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Abstract

Background: Chronic Kidney Disease (CKD) is one of several conditions that affect a growing percentage of the US
population; the disease is accompanied by multiple co-morbidities, and is hard to diagnose in-and-of itself. In its
advanced forms it carries severe outcomes and can lead to death. It is thus important to detect the disease as early
as possible, which can help devise effective intervention and treatment plan.
Here we investigate ways to utilize information available in electronic health records (EHRs) from regular office visits
of more than 13,000 patients, in order to distinguish among several stages of the disease. While clinical data stored
in EHRs provide valuable information for risk-stratification, one of the major challenges in using them arises from
data imbalance. That is, records associated with a more severe condition are typically under-represented compared
to those associated with a milder manifestation of the disease. To address imbalance, we propose and develop a
sampling-based ensemble approach, hierarchical meta-classification, aiming to stratify CKD patients into severity
stages, using simple quantitative non-text features gathered from standard office visit records.

Methods: The proposed hierarchical meta-classification method frames the multiclass classification task as a
hierarchy of two subtasks. The first is binary classification, separating records associated with the majority class from
those associated with all minority classes combined, using meta-classification. The second subtask separates the
records assigned to the combined minority classes into the individual constituent classes.

Results: The proposed method identifies a significant proportion of patients suffering from the more advanced
stages of the condition, while also correctly identifying most of the less severe cases, maintaining high sensitivity,
specificity and F-measure (≥ 93%). Our results show that the high level of performance attained by our method is
preserved even when the size of the training set is significantly reduced, demonstrating the stability and
generalizability of our approach.

Conclusion: We present a new approach to perform classification while addressing data imbalance, which is
inherent in the biomedical domain. Our model effectively identifies severity stages of CKD patients, using
information readily available in office visit records within the realistic context of high data imbalance.
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Background
Chronic kidney disease (CKD) is defined as kidney
damage persisting for more than three months. It is
currently affecting about 15% of the adult population
in the US, accompanied by co-morbidities and associ-
ated with increased mortality rates [1]. The disease is
typically classified into five stages, 1–5, indicating in-
creasing order of severity [2]. These severity stages are
clinically quantified through the use of the Estimated
glomerular filtration rate (eGFR), an indicator of the
level of kidney function.1 The glomerular filtration
rate is estimated from serum creatinine lab tests, race,
sex and age. As chronic kidney disease – even in its
advanced stages – is often asymptomatic, the relevant
lab tests are not typically ordered and many CKD pa-
tients go undiagnosed [3]. Patients who remain
under-treated, especially in stages 4 and 5, are at high
risk for end-stage renal disease and death.
A study reported by the Kidney Early Evaluation Pro-

gram (KEEP) [4], indicates that fewer than 30% of the
122,502 patients enrolled in the program at stages 4 and 5
have ever been seen by a nephrologist. Notably, 95% of
the enrolled patients did visit their general practitioner
during the year preceding the study, for other conditions.
As such, developing a risk stratification model based on
information gathered during these office visits, which can
separate CKD patients into severity stages, can be used to
alert general practitioners about a patient’s risk for ad-
vanced stage (4 or 5) CKD, prompting the physician to
order the lab tests needed to confirm the diagnosis.
A number of recent studies have employed machine

learning methods to stratify patient risk and predict the
onset of a disease [5–9]. These studies have typically used
lab test results, insurance information and narrative text,
along with office visit records, whereas our study solely
utilizes simple attributes that are routinely collected and
can be found in readily available office visit records. Add-
itionally, the datasets used in most of these studies are an
order of magnitude smaller (< 2,300 records) [5–7] com-
pared to the one used in our study. These studies also do
not impose the inclusion of only temporally early records
in the training sets, and testing on later records, as we do
in our work here. Notably, none of these studies handle
class imbalance that is inherent in the dataset, as we do
here. Ours is the first study that aims to identify disease
severity levels solely using simple quantitative non-text at-
tributes collected during patient’s office visit, while directly
addressing imbalance in the number of records available
across severity stages. Utilizing standard office visit re-
cords allows our approach to be broadly applicable to
most patients who routinely visits a physician.
Collaborating with physicians from Christiana Care

