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Abstract

given problem.

Background: Reinforcement learning (RL) provides a promising technique to solve complex sequential decision
making problems in health care domains. However, existing studies simply apply naive RL algorithms in discovering
optimal treatment strategies for a targeted problem. This kind of direct applications ignores the abundant causal
relationships between treatment options and the associated outcomes that are inherent in medical domains.

Methods: This paper investigates how to integrate causal factors into an RL process in order to facilitate the final
learning performance and increase explanations of learned strategies. A causal policy gradient algorithm is proposed
and evaluated in dynamic treatment regimes (DTRs) for HIV based on a simulated computational model.

Results: Simulations prove the effectiveness of the proposed algorithm for designing more efficient treatment
protocols in HIV, and different definitions of the causal factors could have significant influence on the final learning
performance, indicating the necessity of human prior knowledge on defining a suitable causal relationships for a

Conclusions: More efficient and robust DTRs for HIV can be derived through incorporation of causal factors between
options of anti-HIV drugs and the associated treatment outcomes.

Keywords: Reinforcement learning, Dynamic treatment regime, HIV, Causal factors

Background

Reinforcement learning (RL) [1] has achieved tremen-
dous achievements in solving complex sequential decision
making problems in various health care domains, such as
treatment in HIV [2], cancer [3], diabetics [4], schizophre-
nia [5], and sepsis [6]. In such typical RL implementations,
a model designer normally formulates the learning com-
ponents (the objective, state, action and reward etc.),
specifies the presentation and efficiency techniques, and
then simply lets the RL algorithms run until a satisfactory
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solution is obtained. Such fully automated and black-
box learning processes ignore rich knowledge encoded in
causal relationships between variables like duration, dose
or type of treatments, and the corresponding therapeutic
outcomes. Thus, the learned policies may not be inter-
pretable enough to explain why some policies are helpful
while others are not [7].

Discovering effective treatment strategies for HIV-
infected individuals remains one of the most significant
challenges in medical research. To date, the effective way
to treat HIV makes use of a combination of anti-HIV
drugs (i.e., antiretrovirals) in the form of Highly Active
Antiretroviral Therapy (HAART) to inhibit the develop-
ment of drug-resistant HIV strains [8]. Patients suffer-
ing from HIV are typically prescribed a series of treat-
ments over time in order to maximize the long-term
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positive outcomes of reducing patients’ treatment burden
and improving adherence to medication. However, due
to the differences between individuals in their immune
responses to treatment at a particular time, discovering
the optimal drug combinations and scheduling strategy is
a difficult task in both medical research and clinical trials.
In this paper, we propose a causal policy gradient (CPG)
algorithm that is able of incorporating causal factors into
an RL process in order to facilitate the final learning per-
formance and increase explanations of learned strategies.
We illustrate how CPG can be applied to solve DTRs prob-
lems in HIV. Experiments prove the effectiveness of CPG
in designing more efficient and robust treatment proto-
cols in HIV. The remaining paper is organized as follows.
We first discuss some related work and introduce the main
principle of CPG algorithm. We then provide the details
of implementation of CPG in HIV treatment. Finally, we
conclude the paper by pointing out some directions for
future work.

