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Abstract

Background: Learning distributional representation of clinical concepts (e.g., diseases, drugs, and labs) is an
important research area of deep learning in the medical domain. However, many existing relevant methods do not
consider temporal dependencies along the longitudinal sequence of a patient’s records, which may lead to
incorrect selection of contexts.

Methods: To address this issue, we extended three popular concept embedding learning methods: word2vec,
positive pointwise mutual information (PPMI) and FastText, to consider time-sensitive information. We then trained
them on a large electronic health records (EHR) database containing about 50 million patients to generate concept
embeddings and evaluated them for both intrinsic evaluations focusing on concept similarity measure and an
extrinsic evaluation to assess the use of generated concept embeddings in the task of predicting disease onset.

Results: Our experiments show that embeddings learned from information within one visit (time window zero)
improve performance on the concept similarity measure and the FastText algorithm usually had better performance
than the other two algorithms. For the predictive modeling task, the optimal result was achieved by word2vec
embeddings with a 30-day sliding window.

Conclusions: Considering time constraints are important in training clinical concept embeddings. We expect they
can benefit a series of downstream applications.

Keywords: Clinical concept embedding, Distributional representation, Time sensitive concept embedding,
Electronic medical records, Concept similarity, Predictive modeling
Background
Distributional representation learning plays an increasingly
essential role in many tasks due to its effectiveness in di-
mensionality reduction and capability in addressing spars-
ity issues [1]. A milestone is word embeddings trained on
texts [2], which has gained remarkable successes in many
natural language processing (NLP) tasks such as text classi-
fication [3], machine translation [4], relation extraction [5]
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and question answering [6]. For healthcare data mining,
clinical concepts also contain rich latent semantic relation-
ships like those for words in texts. It is difficult to represent
clinical concepts using just one-hot coding, and they
should be understood from multiple perspectives accord-
ing to different scenarios. In recent years, distributional
representations of clinical concepts (i.e. clinical concept
embeddings) learned automatically from clinical data re-
sources have been explored and proven to be useful for
some downstream applications such as predictive modeling
[7], patient similarity analysis [8] and relation inference [9].
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Among the most relevant researches, Choi et al. learned
distributed representations of medical codes (e.g. diag-
noses, medications, procedures) from electronic health
records (EHRs) and claims data using Skip-gram and
applied them to predict future clinical codes and risk
groups [10]. Likewise, similar methods were studied
and applied in predictive modeling by the same re-
search group [7]. Cui2vec was one of the most recent
studies in learning clinical concept embeddings [11],
which applied word2vec [1] and Glove [12] on multiple
medical resources such as structured claims data, bio-
medical journal articles and unstructured clinical notes.
Cai et al. proposed a model that integrated neural at-
tention mechanism, so as to model the time gaps be-
tween consecutive medical events [13]. In this study,
we adopted multiple state-of-the-art algorithms and
extended them to consider temporal information so
that time dependencies are included. The algorithms in-
clude word2vec, PPMI-SVD (positive pointwise mutual
information-singular value decomposition) [14] and Fas-
tText (an extension to word2vec based on subword
n-gram) [15]. Among them, FastText was seldom used in
other concept learning studies and we think it may help
improve the representation abilities of concepts that can
be categorized by word ngrams (i.e. prefix for some med-
ical codes). We conduct evaluations on both intrinsic eval-
uations focusing on concept similarity measure and an
extrinsic evaluation to assess the use of generated concept
embeddings in the task of predicting disease onset. The
experiments show that embeddings learned from informa-
tion within one visit (time window zero) did improve per-
formance on concept similarity measure and the FastText
algorithm usually had better performance than the other
two algorithms. For the predictive modeling task, the opti-
mal result was achieved by word2vec (Skip-gram) embed-
dings with a 30-day sliding window.
Table 1 is a brief summary of these popular clinical con-

cept embedding learning studies. As shown in Table 1, the
proposed study here is different from previous studies in
several aspects. Firstly, most previous studies have focused
on the word2vec method for embedding generation, but
we included more other methods such as PPMI-SVD and
FastText. Secondly, we evaluated their performance using
Table 1 A brief summary of several clinical concept embedding stu

