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Abstract

Background: Cost effectiveness research is emerging in the chronic kidney disease (CKD) research field. Especially,
an individual-level state transition model (microsimulation) is widely used for these researches. Some researchers set
CKD grades as discrete health states, and the transition probabilities between these states were dependent on the
CKD grades (disease grade-based microsimulation, MSM-dg), while others set estimated glomerular filtration rate
value which determines the severity of CKD as a main variable describing patients’ continuous status (kidney
function-based microsimulation, MSM-kf). MSM-kf seems to reflect the real world more precisely but is more
difficult to implement. We compared the calculation results of these two microsimulation models to evaluate
the effect of model selection on CKD cost-effectiveness analysis.

Methods: We implemented simplified MSM-dg and MSM-kf emulating natural course of CKD in general, and
compared models using parameters derived from an IgA nephropathy cohort. After checking these models’
overall behavior, life-years, utilities, and thresholds regarding intervention costs below which the intervention
is thought as dominant (V0) or cost-effective (V1) were calculated. In addition, one-way and probabilistic
sensitivity analyses were performed.

Results: With base-case parameters, the calculated life-years was shorter in MSM-dg (73.89 vs. 75.80 years)
while the thresholds were almost equal (86.87 vs. 90.43 (V0), 132.29 vs. 146.25 [V1 in 1000 USD]) compared
to MSM-kf. Sensitivity analyses showed a tendency of the MSM-dg to show shorter results in life-years. V0 and
V1 were distributed by approximately ±100,000 USD (V0) and ± 150,000 USD (V1) between models.

Conclusions: Estimated cost-effectiveness thresholds by both models were not the same and its difference
distributed too wide to be ignored. This result indicated that model selection in CKD cost-effectiveness
research has large effect on their conclusions.
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Introduction
Chronic kidney disease (CKD), defined as impaired
kidney function, is a very common disease that causes a
high mortality rate and lowers quality of life (QOL) [1].
Progression of CKD to end-stage renal disease (ESRD)
necessitates the renal replacement therapy (RRT, e.g.
hemodialysis, peritoneal dialysis, or kidney transplant-
ation), a costly [2] and lifelong treatment. As it is impos-
sible to reverse renal impairment in CKD, in general, the
effectiveness of management is judged by the extent to
which disease progression is delayed.
CKD is said to progress gradually in a certain rate,

depending on the underlying disease [3]. Various treat-
ments developed to slow CKD progression have been
investigated [4–6], and some researchers have evaluated
the cost-effectiveness of these treatments [7–9]. One of
the most utilized statistics for the measurement of
cost-effectiveness is the incremental cost-effectiveness
ratio (ICER), which is defined as the additional cost of a
given treatment divided by the additional units of effects
produced by the treatment. However, when we intend to
analyze in a longer time horizon like CKD, which is
lifelong disease, it is difficult to observe health utilities
derived from treatments directly, because following
patients for such a long time is typically not feasible.
Currently, computer simulations based on mathemat-

ical modeling are utilized to emulate patients’ prognoses
in longer time horizon [10], and in particular, the deci-
sion analytic models are widely used. When evaluating a
target intervention (e.g. drug, treatment), researchers
first develop a disease prognosis model using parameters
such as mortality rate, disease progression speed, cost,
and QOL derived from epidemiological and in vitro data
[11, 12]. Once the model is validated, the next step is to
calculate the time courses of virtual patients using com-
puter software and extract cost-effectiveness results.
In the decision analytic model, there are several ways to

emulate the prognosis of a disease including decision tree
analysis, and state transition modeling (STM). Decision
tree analysis becomes unwieldy when many possible out-
comes exist or when the follow-up period is very long [13]
as with CKD. Comparably, STM is suitable for modeling

lifelong diseases because these models are relatively simple
and simulations can be carried out recursively. In STM,
researchers define possible discrete health states that the
patient can develop and input transition probabilities
between them [14–16]. There are two types of STM:
cohort-level STM and individual-level STM (microsimula-
tion). Cohort-level STM simulates the average experience
of the patients in a cohort, while individual-level STM,
also called as microsimulation (MSM), simulates individ-
ual patient histories over time. Both STM models assume
state transition occurs at once per predetermined time
cycle [17].
CKD is defined by abnormalities of kidney structure