Related work
RL has been applied to DTRs in HIV by several studies.
Ernst et al. [9] first introduced RL techniques in comput-
ing Structured Treatment Interruption (STI) strategies for
HIV infected patients. Using a mathematical model [8] to
artificially generate the clinical data, a batch RL method,
i.e., fitted Q iteration (FQI) with extremely randomized
trees, was applied to learn an optimal drug prescription
strategy in an off-line manner. The derived STI strategy
is featured with a cycling between the two main anti-HIV
drugs: Reverse Transcriptase Inhibitors (RTI) and Pro-
tease Inhibitors (PI). Using the same mathematical model,
Parbhoo [10] further implemented three kinds of batch
RL methods, FQI with extremely randomized trees, neu-
ral FQI and least square policy iterations (LSPI), to the
problem of drug scheduling and HIV treatment design.
Results indicated that each learning technique had its
own advantages and disadvantages. Moreover, a testing
based on a ten-year period of real clinical data from 250
HIV-infected patients in Charlotte Maxeke Johannesburg
Academic Hospital, South Africa, verified that the RL
methods were capable of suggesting treatments that are
reasonably compliant with those suggested by clinicians.
The authors in [11] used the Q-learning algorithm in
HIV treatment and obtained a good performance and
high functionality in controlling the free virions for both
certain and uncertain HIV models. A mixture-of-experts
approach was proposed in [2] to combine the strengths
of both kernel-based regression methods (i.e., history-
alignment model) and RL (i.e.,, model-based Bayesian
POMDP model) for HIV therapy selection. Making use
of a subset of the EuResist database consisting of HIV
genotype and treatment response data for 32,960 patients,
together with the 312 most common drug combinations in
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the cohort, the treatment therapy derived by the mixture-
of-experts approach outperform those derived by using
each method alone. Marivate et al. [12] formalized a
routine to accommodate multiple sources of uncertainty
in batch RL methods to better evaluate the effective-
ness of treatments across subpopulations of HIV patients.
Killian et al. [13] similarly attempt to address and iden-
tify the variations across subpopulations in the develop-
ment of HIV treatment policies by transferring knowledge
between task instances.

Unlike the above studies that mainly focus on value-
based RL for developing treatment policies in HIV, we
are the first to evaluate policy gradient RL methods in
such problems. Moreover, in this paper, we aim at model-
ing causal relationships between the options of anti-HIV
drugs and the associated treatment effect, and introducing
such causal factors into policy gradient learning process,
in order to facilitate the final learning process and increase
its interpretation.

Methods
In this section, we first provide basic introduction to RL
and particularly the policy gradient RL, and then present
the main procedure of the proposed causal policy gradient
algorithm.

Policy gradient RL

RL enables an agent to learn effective strategies in sequen-
tial decision making problems by trial-and-error inter-
actions with its environment [1]. The Markov decision
process (MDP) has been used to formalize an RL problem,
which has a long history in the research of theoretic deci-
sion making in stochastic settings. Formally, an MDP can
be defined by a 5-tuple M = (S, A, P,R,y), where S is
a finite state space, and s; € S denotes the state of the
agent at time f; A is a set of actions available to the agent,
and a; € A denotes the action that the agent performs
at time £; P(s,a,5') : S x A x 8§ —[0,1] is a Markovian
transition function when the agent transits from state s to
state s after taking actiona; R : § x A — N is a reward
function that returns the immediate reward R (s, a) to the
agent after taking action « in state s; and y € [0,1] is a
discount factor.

An agent’s policy m : § x A —[0,1] is a probability
distribution that maps an action a € A to a state s € S.
When given an MDP and a policy 7, the expected reward
of following this policy when starting in state s, V7 (s), can
be defined as follows:

VT(s) = Ex [Z Y Rse, w(se))Iso = S} (1)
t=0

and can also be defined recursively using the Bellman
operator FB":
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BV =Rsm6)+y Yy PlsasH)V'i). (2
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Since the Bellman operator 9™ is a contraction map-
ping of value function V, there exists a fixed point of value
V7 such that 7 V7 = V7 in the limit. The goal of an
MDP problem is to compute an optimal policy =* such
that V™ (s) > V7 (s) for every policy 7 and every state
ses.

Broadly, there are mainly two types of solutions to an RL
problem: the value-function based solutions that main-
tain a value function whereby a policy can be derived,
and the direct policy search solutions that try to esti-
mate the policy directly without representing a value
function explicitly [14]. The former include the model-
based dynamic programming methods such as value iter-
ations (VI) and policy interactions (PI), or direct RL
methods such as temporal difference (TD) methods (e.g.,
Q-learning [15]). Direct policy gradient (PG) is typical
policy search method, which can parameterize the policy
and estimate the gradient relative to policy parameters. Its
update rule is given as follows:

1 m
Vo U©) < — > vologm(,0)R(x) (3)
i=1

where 7 is the trajectory, 0 is the parameter, and m is the
number of trajectories.

In Eq. (3), veU(0) is the gradient of the policy, 74 (7,0)
is the probability of the occurrence of a trajectory(t),
Velogmy(t,0) is the steepest direction when t changes
with 6, and R(7) is the reward of a trajectory to control the
updating direction and step size of parameter.