Health System, the largest health-system in Delaware,
we analyze a dataset gathered from 13,111 patients who

had been seen in primary care or specialty practices over
a nine-year period. Data from Nephrology Practices
EHR are not included in this dataset. The dataset com-
prises information collected during patients’ visits to
multiple primary care and specialty practices across
Delaware. The individual records each consist of 495
simple quantitative non-text attributes summarizing a
patient’s demographics, vital signs, diagnosed conditions
and medications. We represent each patient’s visit record
using the values of these attributes as features. In con-
trast to text-based physician notes that are not always
available or comprehensive, these 495 non-text attri-
butes are available for the vast majority of patient.
Moreover, unlike natural-language physician notes –
whose analysis is the topic of much current research
in medical informatics – the semantics of the 495
non-textual attributes is unambiguous and readily in-
terpretable. The dataset is further described in the
Methods section.
While clinical data stored in EHRs provide valuable in-

formation for patient risk stratification, one of the major
challenges in using them arises from data imbalance. Ex-
plicitly, manifestation of the most severe conditions is
relatively rare in the patient population, while a majority
of patients either exhibit mild manifestation or may not
even show any signs of the condition. In particular, our
dataset includes 10 times more records associated with
stage 3 than records associated with stage 4; the propor-
tion of stage 3 to stage 5 records is even larger, namely,
23:1. Imbalanced datasets, characterized by a skewed class
distribution, are common in quite a few challenging data
mining applications, ranging from gene-finding,
through epidemiology to fraud-detection, where the
class of interest is severely underrepresented in the
population with respect to the other classes. Classifiers
learned from such an imbalanced dataset using off-the-shelf
packages typically show poor performance in identifying
minority class records (in our case – the class usually as-
sociated with the more severe condition), as demonstrated
in the Results section. Thus, addressing imbalance is crit-
ical for correctly identifying the important records associ-
ated with the minority class.
We thus propose and develop a meta-learning based

hierarchical classification approach that addresses data
imbalance, while performing multiclass classification.
We utilize the proposed method to stratify a set of
CKD patients already identified as stage 3 or higher,
into severity stages (3–5), using information gathered
from standard office visit records. Our method effect-
ively identifies a significant proportion of patients suf-
fering from the more severe conditions (stages 4 and
5), attaining high sensitivity, while also correctly identi-
fying most of the less severe cases (stage 3), maintain-
ing a high level of specificity.
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The machine learning literature proposes to handle
data imbalance through either under-sampling or over-
sampling strategies [10–16]. The former involves redu-
cing the majority class by removal of instances from the
training set, while the latter over-samples with repetition
from the minority class – thus increasing its impact within
the training process. Several variations of under- or over-
sampling were proposed in previous studies, including
one-sided selection [10] and synthetic minority oversam-
pling technique (SMOTE) [11]. It is important to note that
most of these studies were done in the context of binary
classification, while the task we address here is a multi-
class task, where we aim to label each record with one of
three possible stages.
Multiclass classification is usually addressed through

conversion into multiple binary-classification tasks,
employing either a one-against-all (OAA) or a one-again-
st-one (OAO) approach [12]. Tan et al. [13] employ both
to identify types of protein folds, while using rule-based
learners to improve coverage of the minority class. Also in
the context of protein classification, Zhao et al. [14] use
OAA, while addressing data imbalance by employing
under-sampling and SMOTE techniques. In an earlier
work [15], cost sensitive ensemble methods have also been
employed toward addressing class imbalance.
Before proposing our own method, we have utilized

versions of the above methods, specifically, random
under-sampling and over-sampling using SMOTE, within
the OAA scheme (See Results section). None has im-
proved on the results obtained by simple classifiers that
do not account for class imbalance (to which we refer as
baseline classifiers), such as simple random forest. Thus,
as mentioned earlier, we develop and present a multiclass
classification method, hierarchical meta-classification,
aiming to stratify CKD patients into severity levels (stages
3–5), while addressing data imbalance. Unlike approaches
that utilize under-sampling and ignore much of the major-
ity data, or approaches that use over-sampling, which cre-
ate a large amount of mock-up data that can lead to
over-fitting, our approach neither ignores data nor creates
synthetic samples, yielding higher level of performance,
while avoiding over-fitting.
We frame the multiclass classification task as a hier-

archy of two subtasks. We first aim to separate the major-
ity class records, namely those associated with stage 3,
from the combined class consisting of records associated
with stages 4 and 5 (the minority classes). This binary
classification task is addressed via meta-classification,
which combines results obtained from an ensemble of
multiple simple classifiers (base-classifiers) into a single
classification decision [17]. In the second sub-task, we aim
to separate the records labeled under the combined stages
4 and 5 class, and assign each of these into its correct re-
spective stage-based class, namely, either stage 4 or stage

