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Abstract

Background: Data heterogeneity is a common phenomenon related to the secondary use of electronic health
records (EHR) data from different sources. The Observational Health Data Sciences and Informatics (OHDSI) Common
Data Model (CDM) organizes healthcare data into standard data structures using concepts that are explicitly and
formally specified through standard vocabularies, thereby facilitating large-scale analysis. The objective of this study is
to design, develop, and evaluate generic survival analysis routines built using the OHDSI CDM.

Methods: We used intrahepatic cholangiocarcinoma (ICC) patient data to implement CDM-based survival analysis
methods. Our methods comprise the following modules: 1) Mapping local terms to standard OHDSI concepts. The
analytical expression of variables and values related to demographic characteristics, medical history, smoking status,
laboratory results, and tumor feature data. These data were mapped to standard OHDSI concepts through a manual
analysis; 2) Loading patient data into the CDM using the concept mappings; 3) Developing an R interface that supports
the portable survival analysis on top of OHDSI CDM, and comparing the CDM-based analysis results with those using
traditional statistical analysis methods.

Results: Our dataset contained 346 patients diagnosed with ICC. The collected clinical data contains 115 variables, of
which 75 variables were mapped to the OHDSI concepts. These concepts mainly belong to four domains: condition,
observation, measurement, and procedure. The corresponding standard concepts are scattered in six vocabularies:
ICD10CM, ICD10PCS, SNOMED, LOINC, NDFRT, and READ. We loaded a total of 25,950 patient data records into the
OHDSI CDM database. However, 40 variables failed to map to the OHDSI CDM as they mostly belong to imaging data
and pathological data.

Conclusions: Our study demonstrates that conducting survival analysis using the OHDSI CDM is feasible and can
produce reusable analysis routines. However, challenges to be overcome include 1) semantic loss caused by
inaccurate mapping and value normalization; 2) incomplete OHDSI vocabularies describing imaging data, pathological
data, and modular data representation.
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Background
Survival analysis is a widely used statistical method for
the retrospective study of clinical data. It is widely used
in the field of medical research, especially for the obser-
vational study of tumors associated with definite events.
Examples include exploring the probability of the occur-
rence and recurrence of tumors, and the probability of
death and risk factors related to tumors. Specifically, it
includes methods such as Kaplan-Meier estimation, life
table analysis, Cox proportional hazards regression ana-
lysis, and the log-rank test. Survival analysis addresses
the following research questions such as the probability
of survival past a certain time, the rate of event occur-
rence at a certain time, and the risk factors that contrib-
ute to the event.
To acquire sufficient statistical evidence from clinical

data and generate more reliable conclusions, observa-
tional medical research is often conducted across
multi-center institutions [1]. This can balance the vari-
ous biases present in single-center research, leading to
higher-quality results. A number of multi-center prospect-
ive observational studies have been conducted [2–7], con-
cluding that large-scale data analysis from multiple
centers may provide more reliable conclusions.
However, data heterogeneity is a common phenomenon

in the secondary use of Electronic Health Records (EHR)
data collected from different sources. Inconsistent data
formats hinder the multi-center analysis of clinical data. A
lack of a common data infrastructure and consistent ter-
minology precludes large-scale clinical research collabor-
ation across institutes. Some researchers have shown that
analyzing EHR data using standard-based methods is eco-
nomical and efficient [8]. By standardizing the data struc-
tures from different institutions, it is possible to combine
data from different research centers for analysis, and allow
the use of raw EHR data to improve efficiency.
A number of Common Data Model (CDM)-based re-

search initiatives, including the National Patient-Centered
Research Networks (PCORnet) (http://www.pcornet.org/
resource-center/pcornet-common-data-model/), the In-
formatics for Integrating Biology and the Bedside (i2b2)
(https://www.i2b2.org/), and the Observational Health
Data Sciences and Informatics (OHDSI) (https://www.
ohdsi.org/) [9], have been launched to take efforts towards
enabling standards-based clinical data research [10–12].
Among them, OHDSI is a worldwide non-profit re-

search alliance that focuses on open-source solutions for
medical big data analysis. The OHDSI CDM provides
standard-based data analysis solutions that support con-
verting EHR data from different sources into a standard
data structure, representing EHR data using semantically-
consistent concepts, and conducting large-scale data ana-
lysis. To support the implementation, OHDSI provides a
set of tools for data conversion, analysis, and visualization