Study Method Data source patient size

Med2vec [10] word2vec EHR/ claims < 1 million

Cui2vec [11] word2vec, glove claims 60 million

MCE [13] attention- word2vec EHR < 2 million

Ours’ word2vec, PMIa, FastText EHR 50 million

apointwise mutual information
both intrinsic evaluations of concept similarity and an
extrinsic evaluation of disease onset prediction. Although
Cui2vec [11] and MCE [13] also focus on time-sensitive
embeddings, they do not evaluate the use of generated
embeddings in downstream tasks such as predictive mod-
eling. Thirdly, we included time dependency information
in distinct ways contrast with Cui2vec and MCE. In Cui2-
vec, they only considered the time window in the negative
sampling phase for word2vec but may still suffer from the
time gap problem between concepts, while in MCE, they
added a new attention layer on word2vec to model the
time information, which introduced more computations.
In our method, for word2vec and FastText, we let the
algorithm dynamically select context concepts based on
time gaps and with only slight modifications towards the
original algorithms, and for PPMI-SVD, we segmented the
input sequence based on time window before computing
the co-occurrence matrix.
Furthermore, data source is another important factor

for concept embedding generation. As it has been re-
ported, claims data and EHR data are different but com-
plementary for answering clinical questions [16]; therefore
it is important to study concept embeddings from both
data sources. Previous studies have utilized large claims
datasets (e.g., over 60 million patients in Cui2vec [11]) for
concept embeddings; but the size of EHR dataset used is
relatively small (less than 2 million patients). In this study,
we trained our concept embeddings using a large EHR
dataset with about 50 million patients, with the hope to
provide some great resources to the community.
To the best of our knowledge, publicly available clinical

concept embeddings that are learned from large EHR
datasets are still rare [11]. The goal of this study, therefore,
is to construct a comprehensive set of clinical concept em-
beddings by developing different advanced time-sensitive
embedding training methods as well as by using extremely
large EHR data, and to make these embeddings available
to the broader research community. It is expected that the
clinical concept embeddings trained on the large EHR
dataset can catalyze more downstream applications and
meanwhile compensate to existing embeddings trained
from other data sources. A schematic overview of this
study is given in Fig. 1.
dies. Only the largest database used in the study was listed

Time-sensitive Evaluation strategies

No Similarity based on vocabularies, predictive
modeling and human assessment

Only in negative sampling
for word2vec

Similarity based on vocabularies and
human assessment

With an attention layer Similarity based on vocabularies

Dynamic input windows Similarity based on vocabularies, and
predictive \modeling



Fig. 1 A schematic overview of our approach
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Methods
The EHR dataset
Cerner Health Facts® is a database that comprises de-
identified EHR data from over 600 participating Cerner
client hospitals and clinics in the United States and repre-
sents over 50 million unique patients (1995–2015) (https://
www.cerner.com/). With this longitudinal, relational data-
base, researchers can analyze detailed sets of de-identified
clinical data at the patient level. Types of data available in-
clude demographics, encounters, diagnoses, procedures, lab
results, medication orders, medication administration, vital
signs, microbiology, surgical cases, other clinical observa-
tions, and health systems attributes. These clinical data are
mapped to the most common standards, for example, most
diagnoses are mapped to the International Classification of
Diseases (ICD) codes and medications information is in the
national drug codes (NDCs).

Data extraction and pre-processing
We extracted the time-stamped data for all patients from
the Cerner database. In this study, we limit our task to
generate embeddings for three types of concepts: disease
diagnoses (D), medications (M), and procedures (P). All
information about D, M, and P are stored chronologically
in different tables. Each patient is identified by a unique
patient ID, and for each patient’s visit to a health facility,
there is a specific visit ID. For each clinical event, a corre-
sponding code is assigned together with its timestamp,
indicating when this event happened or stored (i.e. medi-
cation information includes prescription time, taken time,
and end time, etc.).
To facilitate information extraction, we used the fol-

lowing data structure to represent one patient’s records
(Fig. 2). In this structure, each patient is identified by a
Patient ID (i). The multiple clinical events are distrib-
uted in each visit, with distinct Datetime and sorted in
an ascending chronologic order. In each visit, the three
types of events D/M/P were stored in random orders. We
removed the patients containing obvious incorrect informa-
tion (i.e. with wrong timestamps) in the data cleaning phase
and the data were finally stored on the disk in human read-
able formats for accuracy examination. The disease diagno-
ses were mapped to ICD-9, medications were normalized
to generic names, and for procedures, we used the original
Cerner IDs for representation and kept dictionaries that
map an ID to ICD-9, HSPCS [17] or CPT4 [18].