Incorporating causal factors into policy gradient RL

The direct PG algorithm only considers each state and
expected value of the actions, but does not relate any
causal effect between the actions and final performance.
This is contradictory to the fact that, in many fields, there
exhibit various kinds of correlations between actions and
corresponding outcomes. This is more prominent in the
medical area where different options such as medicine
dosage, treatment type and duration would usually give
rise to various treatment outcomes of patients. To model
this kind of causal relationships, we introduce a causal
factor C(p|4) of event B due to event A as follows:

Cwla) = P(B/A) — P(B/"A) (4)

where P(B/A) is the probability of event B conditioned on
event A, and P(B/"A) is the probability of event B given
that event A did not happen. Expanding Eq. (4) gets the
following equation:

Cwlay =P(ANB)/P(A) — PCANB)/(1—PA)) (5
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where P(A) represents the probability of occurrence of
event A, P(ANB) represents the probability of event A and
event B occurring at the same time, and P(T"A N B) rep-
resents the probability that event A does not happen, but
event B happens at the same time. The causal factor C(g|4)
can be computed using a sampling method proposed in
[16].

If causal factor C is positive, there is a causal relationship
between event A and event B, because event B occurred
because of A (that is, event A is the cause of event B) and
negative otherwise. Causal factors C can be incorporated
into the policy gradient learning process as follows:

m
vo UO) < 1 Z Vologny(t,0) xR(x) « C  (6)
"
where 7, 0, volU(0), my(t,0), and velogmy(t,H) are the
same as Eq. (3).

The product of C and R(t) controls the updating direc-
tion and step size of parameters, in order to indicate
how causes (i.e., decisions along the trajectory) affect
the final performance for each trajectory. Table 1 gives
the full sketch of the proposed CPG algorithm based on
the Monte Carlo policy gradient method ERINFORCE
[17] that has decomposed the trajectory into states and
actions.

Results

In this section, we evaluate CPG in the treatment of HIV
to verify its effectiveness. We first briefly introduce the
DTR problem in HIV and its RL formulations. We then
use the direct PG algorithm to simulate HIV treatment,
and investigate how the proposed CPG algorithm can be
applied to solve this problem. Finally, we provide some

Table 1 The Causal Policy Gradient (CPG) Algorithm
Algorithm 1: The CPG Algorithm

Function CPG

Input: a differentiable policy parameterizations z(als,6), Va €A,
seS,0 € RY, C=0;

Initialize policy parameter 6;
Repeat forever:
Define event A and event B;

Generate an episode o, do, 11, .., ST—1,dr—1, 17, following

n(als,6);
For each step of the episode t=0,..,T-1:
G+« average future return from step t;
C=PMANB)/PA) — PCANB)/P(1 — P(A));
0 < 0+« vg logr(ai|s;, 0) * G * C;
End for
Return 6;
End CPG
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discussions on the shortcomings of current research that
need to be addressed in the future work.

MDP for DTRs in HIV

The simulated HIV treatment model [9] consists of a six
dimensional continuous state space, including the con-
centrations of healthy CD** T-lymphocytes (T7), healthy
macrophages (75), healthy infected CD** T-lymphocytes
(Tf), infected macrophages (T7), free virus particles (V)
and HIV-specific cytotoxic T-cells (E). The full drug inter-
action model is given by the Appendix.

While anti-retroviral treatment regimens are sometimes
augmented by other types of drugs that enhance the effect
of anti-HIV treatment, bolster the immune system, or
reduce side effects, our current effort focuses on repre-
sentatives of two main classes of enzymes: reverse tran-
scriptase inhibitor (RTI) and protease inhibitor (PI). RTI
prevents HIV RNA from being converted into DNA, thus
blocking integration of the viral code into the target cell.
On the other hand, PI affects the viral assembly process in
the final stage of the viral life cycle, preventing the proper
cutting and structuring of the viral proteins before their
release from the host cell. PI therefore effectively reduces
the number of infectious virus particles released by an
infected cell. In all, there are four treatment regimens: only
RTI on, only PI on, RTT and PI on, RTT and PI off. The four
medication regimens are treated as four discrete actions.