or function, present for more than 3 months, with
implications for health [18]. Structural abnormality is
detected using urine sediment or imaging and so on,
while functional abnormalities are defined by a glom-
erular filtration rate (eGFR) less than 60 mL/min/
1.73 m2. The disease is classified into six grades accord-
ing to eGFR (Table 1) [18], and sometimes the severity
of kidney function impairment advances from grade 5
CKD to the condition named ESRD, in which patients
are dependent on RRT for survival. eGFR is considered
to reflect the total capacity of body waste filtration by
tiny renal components known as nephrons. Two
million nephrons are thought to exist in normal
kidneys, which individually lose function for various
reasons such as nephritis or diabetes. Therefore, eGFR
is thought to decline steadily over time, which is
supported by epidemiological study [19].
STM basically assumes discrete health statuses

which patients can become. Therefore, researchers
have used CKD grades as discrete health states
between which transition probabilities are dependent
on these grades (hereinafter referred to as disease
grade-based microsimulation, MSM-dg). A research
group also tried to find out these transition probabil-
ities between these states in general population [20].
MSM-dg is easy to implement with commercially
available software, but from the clinical viewpoint, the
assumption that CKD stages are discrete states and
transition probabilities are constant within a certain

Table 1 Glomerular filtration rate (GFR) categories in chronic kidney disease (CKD). Patients with CKD G1 and G2 have normal eGFR
value and have other evidence of kidney damages (e.g. proteinuria)

GFR category GFR (mL/min/1.73 m^2) Terms

G1 ≥90 Normal or high, with evidence of kidney damage

G2 60–89 Mildly decreased, with evidence of kidney damage

G3a 45–59 Mildly to moderately decreased

G3b 30–44 Moderately to severely decreased

G4 15–29 Severely decreased

G5 < 15 Kidney failure

CKD Chronic kidney disease, G Grade, GFR Glomerular filtration rate, eGFR Estimated glomerular filtration rate
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grade is unrealistic because severity of the disease is
defined by eGFR, which is continuous variable declin-
ing constantly. In contrast, STM using eGFR as a
constantly changing variable (hereinafter referred to
as kidney function-based microsimulation, MSM-kf )
has also been implemented [21], in spite of its diffi-
culty in implementation, and it seems to emulate real
world more precisely. Aforementioned models are
based on different assumptions; health states are
discrete or continuous, and thus it is possible that
they show different results for the same research
topic. So far, there is no research examining the dif-
ference in calculation results between these models,
which can affect the conclusion of cost-effectiveness
research. Hence, we aimed to compare the calculation
results of these modeling methods and evaluate the
effect of model selection on research conclusion to
provide information for future CKD health economics
investigators.

Methods
We implemented simplified MSM-dg and MSM-kf
models that were not intended to describe a specific
kidney disease but instead to simulate the natural
course of CKD in general, for use in comparing re-
sults derived from them. The details of development
and the comparisons are described below.

Implementing disease grade-based microsimulation
(MSM-dg)
We implemented individual-level STM (microsimulation,
MSM) in which we set CKD grades as health states and
assumed transition probabilities between states were
dependent on these grades only (Fig. 1), adhering to con-
ventional STM assumption. Once the kidney is damaged,
the damage generally cannot be fully cured. Thus, the
target population in cost-effectiveness research for
treating kidney disease can be assumed to have grade 1 or
more advanced CKD stages, or ESRD. With this model,
the virtual cohort’s time course was computed as shown
in the flowchart on Additional file 1: Figure S1. Mortality
rates were set as a function of age, sex, and CKD grade
and that of patients in the predialysis and dialysis periods
were set separately. Time cycle was set as 1/4 years based
on the Japanese CKD guideline which recommends every
CKD patient should be followed-up with eGFR measure-
ment every 3 months [22]. In general, visiting an internal
medicine clinic once every 3 months is common practice
[23]. We repeated the process for each individual in the
virtual cohort and acquired historical data including each
individual’s health state, accumulated cost, and utility.