Concept embeddings
Word2vec, as one of the dominators in training distrib-
uted representations, has been a routine configuration in
many NLP tasks [1, 19]. It trains a two-layer neural net-
works to reconstruct linguistic contexts of words and
each input word is then expanded into a continuous vec-
tor. Word2vec can utilize two model architectures to
produce distributed representations of words: continu-
ous bag-of-words and Skip-gram, in which Skip-gram
performs better in most cases.
In recent years, word2vec has also been applied to

learn clinical concept embeddings through feeding it
with patients’ medical records [7, 10, 11]. However, most
of the existing methods for learning word embeddings
lack the consideration of temporal dependencies be-
tween adjacent concepts in the modeling stage, which is
crucial in the clinical domain and different from lan-
guage processing. These methods treated the neighbor-
hood events (or visits) equally as adjacent words, and
assumed that the events (or visits) in the sliding window
reflect the scope of context for prediction (i.e. Med2vec
in [10]). Nevertheless, this assumption is not always true,
especially when a sequence is sparsely distributed along
the timeline. For example, an event A happened one year
after B should be treated differently from C happened
one day after B, which may exist in records of patients
who rarely visit a doctor.

https://www.cerner.com
https://www.cerner.com


Fig. 2 An example showing the data structure for storing the
patient information
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Attempts have been made by several researchers in
addressing the above issue by including time windows
when computing the concept co-occurrence [11] or by
adding more neural network layers [13]. In this paper,
we tackle this problem by improving three popular
word embedding learning methods to time-sensitive
versions in a slightly different way: adding time win-
dows on the sequences of input events. Namely, we
allow the model to dynamically select the context con-
cepts based on time window during model training.
Time-sensitive skip-gram model of word2vec
For word2vec, the Skip-gram model was adopted for
extensions to learn clinical concept embeddings from
structured data. We use the target clinical event to
predict its contexts and leverage a dynamic window
to define the context scope. In detail, with a target
clinical event (concept) Ct that belongs to the tth visit
of the patient (Vt), its contextual time window is set
to be N days before and after the event ([t-N, t + N]),
and the current visit Vt is also included. Therefore,
when we consider Ct, its context concepts include all
the possible concepts within the time window. The
structure of this time-sensitive Skip-gram model is
shown in Fig. 3.
Fig. 3 The time-sensitive Skip-gram model for learning clinical concept em
By defining the context window, the equation of Skip-
gram can be rewritten into:

1
ε

Xε

t¼1

X

Ck∈ V t−N ;…;V tþNf g;k≠t
logp Ck jCtð Þ ð1Þ

where the normalization item ε ¼ PT
i¼1Ni , Ni is the

number of distinct clinical events within each visit and T
is the total number of visits for each patient. And

p Ck jCtð Þ ¼
exp v

0T
Ck
vCt

� �

PV
C¼1 exp v0T

C vCt

� � ð2Þ

where V denotes the number of concepts in the vo-
cabulary, and vC stands for the vector representation
of concept C.
In this study, we firstly set the window size as 30 days,

that is, we consider clinical events happened 15 days be-
fore or after the current visit as the context for the tar-
get concept. We think that events happened within one
month should have much closer relationships with the
event of interest. By doing this, we reduce the negative ef-
fects from events happened far away from the current
timestamp. We also set the time window size to 0 to pro-
duce a visit-level embedding matrix, so that only clinical
events within the same visit are considered as the context.
The Skip-gram model without any time window settings
was set as the baseline.

Time-sensitive PPMI-SVD
Positive Pointwise Mutual Information-Singular Value De-
composition (PPMI-SVD) is a factorization-based method
[11, 20]. The connections between clinical events are rep-
resented in the form of a co-occurrence matrix C in this
method. Firstly, the number of times each concept appears
inside a window of a particular time duration around the
target event is counted. Then, a symmetric PPMI matrix
M is built based on C. Finally, SVD on M is performed to
beddings