The reward of the process at time t can be defined as
1000E; — 0.1V, — 20000£2, — 2000£3, [9]. The &1, is set to
0.7 when the RTT is cycled on, while & is set to 0.3 when
Plis cycled on; and the &;; or &y is set to 0, when RTT or PI
is off. The formula of the reward value indicates that the
increase of E or the decrease of V' is conducive to obtain-
ing larger rewards (i.e., promoting the treatment of HIV),
while excessive application of enzymes would damage the
cells and thus decrease the reward. As shown in [9], in
the absence of treatment, the model has three equilibrium
points as given in Table 2.

RL for HIV treatment

We first apply the direct PG to the treatment of HIV. The
non-healthy locally stable equilibrium point was taken as
the initial state. During the experiment, the drug is taken
every 5 days and a course of treatment is observed for
600 days. Supposing there are 300 patients, each patient
is in the unhealthy state initially. The decay factor y is

Table 2 Different equilibrium points of the six cells
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0.85, and the learning rate A is 0.02. For the first patient,
we used the policy gradient algorithm to generate a ran-
dom strategy. Figure 1 shows the random DTR for the
first patient and the continuously learned DTR for other
patients during the Simulated HIV Treatment. For the first
patient (Fig. 1a), RTI and PI were randomly chosen, indi-
cating an irregular therapeutic process. The RL algorithm
gradually learned that continuous use of RTI would have a
significant healing effect on HIV (Fig. 1b-c). For the 300th
patient (Fig. 1d), the algorithm finally learned a strategy
that the RTI and PI were continuously used throughout
the treatment.

Figure 2 shows the continuous change in the number
of six cells (T1, Ty, Ty, T5, V, E) over time for the first
patient (i.e., before learning). The number of each cell in
Fig. 2a-f fluctuate greatly, and the number of cells change
irregularly. The number of T7, T2 and E do not increase
significantly, and the number of T}, T35 and V also did
not decrease much. Therefore, this treatment effect is very
poor because the patient’s condition has not improved.
The patient was still in a non-healthy state after one
course of treatment.

Figure 3 shows the continuous change in the number
of six cells after learning over 300 patients. As shown in
Fig. 1d, the patient has been administered by two enzymes
(RTI and PI) continuously after learning and the num-
ber of each cell in Fig. 3 has regular change. After 100
days of treatment, 77, T3 and E increase significantly com-
pared to the initial state, while the number of T}, T and
V cells reduce significantly. In the end, the number of
the six cells reach to a dynamic equilibrium as follows:
(T1, Ty, T}, T3, V, E) = (800000, 100, 3000, 50, 5000,
40). Therefore, this treatment has a better therapeutic
effect because the patient’s health condition has improved.
However, compared with the non-healthy locally stable
equilibrium point, the number of T, T, and E cells were
still low, while the number of the other three kinds of cells
were still highly harmful to humans. The patients were
still in a transitional state of non-health to healthy state
after the treatment. At this time, the patients need to keep
on taking medication, because they relied on the drug to
maintain the current healthy state. Once the medication
was stopped, the number of harmful V cells may rebound
greatly.

Figure 4 shows the patients’ reward at each decision
step before learning and after learning. The reward before

Equilibrium point T T, T L) \Y E

The healthy, unstable state 100 3198 0 0 0 10

The healthy, locally stable state 967839 621 76 6 415 353108
The non-healthy, locally stable state 163573 5 11945 46 63919 24
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Fig. 1 The medication regimen a before learning; b-c during learning; and d after learning

learning fluctuates greatly, even emerging negative value,
which indicates the ineffectiveness of initial treatment
strategy. The reward after learning converges to a higher
value, and finally stabilized at around 3800. Thus, the
medication regimen has a better therapeutic effect after
using the policy gradient RL method.