5. Ours is the first study that utilizes meta-classification
in combination with a hierarchical approach to address
data imbalance.
Training of the hierarchical meta-classifier utilizes the

set comprising the earlier office visit records, collected
throughout 2007–2014, while the test set is kept fixed to
include only records collected in 2015. We use multiple
evaluation measures to assess the performance of our
method, namely, overall accuracy, specificity, sensitivity
(aka true positive rate), precision and F-measure [18]. Our
results show that the proposed method trained on a
dataset represented via the complete set of features,
performs at a level at or above 93%, with respect to
all evaluation metrics, and improves upon the base-
lines. The high-level of performance of our model
demonstrates that patient information that are rou-
tinely collected during office visits form a sound basis
for CKD risk stratification.
To assess the robustness and stability of our proposed

approach in the face of data reduction, we gradually de-
creased the number of records included in the training
set by pruning early years of patient history, one year at
a time, giving rise to eight distinct training sets. We
used the records collected in 2015 as the test set for
assessing the performance of our model trained on each
of the eight training sets, ensuring that the training set
always contains temporally earlier records than the test
set. Our results show that the classifier retains its good
performance even when applied to datasets of varying
sizes containing records gathered over a limited range
of years, demonstrating the stability and generalizability
of our proposed strategy.

Methods
Dataset
We used data collected from 13,111 patients across Dela-
ware, during visits to primary care and specialty practices.
The dataset consists of 120,739 records comprising patient
information stored in the EHR; records were included in
the dataset if the corresponding patient was diagnosed with
CKD stage 3 or higher during any follow-up visit, (as indi-
cated by a eGFR value < 60 mL/min/1.73m2). The dataset
thus comprises all records of patients at stages 3,4 and 5.2

Of the 120,739 records, 27,521 records missed values for
one or more pertinent attributes, and were thus removed
from the dataset; the remaining set of 93,218 complete
records is used in this study.
The key characteristics of this record set are summa-

rized in Table 1, while Table 2 summarizes the three cat-
egories of features included in the records while showing
the number of features for each category. Values for all
these features are readily available, as they are regularly re-
corded during routine office visits and stored in the EHR.
As such, our approach generalizes well beyond CKD, and
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can be applied to cohorts of patients for whom informa-
tion is recorded in the context of other disease. We note
that in contrast to the earlier version of this work [19], we
do not include here the patients’ medications as part of the
feature set, thus reducing the number of features from the
original 495 to 462. Several medications prescribed to stage
3 patients can be harmful to patients at advanced stages of
the condition (stages 4–5). As such, medications can be in-
dicative of a diagnosed disease stage, rather than predictive
of it. To ensure our model is truly predictive, we have re-
moved medications from the feature set. The latter actually
leads to improved average specificity, and only slightly re-
duced sensitivity with respect to the advanced CKD stages.
We further reduce the feature set by excluding seven fea-

tures that directly indicate CKD, resulting in a total of 455
features used for representing each patient’s record. These
excluded features correspond to the following seven diag-
nosed conditions: CKD stage 2, CKD stage 3, CKD stage 4,
End Stage Renal Disease, Chronic Renal Failure, History of
renal transplant (situation) and Renal Failure Syndrome.
Consequently, each record, rk (1 ≤ k ≤ 93,218), is represented
as a 455-dimensional vector, Vk ¼< vk1;…; vk455 >; where
each dimension corresponds to one of the 455 features.
As pointed out earlier, and as is typical within the bio-

medical context, the dataset used here is highly imbal-
anced, that is, the outcome we care most to identify
(stages 4 and 5) is rare and thus underrepresented. Specif-
ically, within our dataset the ratio among the number of
records associated with each of the stages 3, 4 and 5 is
23:2:1, respectively.