Xiang et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 2):58 Page 143 of 197
get a USVT decomposition. The rows of U is selected as
the embeddings for all concepts in our dictionary.
The PPMI-SVD method has three steps:
Build a co-occurrence matrix C with each row/column

indexed by a clinical concept. The entry of C(i, j) is the
number of times concept Ci and Cj co-occur in the same
time window.
Build a symmetric PPMI matrix M with each row/

column indexed by a clinical concept. The entry of

Mði; jÞ ¼ PMIðCi;C jÞ ¼ log pðCi;C jÞ
pðCiÞpðC jÞ , where p (Ci, Cj)

is the empirical probability of a concept pair appearing
within an time window and p (Ci) is the marginal prob-
ability of C. M(i, j) is set to 0 if it is negative.
Obtain concept embeddings by performing SVD on

the PPMI matrix M.
In this method, we also set the time window of com-

puting the co-occurrence as 0 (visit-level) or 30 days.
We did not include a basic version (computing the
co-occurrence on patient-level) for PPMI-SVD because
timelines for patients vary much.
Time-sensitive FastText model
FastText is an extension to word2vec in which morph-
ology of words is considered in embedding training. The
algorithm of FastText from Skip-gram is by replacing
the similarity function s(Cv,Ct) =Cv

T ⋅Ct to

s Cv;Ctð Þ ¼
X

zg∈G Cvð Þ
zg

T � Ct ð3Þ

where G (Cv) is the set of n-grams appearing in Cv and
zg is the vector representation for each n-gram g (each
subword such as asp, spi,… for the word aspirin). And
then the vector representation of a word can be gener-
ated by summarizing the n-grams. By using FastText,
the sparsity problem in the representation of rare words
can be alleviated using n-grams instead of words. There
are also bunches of specific configurations of FastText
such as hash map and the selection of P (a threshold for
cutting off the frequency of words in calculating n-
grams), which are used to speed up the training process.
Contrast with the previous two methods, FastText
largely reduces the training time.
Our intuition of applying FastText is that we assume

that the n-gram information can be beneficial for the
representation capacity of a clinical concept, such as by
modeling prefixes for ICD codes or suffixes for drug
names. For time-sensitive settings, we followed the con-
figurations of Skip-gram: one sequence-level without any
time window, one visit-level with time window 0 and an-
other 30 days.
Evaluation and results
We compared the proposed time-sensitive methods with
the traditional Skip-gram algorithm with a fixed window
size in the evaluation step. Inspired by previous studies
(see Table 1), our evaluation plan includes two intrinsic
methods on concept similarity: a) clustering-based evalu-
ation; and b) classification-based evaluation; and one ex-
trinsic method: c) predictive modeling-based evaluation.
We use the suffix -baseline to denote the methods with a
fixed length sliding window (5 concepts before and after a
specific concept). For the time-sensitive methods, we have
a visit-level and a 30-day time window version, with suf-
fixes -T-visit and -T-month. The three models Skip-gram,
PPMI-SVD, and FastText are represented as SG, PPMI,
and FT respectively. Dimensions for all the embeddings
are set at 200. In total, we have 30,348 distinct concept IDs
in the embedding matrix, in which there are 16,418 diag-
noses, 11,940 procedures and 1990 medications codes.

Clustering-base evaluation
Metrics from the clustering theory are adopted for
evaluation. The assumption for the clustering-based
strategy is that a better concept embedding space should
have smaller average distances within each cluster (cohe-
sion), meanwhile have bigger distances between each
two clusters (decoupling). The clusters in our current
evaluation were based on two existing standard vocabu-
laries, ICD and Clinical Classifications Software (CCS)
[21]. They were employed for the evaluation of diagno-
ses and procedures. For the coding rules in the Cerner
database, diagnoses are coded with ICD-9, and proce-
dures are coded with ICD-9, CPT-4 and HSPSC. We se-
lected the concepts with ICD codes as the evaluation set
in the current stage.
The in- (cohesion) and out-cluster (decoupling) distances

are defined as:

Din V ;Gð Þ ¼ 1
j V Gð Þ j

X

v∈V Gð Þ

1

C2
jNvj

X

u;wð Þ∈Cv

1‐cosine u;wð Þ

ð4Þ

Dout V ;Gð Þ ¼ 1

C2
jV Gð Þj

X

i

1
j Ni j � j N j j

X

u∈Ci;w∈C j;i≠ j

1‐cosine u;wð Þ

ð5Þ
where G is the pre-defined grouping function such as
ICD or CCS, V(G) is the whole set of distinct concepts,
|Nk| denotes the number of concepts in the kth group,
and C2 N stands for the 2-permutations of N. It is ex-
pected that similar concepts would be grouped together
based on distance, i.e. ICD codes 493.22 and 493.91 are
both with the prefix 493 (Asthma in the CCS hierarchy),
while concepts describing in different groups, i.e. Asthma
and Leukemia, should have bigger gaps. Based on the above
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equations, the smaller Din is, the better average cohesion is,
and the larger Dout is, the better average decoupling is. The
in- and out-cluster distances are shown in Table 2. We
tested CCS both on the fine- and coarse-grained level
following [9]. The minimum average in-cluster and the
maximum out-cluster distances are marked in bold for each
column (see Table 2). The best values for in-cluster dis-
tances are all generated by FT-T-visit across the three
vocabularies, and the values are much smaller than those
by other methods, indicating that it can group the codes
together with better performance. Compared with different
embedding learning methods, we find that FT generally be-
haves well in in-cluster distances, even for the basic model
FT-baseline. On the other side, bigger out-cluster distances
are produced by PPMI-T methods, especially PPMI-T-
visit, indicating PPMI-SVD has a stronger ability to dis-
tinguish different clusters than the other two methods.
To summarize, the visit-level embeddings (time window
zero) perform better on this evaluation.

Classification-based evaluation
The classification-based evaluation is inspired by the
Medical Conceptual Similarity Measure (MCSM) pro-
posed by [9]. It is similar to the cluster-based evaluation
method except that it uses a K-Nearest Neighbor like al-
gorithm [22] to count how many concepts from the
same category will fall in the adjacent area of a given
concept based on some similarity criteria (i.e. the cosine
similarity). The equation for calculating MCSM is:

MCSM V ;G; kð Þ ¼ 1
j V Gð Þ j

X

v∈V Gð Þ

Xk

i¼1

IG v ið Þð Þ
log2 iþ 1ð Þ

ð6Þ

where G is the pre-defined grouping function such as
ICD or CCS, V(G) is the whole set of distinct concepts,
IG is the indicator function, considering whether the ith
nearest neighbor v(i) is in the same group as v according
to the hierarchy of G. Generally, the larger MCSM is,
Table 2 In−/out-cluster distances for different embedding
methods on the selected taxonomies

Embedding method ICD prefix CCS fine CCS coarse

SG-baseline 0.1259/0.5925 0.2560/0.7458 0.5730/0.7432

SG-T-visit 0.1172/0.5806 0.2438/0.7286 0.5556/0.7297

SG-T-month 0.1705/0.6429 0.3074/0.6906 0.5980/0.7115

PPMI-T-visit 0.2028/0.8053 0.3568/0.9530 0.8107/0.9716

PPMI-T-month 0.2032/0.8301 0.3531/0.7158 0.8857/0.9512

FT-baseline 0.0885/0.5543 0.2178/0.6859 0.5446/0.7108

FT-T-visit 0.0687/0.5054 0.2008/0.6732 0.5195/0.6879

FT-T-month 0.0879/0.5521 0.2604/0.7119 0.5664/0.7268
the better the embedding method is, since concepts from
the same category can be grouped closer. We also used
ICD prefix (the prefix before. in ICD-9 codes), CCS fine-
(the leaf nodes) and coarse-grained level (cutting off at the
2nd level) as the evaluation standards for MCSM on diag-
noses and procedures. The value K for calculating nearest
neighbors was set at 40 following [9]. The similarities of
different methods are shown in Table 3.
The results in Table 3 demonstrate that FT-T-visit obtains

the optimal performance for all the three taxonomies. And
similar to the in-cluster similarities shown in Table 2, the FT
methods generally behave well on the classification-based
evaluations. However, compared with the SG-baseline,
other SG methods and the PPMI methods didn’t get
satisfying results.

