date range.
The Deaths table captures mortality information at the

patient level, including date and cause(s) of death. This
is typically populated from beneficiary or similar
administrative data associated with the medical record.
However, it is useful to check discharge status in the
Admissions Details table as part of ETL process to
ensure completeness. There are also diagnosis codes that
indicate death. Deaths that are indicated by diagnosis

Fig. 3 Visualization of the ETL Process for SynPUF Data. Note: Clinical codes are derived from a single row in the source data set (SynPUF record).
Colored arrows indicate how each group of codes is used to create records. Each code from the original record gets its own row in the Clinical
Codes table. Codes that are grouped together (e.g., line diagnosis 1 and procedure 1 in yellow) share the same context. In the Contexts table,
type concept id ending in “64” indicates a claim level context, and the id ending in “65” indicates a line level context. The three contexts (groups
of codes) share the same collection id
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codes should be in the Clinical Codes table and not be
moved to the Deaths table. If needed, these codes can be
identified using an appropriate algorithm (e.g., a set of
ICD-9 codes, possibly with associated provenance speci-
fications) to identify death as part of the identification of
outcomes in an analysis.
There are two tables that store cost, charge, or pay-

ment data of some kind. The Payer Reimbursements
table stores information from administrative claims data,
with separate columns for each commonly used reim-
bursement element. All other financial information is
stored in the Costs table, which is designed to support
arbitrary cost types, and uses a “value_type_concept_id”
to indicate the specific type. Costs may be present at a
Context (line-item) or Collection (invoice) level. There-
fore, this led us to align costs with the Contexts table.
By evaluating the type of the context record, users can
determine whether a cost is an aggregated construct or
not. In administrative claims data, this means that each
“line” (diagnosis and procedure) can have a cost record.
For records that have costs only at the claim/header
level (e.g., inpatient hospitalizations), only Contexts that
refer to “claims” (i.e., a record_type_concept_id for
“claim”) will have costs. For data with costs at both the
line and claim/header level, costs can be distinguished
by the Context type. In our experience, the sum of the
line costs does not always equal the total cost, so de-
pending on the research question, the researcher will
need to determine whether claim, line, or both should
be used. It is possible that each Clinical Code record
sharing a single Contexts record could have a different
cost; therefore, the two cost-related tables include a col-
umn to indicate the specific Clinical Code record to
which the cost belongs. This might occur, for example, if
multiple laboratory tests have different costs, but are
share a common provenance (i.e., Contexts record).

Facility and practitioner data
The Facilities table contains unique records for each fa-
cility where a patient is seen. The facility_type_concept_
id should be used to describe the whole facility (e.g.,
Academic Medical Center or Community Medical
Center). Specific departments in the facility should be
entered in the Contexts table using the care_site_type_
concept_id field. The Addresses table captures address
information for practitioners and facilities, as well as
patients.
The Contexts Practitioners table links one or more

practitioners with a record in the Contexts table.
Each record represents an encounter between a
patient and a practitioner in a specific context. This
role_type_concept_id in the table captures the role, if
any, the practitioner played on the context (e.g.,
attending physician).

Vocabulary data
The Concepts table provides a unique numeric identifier
(“concept_id”) for each source code in each vocabulary
used in the data (see Table 1). Since queries against the
GDM are intended to use the source codes, the Vocabu-
lary table functions as a lookup table; therefore, the
Concepts table does not have to be consistent across da-
tabases. However, there may be efficiencies in using a
consistent set of identifiers for all entries from com-
monly used vocabularies. The specific vocabularies used
in the data are provided in the Vocabularies table. The
idea of having both Concepts and Vocabularies tables
was adapted from the OMOP data models. As
mentioned in Methods, the Mappings table allows for
the expression of consistent concepts across databases.
The Mappings table is designed to express relation-

ships among data elements. It can also be used to facili-
tate translation into other data models (see Table 2). In a
few very simple cases like sex and race/ethnicity, we rec-
ommend concept mappings to a core set of values to
make it easier for users of a protocol implementation
software to filter patients by age, gender, and race/ethni-
city using a simpler representation of the underlying
information. The Mappings table also permits an
arbitrarily complex set of relationships, along the lines
of the approach taken with the OMOP model and the
use of standard concepts for all data elements. By using
a Mappings table, we reduce the need to re-map and re-
load the entire dataset when new mappings become
available. Regardless of how the Mappings table is used,
the GDM still retains the original codes from the raw
dataset.