In our experiments, we examine the impact of using
fewer and more recent records for stage prediction – as op-
posed to the complete patient history. As such, we experi-
ment with eight progressively smaller datasets, in which
each patient’s history within the year range 2007–2014 is
truncated by removing from it one year at a time. Table 3
summarizes the eight resulting datasets, showing the distri-
bution of records per class in each. The table also lists the
number of records per stage as gathered in 2015, where the
latter is used as the test set throughout this study.

Classification and handling of imbalanced data
We next outline the approach we develop for multi-
class classification under data imbalance, while briefly
describing the simple baseline classifiers used for
comparison and the performance evaluation measures
employed throughout our study.

Baseline classifiers
We use several common classification methods that
do not directly handle data imbalance as a simple
baseline for comparison. These classifiers include
naïve Bayes, logistic regression, decision tree, and ran-
dom forests, utilizing the one-against-all strategy. We
refer to these classifiers as the baseline. They are all
trained and tested on the same set of records describe
earlier, while using the same 455 features to represent
each record. We employ the Python scikit-learn imple-
mentation to train the baseline classifiers [20].

Hierarchical meta-classifiers (our proposed method)
We have developed a hierarchical meta-classification
approach for assigning a CKD stage (in the range 3–5)
to a patient record in the face of high data imbalance.
The motivation for using a hierarchical approach
stems from the clinical characteristics of kidney dis-
ease stages. Specifically, patients diagnosed with either
stage 4 or stage 5 (eGFR < 30) demonstrate a critically
reduced kidney function, while those at stage 3 (eGFR
range of 30–60) show only a moderate decline in kid-
ney function [2]. As such, the hierarchical strategy
first separates records associated with the combined
class that consists of stages 4 and 5 cases (i.e. the
more severe cases) from those associated with stage 3.
In a second step it then further separates the com-
bined class into two individual subclasses.
For conducting the first step (to which we refer as

coarse classification) under data imbalance, we employ
meta-classification – a technique that enables coalescing
class labels obtained from multiple different classifiers into
a single unifying classification result. The second step (to
which we refer as refinement classification) is attained by

Table 1 List of data characteristics along with their respective
values in our dataset

Characteristic Value

Number of Patients 13,111

Age Range (25th –75th Percentile) 60–80

Mean Age (σ) 70 (12)

% Female 60%

% Male 40%

Avg. Number of Visits per Patient 17

Table 2 The three variable-categories comprising our dataset.
The categories themselves are listed on the left. The middle
column shows the number of variables per category, while the
right column provides a few examples of features included
within the respective categories

Category Number of
features

Examples

Demographics 4 Gender; Age; Ethnicity; Race

Vital Signs 4 Heart Rate; Systolic and Diastolic
Blood Pressure; Body Mass Index

Diagnosed
Conditions

447 Benign essential hypertension;
Type 2 diabetes mellitus; Obesity
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training a simple classifier to separate the combined class
into individual stage 4 and stage 5 classes.
Figure 1 illustrates this two-step approach. In the

figure, the dashed-rectangle on the top/left depicts
the coarse classification process of training/testing the
multiple base-classifiers and the meta-classifier, while
the bottom dashed-rectangle summarizes the process
of training the refinement classifier which aims to
separate the combined stage 4&5 class into its two
individual constituent classes. The individual steps are
further described below.

Coarse classification: This step is key to addressing class
imbalance and consists of two sub-tasks: 1) Training mul-
tiple simple classifiers (to which we refer as base-classifiers)
on balanced datasets; and 2) Assembling the classification
outcomes obtained from the base-classifiers into a single
final classification result.
For the first sub-task, a set of M base-classifiers,

{C1,…,CM } are trained, and applied to each visit record,
rk, where the latter is represented as a 455-dimensional
vector, < vk1 ,… ; vk455 > as described earlier. Each
base-classifier Cj (where 1 ≤ j ≤M) assigns a label Ck

j (

Table 3 Distribution of records among the three CKD stages within the datasets used in our study. The number of records
associated with each of the three stages is shown for each of the eight training sets as well as for the test set. Each of the training
sets listed was obtained by considering the records left in the dataset while progressively truncating the early years of patient
history included (the range of years covered by each set is shown in the respective column header). The rightmost column provides
the number of records per stage in the test set, which was fixed to contain records gathered during 2015