Implementing kidney function-based microsimulation
(MSM-kf)
Next, we implemented MSM-kf in which we set only
two health states (alive and dead), but the alive state has

CKD
G1

CKD
G2

CKD 
G3a

CKD 
G3b

CKD
G4

CKD
G5

Dialysis

Dead
Without
known
CKD

Enter into model
when diagnosed as CKD

Fig. 1 State transition diagram of disease grade-based microsimulation (MSM-dg). The transition probabilities between states depend on CKD grades
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eGFR value as constantly declining variable (Fig. 2). The
decline rates were sometimes said to be non-linear [24],
but we assumed widely-believed constant decline rate
for simplicity. The transition probability between alive
and dead states is dependent on CKD grades, which is
determined only by the eGFR value. We assumed the de-
cline rates are different by person to person. The mean
and standard deviations of the rate are already well ex-
amined [25–27], and we utilized these data when devel-
oping our model. We assumed a log-normal distribution
for the rates of eGFR decline [28], with assumption that
no patient had continuously increasing eGFR value.
The simulation flowchart is shown in Additional file 2:

Figure S2. Mortality rates, accumulated costs, and utilities
were analyzed as described for the MSM-dg implementa-
tion. The conversion from eGFR to CKD grade was based
on the aforementioned KDIGO definition, and we as-
sumed that patients with an eGFR < 7 mL/min/1.73 m^2
were ESRD who required RRT according to the IDEAL
study [29]. We also set time cycle as 1/4 years with the
same reason explained in MSM-dg implementation
section. The historical data of each patient was obtained
using methods similar to those described for MSM-dg,
and we calculated several parameters discussed below.

Parameter translation for model comparison
When comparing MSM-dg and MSM-kf, it is essential to
translate parameters. In particular, transition probabilities
in MSM-dg and eGFR decline rates in MSM-kf. Generally,
previous researchers obtained the transition probabilities
for MSM-dg from medical records [20, 30]. That is, they
compared the eGFR of patients at two visits and calcu-
lated the fraction of those who proceeded to the next
grade among all patients with a particular CKD grade. On
the contrary, investigators applying MSM-kf used eGFR
decline rates obtained from previous cohort studies [21,
31]. Therefore, we at first performed our MSM-kf with pa-
rameters obtained from existing epidemiological data.
Next, from the historical eGFR data acquired with the
MSM-kf, we randomly sampled the grade transition be-
tween two consecutive visits and estimated the transition
probabilities to emulate the method described above to

acquire transition probabilities. Finally, we inputted the
calculated transition probabilities for MSM-dg (Fig. 3). By
implementing the aforementioned translation, we could
calculate transition probabilities from eGFR decline slope,
resulting in comparison between MSM-dg and MSM-kf
with same conditions.

Comparison of estimation results with MSM-dg and MSM-
kf
We compared MSM-dg and MSM-kf to evaluate the dif-
ferences in the calculation results. In this study, we set
MSM-kf as reference model, considering its potential to
reflect the reality more than MSM-dg. As base case ana-
lysis parameters, we used data from prior epidemiological
study on IgA nephropathy, a major cause of CKD [32].
Clinically, utility changes from the disease and natural
course represent those of typical CKD and cost structure
may be the same, suggesting the data was suitable for our
purpose. The study, named VALIGA [33], consisted of pa-
tients from 13 European countries. Adhering the data, we
made our virtual cohort include equal numbers of 37-year
old men and women with an eGFR of 76 mL/min/
1.73 m2. Mortality rates were acquired from general popu-
lation of Ontario [34–36], Canada and dialysis patients
from Japan [37] due to limited available data (Detail is de-
scribed in supplementary material provided as Add-
itional file 3). The study showed immunosuppressant
therapy for IgAN can slow the rate of eGFR decline from
− 2.2 ± 6.5 to − 1.3 ± 8.5 mL/min/1.73 m2/year. We set the
initial parameters as shown in Table 2. At first, we
checked these models’ behavior by means of Kaplan-
Meier plot of renal survival rates. Renal survival rate is a
ratio of patients not requiring RRT at a point of certain
time, which is common indicator in nephrology research.
Afterwards, we calculated and compared unadjusted life
years, discounted quality-adjusted life-years (QALYs),
costs, and new parameters defined below with both
MSM-dg and MSM-kf.
Here, we introduced two new parameters indicating

cost thresholds below which an interventions of interest
are dominant strategy, and cost-effective (Fig. 4). In par-
ticular: the maximum present value of the cost of an