[9, 13]. A large-scale multi-center survival analysis con-
ducted using the OHDSI platform facilitates an effective
clinical decision-making system based on real-world clin-
ical data. This alleviates some of the current shortcomings
in disease diagnosis and prognosis research.
We use intrahepatic cholangiocarcinoma (ICC) patient

data to support our case study. ICC is a type of highly
heterogeneous malignant tumor. Studies have shown
that the incidence of ICC is on the rise worldwide, and
the mortality rate is also increasing. To improve the
overall treatment status and prognosis of ICC, it is ne-
cessary to conduct a systematic synthesis of large-scale
real-world research data.
In this study, we collected real ICC patient EHR data

to evaluate the feasibility of building survival analysis
models using the OHDSI CDM. We developed generic
survival analysis routines that are based on the OHDSI
CDM standards for portable analysis and future rapid re-
use on EHR data from multiple sources of EHR data.

Methods
Data
Patient cohort selection
We included patients who were newly diagnosed with
ICC histopathologically, and treated at Beijing 302
Hospital between July 2007 and July 2017. Patients were
excluded using criteria as follows: hilar or distal ICC,
intrahepatic metastasis of extrahepatic cholangiocarci-
noma (ECC), mixed with hepatocellular carcinoma
(HCC), uncertain origin or benign mass, perioperative
mortality (defined as 1 month after operation), and com-
binations with other malignancies. Patients with only
once medical record and loss of follow-up thereafter or
those with incomplete information were also excluded.

Data collection
We collected the following clinical data on the ICC pa-
tients: demographic characteristics, medical history,
smoking status, laboratory results, and tumor features.
All clinical data were abstracted at the time of diagnosis
prior to specific anti-cancer therapy. Patients were
followed up for death or recurrence of ICC from the
time of diagnosis to July 31, 2017.

The OHDSI CDM
The OHDSI CDM is designed to include all observa-
tional health data elements to support the generation of
reliable scientific evidence. It is essentially a relational
database representing observational data derived from
the EHR. In the OHDSI CDM data tables, the meaning
of each portion of content is represented using standard
concepts. Content-related concepts are stored with their
concept_ids as foreign keys to the CONCEPT table in
the standardized vocabularies. We used the V5.3 OHDSI
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CDM (https://github.com/OHDSI/CommonDataModel)
for our local table schemas. It contains 37 tables and 42
vocabularies.

R packages
We used two R packages in our experiments. The first
one is the survival package (https://cran.r-project.org/
web/packages/survival/index.html), which was used to
support core survival analysis, including the definition of
survival objects, the Kaplan-Meier estimation, and the
Cox model analysis. The second one is the R Mice package
(https://cran.r-project.org/web/packages/mice/index.html).
Missing data is a ubiquitous problem with clinical research
data. For example, blood pressure measurements may be
missing because of the breakdown of an automatic sphyg-
momanometer. Many current analysis tools can only han-
dle a complete data sets, thus, we use the R Mice package
to impute missing values.

Overall method framework
We designed an OHDSI CDM-supported survival analysis
framework to facilitate large-scale multi-center survival
analysis, as shown in Fig. 1. The framework contains the
following three key modules: mapping local terms to
standard concepts, Extraction-Transformation-Loading
(ETL) of patient data into OHDSI CDM, and developing a
generic analysis interface with the OHDSI CDM.