CKD
stages

Training set distribution Test set

2007–2014 2008–2014 2009–2014 2010–2014 2011–2014 2012–2014 2013–2014 2014 2015

Stage 3 73,425 72,808 70,127 65,326 57,863 46,881 33,072 17,273 8,419

Stage 4 6,976 6,903 6,579 6,060 5,385 4,439 3,101 1,624 782

Stage 5 3,241 3,184 3,052 2,821 2,515 2,068 1,471 767 375

Total 83,642 82,895 79,758 74,207 65,763 53,388 37,644 19,664 9,576

Fig. 1 Hierarchical meta-classification. An overview of our sampling-based ensemble approach for multiclass classification while addressing data
imbalance. a Coarse classification: The top dashed rectangle corresponds to the meta-classification scheme used to separate records associated
with the combined class consisting of stages 4 and 5 from those associated with stage 3. b Refinement step: The bottom dashed-rectangle corresponds to
the classification step aiming to separate the combined class of advanced CKD stages (stages 4&5) into its two individual constituent classes (stage 4 vs.
stage 5). In both steps, shaded rectangles represent the actual classifiers employed, the grey ovals denote the final classification outcome. The white oval in
the Coarse Classification diagram represents the intermediate set of records, assigned to the combined class (stages 4&5) by the meta-classifier, which is
further split in the refinement step. The input to the base-classifiers and to the refinement classifier consists of 455-dimensional vectors, representing the
respective sets of patient records; the input to the meta-classifier comprises M dimensional vectors whose components correspond to the labels assigned
by each of the M base-classifiers to the original (455-dimensional) vectors
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where Ck
j is either 3 or 4–5) to the vector rk. The M

base-classifiers are trained on M balanced training sets.
In our experiments M is set to 7 as explained later in
this section. To produce a balanced set, we first sample
at-random without replacement from the majority class
(stage 3, in our case) and then combine the sampled set
with the complete set of minority class (the combined
stages 4 and 5, in our case). The number of records sam-
pled from the data associated with the majority class is
set to be the same as the total number of records within
the minority class. We repeat the sampling and combin-
ing process M times to obtain M balanced training sets.
For the second sub-task, the class labels assigned by these

M simple classifiers are used to re-represent the visit record
rk as an M-dimensional vector <Ck

1 ,… Ck
M>. This represen-

tation is then employed for training a meta-classifier that
assigns a class label, stage 3 or stage 4–5, to each record
[17]. The meta-classifier thus treats the judgment from
each base-classifier for each class as a feature value and
uses these features for arriving at a final decision.
Specifically, in our dataset, as there are 7 times more

records associated with stage 3 than with the combined set
of stages 4 and 5, we apply the sampling approach described
above to the training set of stage 3 records, thus obtaining 7
stage 3 subsets (i.e. M=7). We then combine each of these
stage 3 subsets with the stage 4–5 set, forming a total of 7
datasets, each having a uniform distribution across CKD
stage 3 and the combined stages 4–5 instances. Figure 2 il-
lustrates the data partitioning scheme.
We train one base-classifiers on each of the resulting

seven balanced training sets, giving rise to seven classi-
fiers. We experiment with four commonly used simple
classification methods, namely logistic regression, naïve
Bayes, decision tree and random forest, to empirically
choose the most suitable type of base-classifier. We have
accordingly conducted four sets of experiments, each
employing one of these four basic classification methods.
We train each of the four classifier types on the 7 balanced
sets, thus generating 7 base-classifiers per method. Using
each set of 7 base-classifiers, we train a meta-classifier in
which the training set was re-represented as 7-dimensional

vectors, where the value along the ith dimension consists of
the label obtained from the ith base-classifier when applied
to the original record representation. In all four sets of ex-
periments the meta-classifier used is naïve Bayes, as it
proved to perform best and has proven effective by others
as well [21]. The resulting classifier aims to separate stage
3 records from records that are either stage 4 or stage 5
(see Fig. 1a).

Refinement classification step: In this step, we separ-
ate the combined minority class records obtained from
the coarse classification step (combined stages 4 and 5,
in our study) into the individual classes (as shown in Fig.
1b). To do so, we experiment with multiple simple clas-
sifiers, including random forest and naïve Bayes and
show that the random forest classifier is most effective
in separating records associated with stage 4 from those
associated with stage 5; as such this is the one we em-
ploy. We train the random forest classifier used in the
refinement step, over the set of training records associ-
ated with stages 4 and 5, under their original representa-
tion, as a 455-dimensional feature vector per record.
We demonstrate in the Results section that our pro-

posed scheme indeed significantly improves upon the
baseline classifiers, the simple non-hierarchical meta-clas-
sifier as well as on previously reported methods to address
imbalance, as all of the latter do not identify a significant
proportion of stage 4 and stage 5 cases.