Applying CPG for HIV treatment

Let the initial state, parameter value, observation period,
patient number, initial strategy and other relevant vari-
ables be the same as “RL for HIV treatment” section. We
also apply CPG to the HIV model. To define the causal
factor, let event A represent the action taken each time
(i.e., adding enzyme RTI or PI), event "A mean no enzyme
action, and event B mean the outcome of V' > 415 (i.e., the
number of free virus particles is greater than 415). Thus,
P(A) indicates the probability of taking an enzymatic
action at each time, P(A N B) represents the probability
of simultaneous occurrence of free virus particles being

greater than 415 and adding enzyme at the same time,
and P(T"A N B) represents the probability of simultaneous
occurrence of free virus particles being greater than 415
without adding enzyme. For each cause of treatment, we
can count the frequencies of each event and then use these
frequencies to indicate the corresponding probabilities.
Figure 5a compares the performance of direct PG and
CPG algorithm, where the blue and yellow line repre-
sent cumulative reward over 600 days using the direct
PG algorithm and the CPG algorithm, respectively. After
about 100 episodes, the final treatment strategy can be
learned using the direct PG algorithm. Since the CPG
algorithm can employ the causal factors to reason about
the outcome of patients (i.e., how they are affected by
the V cells) and the treatment (i.e., administration of
enzyme), the policy learning process can be greatly pro-
moted. CPG can learn the same treatment strategy as
PG in less 50 episodes, indicating that the two enzymes
are used continuously and the patients need to take the
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Fig. 2 The evolution of the six types of cells for the first patient (i.e.,, before learning). a-f corresponds to the continuous change of Ty, T, 7, T3, E and
V cells, respectively

drug to maintain healthy. Compared to the direct PG Figure 5b shows the dynamic changes of causal factor
algorithm, CPG is more efficient and robust by improv-  (C) from the first episode to the 300th episode. Dur-
ing the learning speed in terms of cumulative reward and  ing the early training stage, the causal factor is quite
convergence rate. low, indicating little effect on the learning process. As
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the learning proceeds, the causal factors increase and
reach a dynamic balance after around 50 episodes. Due
to constantly random exploration in the learning pro-
cess, the causal factor is always changing and finally

close to 1. In the initial treatment phase, the patient’s
V = 63919 is much greater than 415. As learning pro-
ceeds, the medication policy became better and better
and the regulative effect of causal factors also became
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Fig. 4 The evolution of reward of a the first patient; and b the 300th patient

stronger. After 50 episodes, the CPG algorithm learned
the strategy of continuous dosing of both enzymes,
so causal factors also reached the state of dynamic
equilibrium.

The CPG algorithm requires prior definition of the
causal factors in terms of causal events and outcome
events. Defining different causal factors has quite differ-
ent effects on the final learning performance. To test this,
we defined different causal factors (C1 and C2) in Table 3.

Figure 6a compares the learning performance of the
direct PG with different defined causal factors using CPG,
in which CPG-C1 and CPG-C2 represent the CPG with
causal factor C1 and C2, respectively. The main difference

between C1 and C2 lies in the definition of B event. In
CPG-C1, event B means that the number of free virus
particles is greater than 415, while in CPG-C2, event B
means that the number of healthy macrophages is less
than 621. As shown in Fig. 6a, CPG-C1 has the best per-
formance and the fastest convergence. Compared with
CPG-C2, the causal factor definition of C1 is more reason-
able (the convergence effect and convergence speed are
better). In the HIV model, V has a greater effect on human
health than T5, because V cells are the direct factors that
influence the development of disease. Therefore, different
definitions of causal factor can greatly affect the learning
performance of CPG algorithm, and an appropriate causal
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Table 3 Definition of different causal factors

Event C1 c2

A adding enzyme RTl or PI adding enzyme RTl or PI
“A without adding enzyme without adding enzyme
B V > 415 T, <621

definition can significantly speed up the performance of
the algorithm.

Discussion

Although we are able to derive an effective treatment
strategy using the above direct PG and CPG algorithms,
the solutions still only converged to a sub-health state
that must be maintained by continuous dosing of both
enzymes. In order to derive the optimal drug-free treat-
ment strategies, we directly solve the HIV model using
the Lagrangian function formula introduced in [8] (which
is given by the Appendix). By solving Lagrangian func-
tion given by Eq. (17), the optimal control £} and &) are
characterized by Egs. (7) and (8), respectively [8]:

& = max(ay, min(by, (1 — n3 4 p1 % n5) xky * V x Tq
— (M —na+p2xns)xfxkyk VxTr/2%Ry))
(7)

& = max (ag,min (bz, ns * NT % 8 * (Ti‘ + T;) /2 * Rz))
(8)

where & €[0, 1) and & €[0, 1) are the control variables
representing RTIs and PIs, respectively. In order to get a
better strategy, we set a1=0.0, a2=0.0, b1=0.7 and b,=0.3.
We used partial differential equations to solve the dynam-
ics parameters, and applied Egs. (7) and (8) to obtain the
optimal strategy. Figure 6b plots the computed optimum
strategy, in which the red line and the blue line represent
the dosing of PI and RTI, respectively. It is clear to see that
after 400 days of treatment, the two drugs are stopped,
indicating a drug-free healthy stable state of patients.