Dead
Alive

with eGFR = xx 
(mL/min/1.73m^2)

eGFR decreases at each cycle consistently
with a certain rate of each person

Fig. 2 State transition diagram of kidney function-based microsimulation (MSM-kf). The transition probabilities between states depend on eGFR
value which constantly decreases at each time cycle with a certain rate
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intervention below which the intervention can be dom-
inant over the control (named V0 in this study) under
the assumption that utility increases by the intervention,
and the maximum present value of the cost of an inter-
vention below which the intervention can be thought as
cost-effective (V1). For this study, we assumed the
threshold of cost-effectiveness was 50,000 USD / QALY
adhering to prior literature [38]. The formulas used to
calculate V0 and V1 are:

V0 ¼ Ca−Cb ðunder the assumptions of Ub > UaÞ and V1

¼ 50; 000� ðUb−UaÞ þ ðCa−CbÞ

Where Ca = total cost of disease without intervention,
Cb = total cost of disease with intervention (excluding
intervention costs), Ua = total utility without interven-
tion, and Ub = total utility with intervention. When Ca >
Cb + cost of intervention, the intervention is dominant

over the control. Hence, V0 = Ca – Cb. When (Cb + cost
of intervention – Ca) / (Ub – Ua) < 50,000, the interven-
tion will be seen as cost-effective. Hence, V1 = 50,000 ×
(Ub – Ua) + (Ca – Cb).
These variables represent the value we can pay for

the intervention (detail is shown in Fig. 4). By calculat-
ing them with MSM-dg and MSM-kf, we can evaluate
the effect of modelling methods on researchers’ conclu-
sion whether a new expensive intervention is cost
effective or not.

Sensitivity analysis
There was unavoidable uncertainty in the parameters ex-
tracted from the VALIGA cohort, which provided only
cohort-level information. Therefore, we performed
one-way sensitivity analysis to overcome this limitation.
We altered eGFR (30–90 mL/min/1.73 m^2), initial age
(30–60 years old), mean eGFR decline rate (0.5–10.0 mL/
min/1.73 m^2/year), standard deviation of the eGFR
decline rate (0.5–10.0 mL/min/1.73 m^2/year), and other
variables listed in Table 2 and calculated difference
between estimated life years, utilities, costs, V0 and V1.
Researchers may be interested in not only IgAN, but

also other diseases causing CKD, in other cohorts. Thus,
we also performed probabilistic sensitivity analysis of
these parameters and plotted the estimated life years,
utilities, costs, and V0 and V1, from both models.
We used the Numpy and Math libraries. (Source codes

are provided as Additional files 4 and 5). For visualization,
we used R 3.4.2 software [39] and “survminer” package
[40] to draw the Kaplan-Meier curve.

Results
Comparison of models
Figure 5 shows the Kaplan-Meier plot of the renal
survival rates in both models. That of 5-years follow up
in VALIGA cohort was also shown in zoomed area in
lower left for comparison. Renal survival rates at 5 years
were 99.8% in MSM-dg, 97.8% in MSM-kf, and 97.8% in
VALIGA cohort.
The estimated life-years determined using MSM-dg

were 73.89 ± 12.14 years (control) and 75.80 ± 12.82 years
(immunosuppressant therapy). The estimated life-years
using MSM-kf were 76.35 ± 12.44 years (control) and
78.80 ± 12.62 years (immunosuppressant therapy). The ex-
pected utilities (discounted) from the starting point calcu-
lated by MSM-dg were 19.43 ± 4.06 QALYs (control) and
20.00 ± 4.33 QALYs (immunosuppressant therapy). The ex-
pected utilities calculated by MSM-kf were 20.34 ± 4.08
QALYs (control) and 21.12 ± 4.08 QALYs (immunosup-
pressant therapy). The present values of expected lifetime
costs calculated by MSM-dg were 286.85 ± 350.27 thou-
sand dollars (control) and 213.42 ± 365.60 thousand dollars
(immunosuppressant therapy, excluding intervention costs).