Testing and evaluation
To test the hierarchical meta-classifier, each of the
base-classifiers is first applied to assign a class label to
each record in the test set. The obtained labels are then
used to form a feature vector, which becomes the input
to the meta-classifier. The latter is applied to each newly
represented vector thus separating stage 3 records from
records of stages 4 or 5 (coarse classification step). Re-
cords classified into the combined stage-4 and -5 class
are further categorized by the simple random forest

Fig. 2 The partitioning scheme for obtaining balanced training sets, as a part of the hierarchical meta-classification approach. The record set
associated with stage 3 is sampled at-random without replacement from the majority class to obtain 7 subsets (shown as white rectangles in the
figure). Each subset contains the same number of records as that included in the set combining stages 4 and 5 (grey rectangles). Each of the
sampled stage 3 subsets is paired with the set combining stages 4 and 5, thus forming 7 balanced datasets in total, each having a balanced
sample of stage 3 and stages 4&5 records
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classifier (refinement step), and assigned to either of the
two individual classes, stage 4 or stage 5.
To quantitatively assess the performance of all the

classifiers with respect to each stage i (where i is 3, 4, or
5 or the combined stages 4–5), we use the four common
evaluation metrics, namely, specificity, sensitivity (also
known as True Positive Rate or Recall), precision and
F-measure, as defined below:

Specificity ¼ TNi

TNi þ FPi
; Sensitivity

¼ TPi

TPi þ FNi
; Precision

¼ TPi

TPi þ FPi
; F ‐measure

¼ 2 � Precision � Sensitivity
Precisionþ Sensitivity

;

where TPi (true positives) denotes records of stage i that
are correctly assigned to stage i by the classifier; TNi (True
Negatives) denotes records that are not associated with
stage i and are not assigned to stage i by the classifier; FPi
(False Positives) denotes records not associated with stage
i that are misclassified as stage i; while FNi (false negatives)
denotes stage i records that were incorrectly assigned to
other stages by the classifier.
The next section provides a description of our ex-

periments and results, demonstrating the effectiveness
of our methods.

Results
As described in the Methods section, in our experiments
we employed as a baseline four simple classification
methods that do not account for data imbalance, namely,
naïve Bayes, logistic regression, decision tree and random
forests. To handle the data imbalance, we first experimen-
ted with previously reported methods, namely, random
under-sampling and over-sampling using SMOTE. We
also applied simple meta-classification to the records to
address imbalance (detailed description of the simple
meta-classifier was discussed in the earlier, conference-
version, of this work [19]). Since these methods failed to
identify a large number of stages 4 and 5 cases (minority
class cases), we applied our proposed hierarchical meta-
classification approach to separate the records associated
with different CKD severity levels.
For each of the methods mentioned above, the training

set consisted of records gathered during the first eight
years (2007–2014) while the testing was performed on
data gathered during the ninth year (2015). As we want to
assess the predictive ability of the classifier to infer the
evolving stage from temporally earlier data, we do not em-
ploy cross-validation for training and testing; rather we
train on early data records (collected during the first
8 years), and test on later records (gathered during the 9th

year). To ensure stability of the results, we partitioned the
training set stemming from the over-represented class
into smaller subsets, by employing multiple random splits,
which were used for training the base-classifiers used in
the coarse classification stage within the hierarchical
meta-classifier (Fig. 1a). The test set was fixed in all
experiments to contain all the records collected dur-
ing the year 2015.
Performance was evaluated after each classification step

using standard measures, namely, sensitivity, specificity,
precision and F-measure (see Testing and Evaluation
sub-section in Methods). We compared the performance
attained by each of the four base-classifiers (naïve Bayes,
logistic regression, decision tree, and random forest) both
as baseline and as a component within the simple and the
hierarchical meta-classifiers, assessing their respective effi-
cacy in separating CKD stages.
While experiments were performed employing all four

base-classifiers, we report here only the results obtained
using the random forest, both as a standalone baseline
classifier, and when it serves as a component within
meta-classification. Using random forest, either alone as a
baseline classifier, or as a base-classifier within a
meta-classifier, outperforms the other base-classifiers lo-
gistic regression, naïve Bayes or decision tree. Similarly, to
compare our methods to earlier approaches for addressing
imbalance we use random forest classifier in combination
with two such earlier approaches, namely, random
under-sampling and over-sampling using SMOTE.
Table 4 shows the average specificity, sensitivity and