Mapping local terms to standard concepts
We analyzed all of the tables and vocabularies of the
OHDSI CDM and manually created mappings from the
analytical variables in the patient data to the correspond-
ing CDM tables and concepts and normalized the value
expressions. The collected ICC patient data was used as
the source EHR data for the mapping study.
Six main categories of ICC patient data are used for

survival analysis. 1) Demographic characteristics, includ-
ing date of birth, gender, country, ethnicity, and blood
type. 2) Medical history including comorbidities prior to
ICC diagnosis (e.g., diabetes, hypertension, cholelithiasis,
hyperlipidemia, coronary artery disease, and cholecystec-
tomy). Underlying liver disease was either abstracted
and confirmed by reviewing the medical records or
ascertained through related clinical observations. 3)
Laboratory results with parameters involving, among
others, leukocytes, erythrocytes, platelets, albumin, total
bilirubin, creatinine, carbohydrate antigen (CA) 19–9,
and CA 125. 4) Smoking status was manually abstracted
from the admission medical records of patients. 5)
Therapeutic procedures conducted on each patient. 6)
Tumor features such as tumor number, maximum size,
vascular invasion, and lymph node involvement were
assessed using contrast computed tomography (CT),

magnetic resonance imaging (MRI) examination, or
pathological reports of the patients.
Creating mappings between the source variables and

their values to the target OHDSI concepts is crucial to fa-
cilitate patient data standardization. Because the source
variable names are typically expressed in non-standard
terms, and the textual variable values are often in
free-style using different local expressions, we must
standardize these terms and the textual values into stand-
ard concepts. The mappings between the source EHR data
terms and the OHDSI CDM concepts were created as
shown in Fig. 2. We used the OHDSI vocabulary browser
Athena (http://athena.ohdsi.org/) to help find the corre-
sponding standard concept in OHDSI when conducting
concept mappings. To ensure minimal mapping errors and
minimal information loss, two authors reviewed the con-
cept mappings to achieve agreement.

Transformation and loading of patient data into the OHDSI
CDM
To load patient data into the OHDSI CDM, we devel-
oped a data transformation and loading algorithm to
populate the ICC patient data into the CDM using the
above concept mappings. There are three key steps for
patient data transformation and loading. 1) The variable
grouping. We manually categorized the source variables
with respect to the target OHDSI tables. Six core tables
are involved in our data loading: condition_occurrence
[medical history], measurement [laboratory results], ob-
servation [tumor features and smoking status], proce-
dure_occurrence [procedures], person [demographic
characteristics], and death [vital status] Table. 2)
De-identification. To maintain patient confidentiality
privacy and security, when the patient data were loaded
into the OHDSI CDM, the original patient_ids were re-
moved and the CDM generated random person_ids for
OHDSI research data management and analysis pur-
poses. 3) Missing data imputation. The R package Mice
provides the general approaches to deal with missing
data for multivariate scenarios [14]. The Mice package
currently offers more than 20 different methods to for
different situations. The “random forest” imputation is
one of the most commonly used methods in the Mice
framework, and [15] recommends this method for im-
puting complex research data sets. Therefore, we used
the function mice (data, method = “rf”) to impute our
missing ICC patient data. 4) Loading patient data into
the CDM. According to the concept mappings, we de-
veloped a set of transformation scripts to directly load
the patient data into the corresponding six core tables.
The associated relationships with other indirect tables,
such as concepts, vocabulary, and domain, were gener-
ated through “concept_id”.
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Fig. 2 Mappings between source EHR terms and standard OHDSI concepts