ETL results
We loaded SynPUF data and SEER Medicare data into
the GDM. After downloading the data to a local server,
the process of migrating the SynPUF data with 2.1
million patients of data to the GDM took approximately
8 h on a Windows server with 4 cores and 128 Gb of
RAM and conventional hard drives (running two files at
a time in parallel). Most of the time was spent loading
files into RAM and writing files to disk since the process
of ETL with the GDM is primarily about relocating data.
SEER Medicare data for SCLC included approximately

20,000 patients and took less than 1 h. Selected SEER
data was included in the ETL process ignoring recoded
versions of existing variables or variables used for
consistency of interpretation over time. The ETL process
focused on 31 key variables including histology, location,
behavior, grade, stage, surgery, radiation, urban/rural
status, and poverty indicators. Each SEER variable was
included as a new vocabulary in the Concepts table (see
Table 1).
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CPRD data included approximately 140,000 patients
and took approximately 2 h. For the Test file which
contains laboratory values and related measurements,
we used Read codes in the Clinical Codes table; however,
one could add the “entity types” (numeric values for
laboratory values and other clinical measurements and
assessments) to the Clinical Codes table as well, with
both the Read code and the entity type associated with
the same Context record and the same Measurement
Details record. We used the entity types for all records
in the CPRD Additional Clinical Details table. In all
cases, the Mapping table allows for alternative relation-
ships to be added to the data.

Information loss
After reconciling differences in interpretation and
resolving coding errors, we identified the identical
cohort of patients when using the source data compared
to using the same data in the GDM.

ETL from the GDM to sentinel
We conducted an exploratory transformation from the
GDM to Sentinel to ensure that it was feasible. The
process of moving the data was conducted as follows.
The transformations from the GDM Patients, Deaths,
and Information Periods tables to Sentinel’s Demo-
graphic, Death, and Enrollment tables required renaming
variables and mapping a source data vocabulary to a
Sentinel vocabulary (e.g., SynPUF sex coding to Sentinel
sex coding). The Sentinel Diagnosis, Procedure, and Dis-
pensing tables were populated by splitting the GDM
Clinical Codes table by clinical_code_source_vocabulary
(e.g., ICD-9 codes were moved to the Sentinel Diagnosis
table).
Populating the Sentinel Encounter table required

records to be rolled up into a visit. To do this, the
Contexts table was transformed into a “pre-Encounter”
table with an encounter identifier set to the Contexts

table identifier, with a similar process used for the Senti-
nel Procedure and Diagnosis tables. The “pre-Encounter”
table was created with all of the specified columns and
correctly mapped data, but had not yet grouped the re-
cords into visits. We applied logic based primarily on
provenance information in the Contexts table to roll-up
records into visits, and we created a new identifier in the
Encounter table. Finally, the Diagnosis and Procedure ta-
bles were updated with new Encounter table identifier.
The remaining processing from the GDM to Sentinel

involved vocabulary transformation since Sentinel has
specific ways of representing concepts like sex which, in
the GDM, are based on the source (e.g., male = 1 and fe-
male = 2) using a unique concept id in the Vocabulary
table. We created records in the Mappings table from
the SynPUF concepts to the Sentinel concepts (Table 2)
to accomplish all needed mappings. Our ETL process
then used those mappings to insert the correctly trans-
formed variables from the GDM into the Sentinel tables
during the ETL.

Discussion
The GDM is designed to allow clinical researchers to
identify the clinical, resource utilization, and cost con-
structs needed for a wide range of epidemiological and
health services research areas without altering the data’s
original semantics by creating visits or domains, or per-
forming substantial vocabulary mapping. This provides
flexibility for researchers to study not only clinical en-
counters like outpatient visits, hospitalizations, emer-
gency room visits, and episodes of care, but also more
basic constructs like conditions or medication use. Its
main goal is to simplify the location of the most import-
ant information for creating analysis data sets, which has
the benefit of making ETL easier. It does this by using a
hierarchical structure instead of visits. It tracks the
provenance of the original data elements to enhance the
reproducibility of studies. It includes a table to store

Table 1 Example concepts table for variables in the SEER data

id vocabulary_id concept_code concept_text

100010943 naaccr_grade 1 Grade I; grade i; grade 1; well differentiated; differentiated, NOS

100010944 naaccr_grade 2 Grade II; grade ii; grade 2; moderately differentiated; moderately
well differentiated; intermediate differentiation

100010945 naaccr_grade 3 Grade III; grade iii; grade 3; poorly differentiated; differentiated

100010946 naaccr_grade 4 Grade IV; grade iv; grade 4; undifferentiated; anaplastic

100010947 naaccr_grade 5 T-cell; T-precursor

100010948 naaccr_grade 6 B-cell; Pre-B; B-Precursor

100010949 naaccr_grade 7 Null cell; Non T-non B;

100010950 naaccr_grade 8 N K cell (natural killer cell)