Predictive modeling task
To further assess the use of such concept embeddings in
downstream tasks, we also evaluated it in the context of
predictive modeling that is to predict the onset of heart
failure, as described in Rasmy et al. [23], where the au-
thors applied a state-of-the-art predictive modeling tool,
RETAIN [24], to the task. For convenience, we selected
a dataset from one random hospital (Finally we got the
data from Hospital #5 in the paper) for this study. The
number of patients in the dataset is 42,729, including
5010 cases and 37,719 controls, and the population is
also from the Cerner Health Facts® Database. In this ex-
periment, we did not use the RETAIN model because we
would like to reduce the effect of the complex model
structure to the prediction result. The model used for
testing the concept embedding in our work is the basic
long short-term memory neural networks (LSTM),
which takes all the clinical codes in a sequential order
based on their occurrence time, and within each visit,
we let the codes keep random.
We tested distinct concept embeddings with and with-

out fine-tuning the embeddings during model training for
the heart failure onset prediction task. AUC was reported
as the primary evaluation metrics. The ratio of training,
Table 3 Classification-based similarities for different embedding
methods on the selected taxonomies

Embedding method ICD prefix CCS fine CCS coarse

SG-baseline 2.4359 4.3606 8.3281

SG-T-visit 2.3727 4.3016 8.3188

SG-T-month 1.8688 3.6763 7.5117

PPMI-T-visit 2.0986 4.1716 7.9809

PPMI-T-month 1.9313 3.8286 7.5441

FT-baseline 4.7690 6.1711 9.3274

FT-T-visit 5.0215 6.1969 9.3876

FT-T-month 4.5979 5.7873 9.0793
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development and test set is 7:1:2. The hyper-parameters of
LSTM were: batch size = 32, Adam with learning rate 0.01
as the optimizer with decay rate of 0.99, hidden size = 64
for LSTM, and L2 penalty = 0.0001. The AUC values are
shown in Table 4.
As shown in the second and third columns of Table 4,

we can see that the time-sensitive concept embeddings
can generally achieve better results for either with or
without fine-tuning, of which the SG-T-month achieved
the best performance. The results without fine-tuning
can reflect the strengths of the pre-trained embeddings
to some extent since the concept representations will
not change during training. We see that with good
pre-trained representations, the LSTM model can pro-
duce reasonable results (around 0.82 on AUC) under
these settings. Another baseline for the predictive mod-
eling is the method with randomly initialized embed-
dings as inputs (Randomize in Table 4), in which the
embeddings will be fine-tuned during training. Com-
pared with it, LSTM with most pre-trained embeddings
works better, implying that the pre-trained embeddings
are helpful to find optimal results in this task. It can also
be learned from the results of the time-sensitive methods
that in this predictive modeling task, using a 30-day time
window for embedding training would have more strong
representation capacities settled, compared with methods
that with visit-level embeddings. Besides, we consider the
most possible reason for the unsatisfying results produced
by PPMI-SVD is that it may suffer from the data sparsity
problem.

Discussions
Visualization by t-SNE
To better understand the outcome of the trained concept
embeddings, we projected them into a lower-dimensional
space and visualized them in the space. t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) is a technique for
dimensionality reduction that is particularly well suited
for the visualization of high-dimensional datasets [25]. It
Table 4 AUC values on distinct clinical concept embeddings
(values are in %)

Embedding method Without fine-tuning With fine-tuning

Randomize – 83.70

SG-baseline 81.75 84.11

SG-T-visit 81.87 84.29

SG-T-month 82.82 85.42

PPMI-T-visit 79.78 81.01

PPMI-T-month 80.60 82.44

FT-baseline 82.51 84.81

FT-T-visit 82.38 84.69

FT-T-month 82.59 84.88
was employed as the visualization tool for our trained
clinical concept embeddings as a qualitative analysis step.
To obtain a direct overview of the embeddings, other than
the intrinsic and extrinsic evaluations proposed above, we
manually queried various prefixes of codes in the t-SNE
space to see whether similar concepts could be grouped
together. Figure 4 is a screenshot of the t-SNE result based
on embeddings of SG-T-month. The highlighted points
are with the same ICD prefix 77x for diagnosis (denoting
conditions originating in the perinatal period).
We notice that several codes belonging to 770.xx (other

respiratory conditions of fetus and newborn), 774.xx (other
perinatal jaundice) and 778.xx (conditions involving the
integument and temperature regulation of fetus and new-
born) can be grouped into a neighborhood in the embed-
ding projection space. However, there are also a few codes
with the same prefix that cannot be grouped together (i.e.
D779), perhaps due to multiple reasons, such as the codes
suffer from the data sparsity problem. We have tried mul-
tiple other types of concepts on different embeddings and
found similar situations. The visualization indicates that
similar clinical concepts (or comorbidities) may have a
similar context so that they can be frequently co-occurred.
For concept embeddings trained by other methods, similar
examples can be found. Visualization is just a qualitative
analysis strategy, it is difficult to find direct differences be-
tween embeddings. However, it might be interesting to ex-
plore the differences in surrounding nodes for certain
concepts when setting different time windows, which will
be part of our future work.