The reasons why the general RL algorithms such as PG
and CPG in this paper could not discover the optimal
drug-free solutions lie in two main perspectives. On one
hand, the MDP model adopted in this paper only consid-
ers four discrete actions that involve two types of enzyme
and assigns a predefined fixed value of 0.7 and 0.3 to
the parameters of £ and &;. This highly simplification
makes it difficult or impossible to fully explore the whole
state of the model in order to derive the optimal solution.
Moreover, the reward function used in the MDP model is
too abstract to reflect the complex dynamics of the treat-
ments. On the other hand, the policy gradient algorithms
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themselves did not incorporate any sophisticated explo-
ration strategies during the learning process. This is a
critical problem since HIV treatment has long been rec-
ognized as a well-known testbed for evaluating advanced
exploration algorithms in RL research [18, 19]. Previous
studies have shown that the basin of attraction of the
healthy steady-state in HIV is relatively small compared
to the one of the non-healthy steady state. Thus, in the
absence of drugs, perturbation of the uninfected steady
state by adding as little as virus would lead to asymptotic
convergence towards the non-healthy steady state.

Conclusions

Simulation-based DTR design has a series of advantages
over cytopathological treatment in that it can avoid the
harm to the patients during the exploration of drug,
provide a large amount of treatment experience for the
disease with insufficient case in reality, reduce the cost
of actual treatment and shorten the duration of treat-
ment. In this paper, we investigated the role of RL in
DTRs for simulated patients with HIV. We showed that
both the direct PG and its causal extension could obtain
a better medication regimen after a period of learning,
but the CPG algorithm was more efficient and robust
due to incorporation of causal factors between options of
anti-HIV drugs and the associated treatment outcomes.
We also showed that different definitions of the causal
factor could have significant influence on the final learn-
ing performance, indicating the necessity of human prior
knowledge on defining a suitable causal relationships for
a given problem. How to discover the most beneficial or
optimal causal factors from historical interaction trajec-
tories is thus important to automate the whole learning
process. This will be left for our future work for further
investigation.

Appendix
This mathematical model of the HIV is described by
the following set of ordinary differential and Lagrangian
equations:

T| = 10000 — 0.01T; — (1 — &) *8.0% 10~V Ty (9)

Ty = 31.98—0.017, —(1—0.3471) % 1.0 1074V« Ty (10)

Ty = (1—£)%8.0%10 /% VT —0.7Tf —1.0x10 >+ Ex T}
(11)

Ty = (1 —0.34&1) * 1.0% 107 % V x Ty — 0.7T5

—1.0%x10 >« Ex T (12)
2
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Fig. 6 a Comparison of reward values for causal algorithms with different causal factors; b The optimum strategy in HIV treatment

V! =70(1 — &) * (T} + T3) — 13V — [8.0 1077
#(1— &) * T1 + LO% 107 % (1 — 0.346)) x T % V

(13)

o 3% (Tf + T3) xE_ 0.25% (Tf + T3) *E or
(T} + T3) + 100 TF + T}) + 500

(14)

R=0.1%V + 20000 % £ + 2000 * £ — 1000E (15)

W = Wi * (&1 — a1) + Wia(b1 — &) + Wai1 (& — aa)
+ Wa(by + &)
(16)

L=R+771*T{-}—nz*Té+n3*Tf,+n4*T;,+n5*V/
+n*xE - W
(17)

where Tq, Ty, T}, T3, V, E are the number of six cells;
& €[0, 1) and & €[0, 1) are the control variables repre-
senting RTIs and PIs, respectively; Wj; > 0 are the penalty
multipliers; and 7, are the adjoint variables.
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