Fig. 1 The OHDSI-CDM-based generic survival analysis framework
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Developing a generic analysis interface in the OHDSI CDM
Once the patient data are loaded into the OHDSI CDM,
the scalable survival analysis across multiple sites is facil-
itated. We developed a generic survival analysis interface
in the OHDSI CDM to enable the reusable R functions
using the R ‘survival’ package. The event of interest is
patient death and the overall survival (OS) is defined as
the interval between the diagnosis and death or the date
of the last contact with the subjects. Our R interface
supports the general survival analysis functions in the
CDM, and currently includes: 1) Creating the analysis
dataset which relies on a set of input variants ‘concep-
t_id’ because ‘concept_id’ is the standard identifier of
each analysis object. Furthermore, ‘concept_id’ is inde-
pendent with respect to platforms, and offers extensible
interoperability with other OHDSI CDM applications,
such as cohort query results. 2) Constructing the base-
line demographics study that includes predefined ana-
lysis functions such as frequency, percentage, mean ±
standard deviation, and the interquartile range (IQR). 3)
Building the Kaplan-Meier survival curve, defined as the
probability of surviving within a given length of time,
considering time in many small intervals [16].
The CDM-based R analysis tool runs in the local en-

vironment within a single institute to ensure the security
of the personal health identification (PHI) information.
Our methods also support the capability portable among
multiple institutes that deploy the OHDSI CDM.

Evaluation of the CDM-based results
To evaluate the CDM-based analysis results, we per-
formed the analysis using the source ICC patient data
with the common analysis tool Intercooled Stata 13.0

(https://www.stata.com/), and compared the results for a
group of specific analysis tasks.

Results
In total, we used data from 346 ICC patients for survival
analysis. The data set contains data specified in 115 vari-
ables of which 75 were mapped to the OHDSI concepts.
Except for the patient demographics, most of the target
concepts belong to the following four domains: condi-
tion, observation, measurement, and procedure. In
addition, variable concepts were standardized using six
vocabularies: ICD10CM (https://www.cdc.gov/nchs/icd/
icd10cm.htm), ICD10PCS (https://www.cms.gov/Medi
care/Coding/ICD10/2018-ICD-10-PCS-and-GEMs.html),
SNOMED (https://www.snomed.org/snomed-ct), LOINC
(https://loinc.org/), NDFRT (http://bioportal.bioontology.
org/ontologies/NDFRT?p=classes&conceptid=root), and
READ (https://digital.nhs.uk/services/terminology-and-clas
sifications/read-codes), as shown in Table 1. According to
the manually created mappings, a total of 25,950 records of
patient data were loaded into the OHDSI database, as
shown in Table 2.
We implemented a generic analysis interface in the

CDM by initiating an analysis dataset using OHDSI con-
cepts. An example dataset is: SA_dataset = [cohort,
‘4146792’, ‘40482950’, variable_concept_IDs, site_ID],
where cohort is the identified cohort, ‘4146792’ is the
standard concept ‘Status’, and ‘40482950’ is the standard
concept ‘Survival time’. All of the variable_concept_IDs
are the target analytic variables represented as standard
OHDSI concepts, and site_ID represents different
OHDSI servers distributed across multiple institutes.
We then tested the CDM-based interface by generating

summary statistics with respect to patient demographics

Table 2 The variable mapping analysis results

CDM Tables Number of mapped
variables

Number of loaded
instances

Number of variables
failed to be mapped

Example of variable that failed to
be mapped

Condition_occurrence 16 5536 0

Observation 20 6920 11 pathdiameterG, margininvasion, CTPgrade

Measurement 34 11,764 29 DBILRATIO, apA1, CA199.G, AFPL3.AFP

Procedure_occurrence 1 346 0

Person 3 1038 0

Death 1 346 0

Total 75 25,950 40

Table 1 The concept-standardized process in OHDSI (Measurement and Observation as examples)

Variable name from EHR OHDSI_concept_id Domain Vocabulary CODE Standard name in OHDSI