Clustering- and classification-based evaluations
From the clustering- and classification-based evaluation re-
sults shown in Tables 2 and 3, we notice that when evaluat-
ing out-cluster similarities (Table 2), PPMI gets an upper
Fig. 4 Visualization of the SG-T-month method with t-SNE



Table 5 Top-5 relevant concept for two queries based on KNN by embedding SG-T-month

Query 789.00 Abdominal pain, unspecified site 401.9 Unspecified essential
hypertension

Top-5 results 789.06 Abdominal pain, epigastric 272.4 Other and unspecified hyperlipidemia

789.09 Abdominal pain, other specified site 250.00 Diabetes mellitus without mention of
complication, type II or unspecified type,
not stated as uncontrolled

789.02 Abdominal pain, left upper quadrant 272.0 Pure hypercholesterolemia

789.07 Abdominal pain, generalized 715.90 Osteoarthrosis, unspecified whether
generalized or localized, site unspecified

787.01 Nausea with vomiting 401.1 Benign essential hypertension
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hand and when evaluating in-cluster related similarities
(including in-cluster similarities from Table 2 and the
classification results from Table 3), FTs always get the best
performance. These results show that different concept
embedding training algorithms behave distinctly based on
different evaluation criteria. In addition, we found that an-
other issue that may confused the embedding grouping is
that concepts for some comorbidities of certain diseases
are likely to be grouped together even they don’t belong to
the same category.
Table 5 shows two examples for querying the em-

bedding space of SG-T-month, in which the query
ICD-9 code is 789.00 and 401.9 respectively. When
querying the code 789.00, most of the top-5 similar
codes belong to the 789 category, which are closely
related to the specified code. But in the other ex-
ample, when querying a type of hypertension, the
most related codes are diverse, from hyperlipidemia,
diabetes to osteoarthrosis. These concepts are not
under a common sub tree of ICD prefix or CCS, but
they are all common diseases for elder patients,
likely comorbidity conditions.
Fig. 5 The AUCs on the validation set for each training epoch based on di
Predictive modeling task
Figure 5 shows the AUCs on the validation set during
training with embedding fine-tuning. We see that other
than the randomly initialized embedding, all pre-trained
embeddings behave as expected in that they help the al-
gorithm converge faster. SG-T-month not only gets the
optimal AUC point but has the best curve over epochs.
SG- and FT-based embeddings can effectively help the
algorithm find a better local optimum at the first epoch
compared with randomly initialized embeddings and im-
prove the AUC value consistently afterward. However,
the PPMI-based embeddings didn’t get satisfying results
as others. We consider the most possible reason for the
unsatisfying results is that their training processes may
suffer from the data sparsity problem.

Limitation and future work
This study has a couple of limitations. We generated
concept embeddings for diseases, procedures, and medi-
cations, but did not include lab tests, partially due to
that lab test names are not well normalized in the
Cerner Health Facts® database. Moreover, for a better
stinct embeddings
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usage of the embeddings, a more general normalization
of the concepts might need be considered, such as map-
ping each concept to UMLS CUIs. For the future efforts,
we firstly plan to generate concept embeddings for lab
tests, by normalizing them according to appropriate on-
tologies such as LONIC (https://loinc.org/). Secondly,
we will further explore the impact of different sizes of
time windows. Thirdly, we plan to add more evaluations
for downstream tasks such as disambiguation and rela-
tion inference.

Conclusion
In this study, we incorporated time constraints into three
popular concept embedding learning models, word2vec,
PPMI-SVD, and FastText, and trained the models on a
large EHR dataset to construct distinct embedding ma-
trixes. We conducted intrinsic evaluations based on con-
cept similarity measures as well as an extrinsic evaluation
of predictive modeling with the trained embeddings and
validated the effectiveness of the time-sensitive concept
embeddings. The three learning models, however, each
has its merits based on different evaluation metrics, indi-
cating that we should select appropriate methods accord-
ing to specific applications.
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