F-measure, attained by our hierarchical meta-classification
scheme, compared to those attained by the baseline classi-
fier, the simple, non-hierarchical meta-classifier, the ran-
dom under-sampling scheme and the over-sampling using
SMOTE. Figure 3 shows the sensitivity and F-measure
per-class, attained by the baseline classifier, by the
over-sampling with SMOTE scheme and by our method.
Notably, the figure shows the improved performance of
our method for identifying CKD stages 4 and 5.
We also assessed the performance of our classifica-

tion method while gradually reducing the number of
years (and of visit records) included in the patient his-
tory. This was done by repeatedly performing each of
our experiments, while progressively truncating the
early years included in the patient history used as
training data, one year at a time, yielding 8 distinct
training sets. As described earlier, the test set was kept
fixed to include only records collected in 2015. The
first of the training sets included 83,642 records gath-
ered throughout the years 2007–2014, while the eighth
included 19,664 records collected during 2014 alone.
The hierarchical meta-classifier was trained using in
turn each of the training sets represented by the
complete set of 455 features. Performing these
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experiments helps validate the ability of our classifier
to assign the correct severity level even when consid-
ering only the most recent history of the patient,
which in turn shows generalizability and robustness.
Figure 4 plots the True Positive Rate (see Testing and

Evaluation sub-section) per-class as a function of the 8
training sets (see Table 3), obtained by progressively
pruning, one year at a time, the early years of patient
history in the training data. Each of the eight sets was
used in turn to train the random forest hierarchical
meta-classifier. The average accuracy, specificity, sensi-
tivity, precision and F-measure are all about 0.93 (std <
0.03) for all eight sets. As mentioned above, we re-
peated each experiment 20 times, while employing each
time a different split to partition and sub-sample the

set of records associated with the over-represented
class. The results obtained were similar in all runs, with
a small standard deviation (< 0.03), thus verifying the
stability of the results and of our classification process.

Discussion
The sampling based ensemble classifier we have intro-
duced attains higher sensitivity with respect to stages 4 and
5 compared to that obtained by other methods (Fig. 3),
where other methods fail to identify a large proportion of
the CKD stage 4 records and many the stage 5 records.
Our proposed method (denoted RF-Hier-MC) thus dem-
onstrates improved identification of records associated
with severe stages, within the realistic context of highly im-
balanced data. Our method also outperforms all other clas-
sifiers according to F-measure and specificity (Table 4). We
note that the average performance reported in the table of
the baseline random forest classifier (denoted RF-Baseline)
and that of over-sampling with SMOTE based on random
forest classifier (denoted RF-SMOTE) are similar to that of
our method. However, as can be seen in Fig. 3, the per-
formance of the three models varies significantly across the
different CKD stages. Our hierarchical meta-classifier
clearly shows a higher sensitivity and F-measure for both
stage 4 and stage 5 than the simple baseline and the
SMOTE classifiers, indicating that our method is more ef-
fective than others when identifying each of the two ad-
vanced CKD stages (stage 4 vs stage 5). Notably, unlike
under-sampling based approaches, our method does not
ignore any record associated with the majority class, nor
does it create any synthetic sample, as is commonly done
in approaches that use over-sampling.
When conducting risk stratification, particular at-

tention must be paid to the avoiding false negatives
(i.e. the missing a severe case). Not identifying a pa-
tient that is in stages 4 or 5 and thus withholding

Table 4 Average specificity, sensitivity and F-measure attained by
applying different classification methods to the task of CKD severity
level assignment to patients’ records. Results are shown for
classifiers developed based on random-forests (RF): Our hierarchical
meta-classifier (Hier-MC), simple meta-classifier – without employing
hierarchical stage partitioning (MC), Random under-sampling
(Under-Sampling), Over-sampling using SMOTE (SMOTE) and a
simple random forests baseline classifier (Baseline). Classifiers
were trained on office visit records gathered during the period
2007–2014, while records from 2015 were used as the test set. All
patient records were represented using the set of 455 features.
The highest value for each measure is shown in boldface. Std.
deviation is shown in parentheses. See Fig. 3 for detailed analysis
of performance per stage