Fig. 3 Parameter adjustment and comparison of MSM-dg and
MSM-kf flowchart
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The present values of expected lifetime costs calculated by
MSM-kf were 199.98 ± 298.13 thousand dollars (control)
and 122.99 ± 265.59 thousand dollars (immunosuppressant
therapy, excluding intervention costs). The V0 values cal-
culated from acquired data were 86,870 USD (MSM-dg)
and 90,430 USD (MSM-kf). The V1 values calculated
from the same data were 132,290 USD (MSM-dg) and
146,250 USD (MSM-kf) (Table 3). In base cases, the
MSM-dg results showed shorter life-years, lower utilities,
and greater costs than MSM-kf did. As a result, MSM-dg
showed smaller result in both V0 and V1 compared to
MSM-kf in this circumstance.

Sensitivity analysis
The results of the one-way sensitivity analysis revealed
that MSM-dg showed shorter and lower life-years and
utilities than MSM-kf in most cases, respectively. Also
similar to the base case analyses, the calculated costs de-
termined using MSM-dg were greater by approximately
50,000–100,000 USD in most cases. The difference in V0
and V1 values did not show specific tendencies, and the
differences distributed within approximately − 50,000 to
100,000 USD (V0) and − 100,000 to 150,000 USD (V1).
The detailed result of one-way sensitivity analyses are
shown in Additional file 6: Figure S3.

Table 2 Parameters of base case and sensitivity analyses. There were no CKD 1 patients as the initial eGFR was below 90 mL/min/
1.73 m^2. Hence, we did not perform sensitivity analyses of mortality rate, utility, and cost for CKD 1 patients

Parameters Baseline values Sensitivity analyses Ref.

Lower limit Upper limit

Mean of eGFR decline speed (mL/min/1.73 m^2/year) 2.2 0.1 10 [33]

Standard Deviation of eGFR delcline speed (mL/min/1.73 m^2/year) 6.5 0.1 10 [33]

Initial age (years) 37 30 60 [33]

Initial eGFR (mL/min/1.73 m^2) 73 30 75 [33]

Baseline mortality rate of predialysis patients 3.338 × 10−5 × e0.091 × age(male)
1.615 × 10−5 × e0.098 × age(female)

× 0.8 × 1.2 [34, 35]

Mortality rate of CKD 1 patients Baseline × 1 × 0.9 × 1.1 [36]

Mortality rate of CKD 2 patients Baseline × 1 × 0.9 × 1.1 [36]

Mortality rate of CKD 3a patients Baseline × 1.2 × 1.1 × 1.3 [36]

Mortality rate of CKD 3b patients Baseline × 1.8 × 1.7 × 1.9 [36]

Mortality rate of CKD 4 patients Baseline × 3.2 × 3.0 × 3.4 [36]

Mortality rate of CKD 5 patients Baseline × 5.9 × 5.6 × 6.2 [36]

Mortality rate of dialysis patients 1.32 × 10−3 × e0.060 × age × 0.8 × 1.2 [36]

Utility of CKD 1 patients 1 0.9 1 [12]

Utility of CKD 2 patients 0.9 0.8 1 [12]

Utility of CKD 3a patients 0.87 0.77 0.97 [12]

Utility of CKD 3b patients 0.85 0.75 0.95 [12]

Utility of CKD 4 patients 0.85 0.75 0.95 [12]

Utility of CKD 5 patients 0.85 0.75 0.95 [12]

Utility of dialysis patients 0.72 0.62 0.82 [12]

Cost of CKD 1 (1000 USD / year) 1.6 0.8 3.2 [46]

Cost of CKD 2 (1000 USD / year) 1.7 0.9 3.4 [46]

Cost of CKD 3a (1000 USD / year) 3.5 1.8 7.0 [46]

Cost of CKD 3b (1000 USD / year) 3.5 1.8 7.0 [46]

Cost of CKD 4 (1000 USD / year) 12.7 6.4 25.4 [46]

Cost of CKD 5 (1000 USD / year) 12.7 6.4 25.4 [46]

Cost of dialysis patients (1000 USD / year) 84.6 42.3 169.1 [2]

Improve rate of eGFR decline slope 0.59 0.1 0.9 [33]

Annual discount rate for costs 0.03 0 0.1

Annual discount rate for utilities 0.03 0 0.1

CKD Chronic kidney disease, eGFR Estimated glomerular filtration rate, Ref Reference
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The probabilistic sensitivity analysis revealed that
life-years and utilities calculated with MSM-dg were
shorter and lower, respectively, than those with MSM-kf in
approximately two thirds of parameter sets. Costs
calculated with MSM-dg were greater than costs calculated
with MSM-kf in two thirds of cases. Regarding V0 and V1
values, the difference between both results distributed
across zero almost equally. The vast majority of results
(95%) were between − 91,300 USD and 75,700 USD (V0),
and between − 108,300 USD and 98,600 USD (V1). The
scatter plots of results of probabilistic sensitivity analyses
are shown in Additional file 7: Figure S4.