100010951 naaccr_grade 9 cell type not determined, not stated or not applicable

Note: SEER = Surveillance, Epidemiology and End Results, a collection of data from cancer registries across the United States. NAACCR = North American Association
of Central Cancer Registries
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relationships among data elements for standardized ana-
lyses. And it allows for a subsequent ETL process to
other data models to provide researchers access to the
analytical tools and frameworks associated with those
models.
Because other data models (e.g., OMOP, Sentinel,

PCORnet, and i2b2) use visits to connect patient-
related information within the data model, our
emphasis on avoiding visits deserves comment. Visits
are seldom required for clinical research, unless the
enumeration of explicit visits is the research topic it-
self. However, for most research projects, protocols
require retrieval of the dates of specific, clinically
relevant codes, perhaps with provenance or temporal
constraints. Satisfying these criteria does not require
knowledge of a visit, per se. It is a research project in
and of itself to define visits, and their definitions are
specific to the health services research question being
investigated [14]. For example, a study of “emergency
department” visits would need to consider at least
four options to define a visit [24]. Data models that
pre-define visits do not allow such flexibility.
The challenges with visits can best be seen by inspect-

ing the guidelines for creating visits from each data
model. In the Sentinel version 6 data model [10], a visit
is defined as a unique combination of patient, start date,
provider and visit type. Visit types are defined as Ambu-
latory, Emergency Department, Inpatient Hospital, Non-
acute Institutional, and Other. Furthermore, “Multiple
visits to the same provider on the same day should be
considered one visit and should include all diagnoses
and procedures that were recorded during those visits.
Visits to different providers on the same day, such as a
physician appointment that leads to a hospitalization,
should be considered multiple encounters.”
PCORnet version 4.1 is similar to Sentinel [12].

However, PCORnet allows more visit types compared to
PCORnet version 3, OMOP, and Sentinel. It includes
Emergency Department Admit to Inpatient Stay, Obser-
vation Stay, and Institutional Professional Consult.
In the OMOP version 5.31 data model, a visit is de-

fined for each “visit to a healthcare facility.” According
to the specifications [6], in any single day, there can be
more than one visit. One visit may involve multiple pro-
viders, in which case the ETL must either specify how a
single provider is selected or leave it null. One visit may
involve multiple care sites, in which case the ETL must
either specify how a single site is selected or leave it null.
Visits must be given one of the following visit types:
Inpatient Visit, Outpatient Visit, Emergency Room Visit,
Long Term Care Visit and Combined ER and Inpatient
Visit. OMOP added an optional Visit Detail table in
version 5.3, recognizing the two-level hierarchy common
in US claims data [6].

For i2b2, the specifications state a visit “.. . can involve
a patient directly, such as a visit to a doctor’s office, or it
can involve the patient indirectly, as in when several
tests are run on a tube of the patient’s blood. More than
one observation can be made during a visit. All visits
must have a start date / time associated with them, but
they may or may not have an end date. The visit record
also contains specifics about the location of the session,
such as the hospital or clinic the session occurred and
whether the patient was an inpatient or an outpatient at
the time of the visit.” There are no specified visit types,
and the data model allows for an “unlimited number of
optional columns but their data types and coding
systems are specific to the local implementation” [4].
Clearly, each data model has different perspectives on

the definition of a visit. Such ambiguity can lead to dif-
ferences in how tables are created in the ETL process.
As a result, inconsistencies within or across data models
can lead to differences in results, as has already been
demonstrated [25, 26]. Laboratory records could be
visits as with i2b2, or could be associated with visits as
with other data models. Similarly, prescription, refill,
and pharmacy dispensing records could be considered
visits, or associated with visits. And other information,
like family history, might not require a visit at all. In
short, the most important structural component of other
data models cannot be accurately and consistently de-
fined, which affects the consistency of analyses across
the data models, and makes translation among data
models problematic. This also undermines provenance
since each data model might answer the question of
“where did this record come from” using different visit
types. However, we note that these are semantic consid-
erations and not technical limitations for record re-
trieval. For example, the i2b2 query platform recently
has been extended to permit querying of OMOP and
PCORnet data [28].
One important consideration in using data models is

their stability. It can be labor-intensive to keep data up-
dated, and if both the data and the data model are chan-
ging, maintenance may be prohibitively time-consuming
[13]. One of our intentions is that the GDM should re-
main stable over time; therefore, we incorporated separ-
ate Vocabulary and the Mappings tables which can be
updated without running the ETL from the beginning.
Hence, the GDM may be a useful, harmonized approach
for data providers, compared to their various proprietary
solutions. This contrasts with the OMOP data model
which requires re-running the ETL when the vocabulary
and domain mappings are updated.
The value of domains is that they allow data users to