RBC 3,035,569 Measurement LOINC 5171–4 Red Blood Cell/erythrocyte

HGB 3,035,970 Measurement LOINC 2283–0 Hemoglobin Denver [Presence] in Blood

CA125 45,422,082 Observation READ 44a6.00 CA123_level

BMI 4,245,997 Observation SNOMED 60,621,009 Body mass index
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and tumor characteristics and depicted the survival curves
using the Kaplan-Meier method. We used the log-rank
test to compare the survival curves of the ICC patients.
Table 3 shows the demographics of the study population,
from the table we conclude that 69.1% of the patients were
male; One hundred and ninety-six patients had cirrhosis
of liver; Lymph node status was available for 184 patients
(53.2%), and the interquartile range of CA125 level is
24.07 (12.55–71.96). Additionally, Fig. 3, Fig. 4 and Fig. 5
show examples of the survival curves according to all vari-
ables, variable Lymph node / lymphatics observable, and
variable CA125 level, respectively. For evaluation pur-
poses, we compared the analysis results with respect to
variables that mapped to the OHDSI with the Stata-based
results. The CDM-based results were consistent with
the Stata-based results on the same analysis variables.
However, the entire analysis may not be fully sup-
ported by CDM because a number of variables (40
out of 115 in our use case) failed to be mapped to
the OHDSI concepts.

Discussion
With the implementation of concept mappings, the ETL
process, and generic R interfaces, we conducted a

preliminary study on incorporating the OHDSI CDM
and R tools to support survival analysis on real ICC pa-
tient data. In general, we demonstrate that our ap-
proach is effective in supporting survival analysis
using the OHDSI CDM and can produce reusable
and portable analysis routines.
However, we encountered some challenges during our

study. 1) Imaging data and molecular data are not
adequately handled by the OHDSI vocabularies. We rec-
ommend that the OHDSI community enhance the
OHDSI CDM to support pathology and biomarker data
representation, so as to support more comprehensive
data analysis. 2) We observed inaccurate mapping issues.
For example, there is a concept “Alanine aminotransfer-
ase/Aspartate aminotransferase [Enzymatic activity ratio]
in Serum or Plasma” (concept_id = 3,019,056) in OHDSI,
but EHR data may have separate laboratory test results
for Alanine aminotransferase (ALT) and Aspartate
aminotransferase (AST). In this case, when we load
data into OHDSI, an additional ratio calculation is re-
quired. Semantic loss may exist between the EHR term
and the standard OHDSI concept, caused by partial se-
mantic matching or semantic ambiguity. 3) There is a
value set normalization issue. During our data transform-
ation, we noticed that there are different value expressions
for different variables, such as the value of the concept
‘gender’ (concept_id = 4,135,376), whereby the values ‘M’
and ‘F’ must be transformed into standard concepts Male
(concept_id = 8507) and Female (concept_id = 8530). Be-
cause the value expression is quite diverse, handling value
set standardization requires additional methods and re-
sources. In this study, we have not fully solved this issue.

Fig. 3 Kaplan-Meier survival curves for ICC patients by all variables

Table 3 Demographics of study population

concept_id: 4135376: Gender (%) 69.1/30.9

concept_id: 4064161: Cirrhosis of liver (%) 196 (56.6)

concept_id: 4239613: Lymph node /
lymphatics observable (%)

184 (53.2)

concept_id: 45422082: CA125 level (IQR) 24.07 (12.55–71.96)
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The limitations of our work are as follows. First,
we conducted our experiments using data from only
one institution. We will conduct subsequent re-
search to use multi-center data for large-scale sur-
vival analysis and further validate our methods.

Second, we have not yet used the patient cohort
identification interface in our methods. We will
examine the interoperability of our analysis interface
with the existing OHDSI cohort definition tools in
our further study.

Fig. 5 Kaplan-Meier survival curves for ICC patients by CA125 level

Fig. 4 Kaplan-Meier survival curves for ICC patients by Lymph node / lymphatics observable
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Conclusion
In this study, we perform ICC patient survival analysis
as a use case to explore a generic analysis framework
using the OHDSI CDM. We mapped the raw EHR data
to the OHDSI concepts, and unified data representation
using the OHDSI CDM and standard vocabularies. In
addition, we developed an R-based generic survival ana-
lysis interface to enable portability. The designed frame-
work provides generic and scalable analysis capabilities
that are applicable not only to ICC patient data analysis,
but also to EHR data analysis for other diseases.
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