Discussions
We compared two microsimulation models of CKD that
are utilized within the field of health economics research:
we called them MSM-dg and MSM-kf. First, we im-
plemented simplified models. The Kaplan-Meyer
curves of calculated results declined steadily, indicat-
ing that our implementations did not deviate from
the reality so much.
We introduced two new parameters, V0 and V1, for

our base-case settings comparison because directly
analyzing cost-effectiveness of currently available therapy
has scarce meaning. That is, currently available,
partially-effective immunosuppressant therapy for IgAN
[41] costs only 1200 USD [42, 43], which is too inexpen-
sive to analyze cost-effectiveness with commonly-applied
50,000 USD/QALY threshold. We defined V0 as the dif-
ference between the total estimated costs of the control

and intervention groups excluding the intervention cost.
When the disease costs of the control group exceed
those of the intervention group, V0 is positive and iden-
tical to the maximum present value of the cost of the
intervention below which the intervention is dominant
strategy over the control. Likewise, V1 represents the
maximum present value of the intervention cost under
the condition that the cost-effectiveness threshold is
50,000 USD/QALY. The threshold determining
cost-effectiveness is a topic of health economics research
[44] but is outside the scope of this study. Current effort
on drug discovery focuses on innovative and expensive
ones which should be examined cost-effectiveness. It is
quite possible that such an expensive drug for stopping
CKD would be invented in near future. From the
viewpoint of payers or societies, it is very important to
estimate the threshold below which an intervention is
cost-effective for future CKD interventions in the era of
increasing medical costs. In this context, V0 and V1
express this threshold.
In base-case analysis, MSM-dg results showed shorter

life years and QALYs, and larger costs compared to
MSM-kf. V0 were 86,870 USD by MSM-dg and 90,430
USD by MSM-kf, meaning that investigators who use
MSM-dg will conclude an intervention is dominant
strategy when the present value of the intervention cost
is below 86,870 USD while those who use MSM-kf do so
if the present value is below 90,430 USD. If the actual
cost is between 86,870 and 90,430USD, conclusion be-
comes different due to selection of modeling method.

Fig. 4 Pictorial representation of definition of V0 and V1 values
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Likewise, if the actual cost is between 132,290 USD and
146,250 USD, investigators conclude differently about
cost-effectiveness of the intervention in the condition of
ICER threshold is 50,000USD / QALY. This result indi-
cates that the conclusion whether an intervention is
dominant strategy or cost-effective is easily changed by
the selection of their modeling method. In base-case
setting, investigators who use MSM-kf will conclude the
intervention is cost-effective more likely than those who
use MSM-dg.
Our one-way sensitivity analysis showed that MSM-dg

showed shorter results in life-years (by approximately
1.5–3.0 years) and utilities compared to MSM-kf but did
larger results in costs in most cases. V0 and V1 values
did not show specific tendencies, but the results

calculated by MSM-dg were different from those by
MSM-kf by approximately − 50,000 to 100,000 USD
(V0) and − 100,000 to 150,000 USD (V1). These results
imply that even if the initial parameters were uncertain,
the tendencies were applicable with regard to calculated
life years, utilities, and costs. Difference in V0 and V1
distributed largely, indicating that the threshold for an
intervention to be dominant or cost-effective can fluctu-
ate within these margins based on the selection of mod-
eling method. These fluctuation margins are three to
five times greater than the GDP per capita in the United
States [45]; an amount that is difficult to ignore.
We performed probabilistic sensitivity analysis for

proving generalizability of our findings. The analysis
showed similar results to one-way sensitivity analysis.