identify the necessary clinical information to extract for
analysis and they facilitate interoperability. However,
moving raw healthcare data into domains requires either
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mapping the entire vocabulary into a single domain, or
mapping each individual code into a single domain. Pla-
cing codes in domain-specific tables can be particularly
challenging when vocabularies cross domains (e.g., Read)
or when individual codes are ambiguous (e.g., family his-
tory information). The GDM does not require domains
or vocabulary mappings to be fully functional. The
GDM only requires that users assign a unique number
(concept id) to all unique source codes in a given dataset
to ensure consistency in the data type for the codes. The
vocabulary table is simply a look-up table for the codes
and concept ids. Because of this, all codes in all vocabu-
laries (e.g., ICD-9, HCPCS [29], etc.) in the source data
will be retained unless there is an explicit decision to ex-
clude a code. However, if needed, the GDM could sup-
port domains as an additional field in the Vocabulary
table.
It is important to clarify the role of analyses in the eco-

system of data models. Neither the GDM nor any other
data model is designed to support direct analyses of any
sophistication on the entire database (excluding summary
analyses to characterize the entire dataset). The role of the
data model is to ease the extraction and organization of
analysis data sets to address specific clinical research ques-
tions. The required analysis dataset structure depends on
the specific analyses (e.g., prevalence, incidence, time to
event, repeated measures, etc.) and is typically performed
using R (OHDSI) or SAS (Sentinel). By starting with the
GDM, researchers can develop tools to extract data dir-
ectly, or implement the necessary transformations to mi-
grate their data to other data models and make use of the
tools for extraction and analysis offered by those models.
While this requires another ETL process, or a database
view to be created on the GDM, it facilitates access to
existing analytical tools. Hence, the GDM can be used as a
standardized waypoint in a data pipeline because the ne-
cessary information for other data models can be con-
tained within the GDM as we found in our test of a GDM
to Sentinel conversion.
We should also note that our approach to incorporat-

ing relationships into the data (i.e., our Mappings table)
is not unique. Others have designed approaches that rely
on semantic mappings to organize and extract data [30].
There are even methods to eliminate the need for both
database reorganization and semantic mapping [31].
While these approaches may be more flexible and avoid
cumbersome ETL and/or mapping processes, it is un-
clear how they fare with respect to the sensitivity and
specificity of their exposure and outcome definitions
making it challenging to understand or assess bias in
their results [32, 33].
Information loss and data quality assessment are

challenging subjects. We designed the GDM to minimize
information loss in the sense that any codes in the source

data can be incorporated by creating entries in the Con-
cepts, Vocabularies, and Clinical Codes tables. We also
retained database specific provenance information by indi-
cating the source file from which each data element is de-
rived as well as the type of information that was derived.
While we tested information loss in the context of a co-
hort study and found no problems, this is not a guarantee
that all necessary information is, or can be, retained. A
more robust assessment of data quality will be the subject
of future research. However, our use of the SEER data is il-
lustrative because detailed oncology data does not fit nat-
urally into any of the other data models mentioned.
Cancer registry data relies heavily on very specific vocabu-
laries for location, histology, grade, staging, behavior,
reporting source, microscopic confirmation and many
other factors. Many of these don’t fit easily into the exist-
ing domain-based tables. The OMOP data model has a
further complication in that the International Classifica-
tion of Diseases for Oncology version 3 (ICD-O-3) which
covers location, histology, grade, and behavior is not a
standard vocabulary. Therefore, while the OMOP data
model stores the concatenated source codes, work re-
mains to be done to map all combinations to the proper
standard vocabulary based on SNOMED. (This work is
ongoing at the time of this writing).
There are other limitations to the GDM. While we have

tested it against data that is typically used by health ser-
vices researchers and epidemiologists, there are likely to
be specific data sets that will require modifications or im-
provements. The GDM does not yet include tables for pa-
tient reported outcomes, genomic data, or free text notes
which are becoming more widely available for researchers.
If other data models add support for these or other fields,
this might require changes to the GDM to retain compati-
bility. For example, more detailed location information
may need to be added for those with access to additional
data (which is often limited due to privacy issues). While
we have considered data from Japan and the United King-
dom, there are many data sources to which we did not
have access that might require changes in the data model.
Finally, while we have developed tools to extract analysis
data sets from the GDM based on a protocol, they are not
yet available publicly. (However, the ConceptQL language
on which the tools are based is open-source [34]).

Conclusion
The GDM is designed to retain the relationships among
data elements to the extent possible, facilitating ETL and
protocol implementation as part of a complete data
pipeline for clinical researchers using commonly available
observational data. Furthermore, by avoiding the require-
ments to create visits and to use domains, it offers re-
searchers a simpler process of standardizing the location
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of data in a defined structure and may make it easier for
users to transform their data into other data models.
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