5-year renal 
survival rate in 
VALIGA cohort

Fig. 5 Kaplan-Meier curve of renal survival rates calculated with MSM-dg and MSM-kf. The black line represents renal survival rate calculated with
MSM-kf; gray line with MSM-dg. Light color bands represents 95% confidence intervals

Table 3 Calculation results of base cases. Standard deviations are shown in parentheses

MSM-dg MSM-kf

Immunosuppressant therapy Control Immunosuppressant therapy Control

Life years (years) 76.35 (± 12.44) 73.89 (± 12.14) 78.80 (± 12.62) 75.80 (± 12.82)

Utility (years) 20.34 (± 4.08) 19.43 (± 4.06) 21.12 (± 4.08) 20.00 (± 4.33)

Cost (1000 USD) 199.98 (± 298.13) 286.85 (± 350.27) 122.99 (± 265.59) 213.42 (± 365.60)

V0 (1000 USD) 86.87 90.43

V1 (1000 USD) 132.29 146.25

MSM-dg Disease grade-based microsimulation, MSM-kf Kidney function-based microsimulation, V0 boundary below which the intervention is dominant; V1
boundary below which the intervention is cost-effective. V0 and V1 are defined in the main text

Hiragi et al. BMC Medical Informatics and Decision Making           (2018) 18:94 Page 8 of 11



The differences between the V0 values calculated using
MSM-dg versus MSM-kf were in the range of − 91,300
USD and 75,700 USD in 95% of the results while that of
V1 values ranged from − 108,300 USD and 98,600 USD.
These amounts are also difficult to ignore.
The reason for this difference can be partially ex-

plained by the characteristics of MSM-dg which ignored
time-dependent variety of patients within a single health
states. A cohort with eGFR of 55 mL/min/1.73m2 (CKD
G3a) at the beginning of a simulation, for instance,
should have time-dependent transition probabilities to
G3b because the fraction of patients with eGFR close to
45 mL/min/1.73 m2 (threshold between CKD G3a and
G3b) will increase as the time goes, under the assump-
tion of constant eGFR decline.
Policymakers can use cost-effectiveness studies to

determine whether a given intervention is worth paying
for. CKD is a common and lifelong disease with treat-
ments available that may slow its progression to ESRD.
Based on the results of our study, MSM-dg and MSM-kf
based on different health states assumptions may
produce different conclusions. In particular, compared
to MSM-kf, MSM-dg showed shorter or smaller results
in life-years and utilities, and estimated costs. The differ-
ences the between the V0 and V1 values were distributed
bilaterally across zero, and the margins were relatively
large. At a glance, MSM-kf emulates the real world more
precisely from the clinical viewpoint. However, MSM-dg
is easier to understand than MSM-kf, and it is more eas-
ily implemented using commercially available software.
Simulation methods cannot avoid inaccuracy, and inves-
tigators must consider the biases inherent to the calcula-
tion methods they utilize. Our results may help clarify
the biases derived from the selection of MSM-dg or
MSM-kf for future CKD cost-effectiveness researchers.
This research has several limitations. First, we ignored

major parameters affecting CKD progression such as
race, ethnicity, and major cardiovascular risks for simpli-
city. Second, we did not consider kidney transplantation,
which has a different cost structure than dialysis as RRT.
Kidney transplantation is relatively inexpensive, and has
become a considerable option for ESRD patients. This
time we did not include kidney transplantation in our
models to maintain simplicity, but it may be possible to
include post-transplantation status into the models after
reliable cost and utility data are accumulated. Third, we
assumed constant eGFR decline rates, which is widely
believed but sometimes pointed out to be incorrect.
However, even when non-linear decline was assumed,
our method of comparison could be applied even though
it may become complicated, and similar difference
would be possibly shown. Lastly, we only showed differ-
ence in calculation results, but we could not definitively
determine which model is superior because of limited

reliable accuracy indicators. Nevertheless, we believe this
information is important.

Conclusions
MSM-dg, based on a conventional discrete state transi-
tion assumption, tends to show smaller results in util-
ities and larger ones in costs compared to more-realistic
MSM-kf, based on the assumption of continuous state
change in CKD disease modeling. The selection of a dis-
ease modelling method in cost-effectiveness researches
of CKD intervention causes difficult-to-ignore fluctua-
tions in their conclusions.
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