Methods Sensitivity Specificity F-measure

RF-Hier-MC (Our Method) .93 (0.02) .97 (0.02) .93 (0.02)

RF-MC .90 (0.04) .85 (0.04) .78 (0.04)

RF-Under-Sampling .83 (0.08) .91 (0.07) .83 (0.08)

RF-SMOTE .92 (0.06) .95 (0.06) .92 (0.06)

RF-Baseline .92 (0.02) .94 (0.02) .92 (0.02)

Fig. 3 Plots depicting the performance per-class, measured in terms of Sensitivity (left) and F-measure (right), of the random forests baseline
classifier (RF-Baseline, shown in gray), and of over-sampling using SMOTE (RF-SMOTE shown in horizontal stripes) compared with the random
forests based hierarchical meta-classifier we have developed (RF-Hier-MC, shown in black). The X-axes in both plots denote CKD stages; the Y-axes
indicate the sensitivity (left) and the F-measure (right) per stage
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timely proper care carries dire consequences, which
are much more severe than those of false positives
(assigning a stage 4 or 5 label to a stage 3 case). That
said, it is still clearly undesirable to cause false alarms
by much over-assignment of the more severe labels.
To highlight the performance of our method with re-
spect to these issues, we have calculated the precision,
(also referred to as positive predictive value, PPV) and
sensitivity for records associated with stages 4 and 5.
Precision penalizes for false positives, while sensitivity
penalizes for false negatives.
Figure 3 clearly demonstrates that compared to

other methods, our hierarchical meta-classifier shows
a higher sensitivity for records of stage 4 and 5, while
retaining about the same sensitivity level with respect
to stage 3. As for Precision with respect to the com-
bined set is 0.76. That is, of the 1,085 test records
classified as stages 4 or 5 by our classifier, 829 are cor-
rectly identified. Notably, of the remaining 256
false-positive records, 181 (~ 70%) are borderline
cases, (eGFR values of 30–44, a range typically associ-
ated with advanced stage 3 CKD – stage 3b) [22]. Re-
cent studies indicate that stage 3b is the inflection
point for adverse outcomes, including progression to
end stage renal disease (stage 5) [23]. This observation
demonstrates that classifier can identify not only the
advanced stage records that have already been identi-
fied in our dataset, but also the cases that are
likely-to-be severe but were not yet labeled as such.
As indicated by Fig. 4, our classifier’s high performance

when trained on datasets obtained by progressively trun-
cating the early years of patient history, one year at time,
demonstrate that this model remains effective in distin-
guishing among the CKD stages even when trained on
limited, recent patient history. The figure shows that the
true-positive rate remains almost constant, irrespective of
the number of years covered by the record; the only

exception is a slight decline with respect to stages 4 and 5
for data from 2013/14 or 2014 alone. Our classifier’s per-
formance is thus robust, as demonstrated by these results,
to reduction in the amount of available patient history.
To summarize, our method demonstrates consist-

ently good performance even when applied to datasets
of varying sizes containing office visit records gathered
over a limited range of years. As such, our model is
stable, generalizable, and likely to be applicable in ac-
tual clinical settings, where early records for training
are not readily available, while decisions need to be
reached based on a relatively brief patient history.

Conclusion
In this study, we have shown that CKD can be effect-
ively stratified into severity levels using a supervised
machine learning method that is based on simple
quantitative non-text attributes collected during
standard office visits, in the realistic context of highly
imbalanced case population. We proposed and devel-
oped a sampling based ensemble classification ap-
proach, hierarchical meta-classification, to identify
CKD stages from a highly imbalanced dataset, achiev-
ing high sensitivity, specificity and F-measure, all at or
above 0.93. As demonstrated by our results, our
method outperforms baseline classifiers, simple meta-
classifier and previously reported approaches for
addressing imbalance, in identifying each of the two
advanced CKD stages (stage 4 and stage 5). Moreover,
the method maintains its high level of performance
when the number of records is significantly truncated,
demonstrating its stability and generalizability.
While our proposed sampling-based ensemble method

has shown good performance even in the face of data im-
balance, the dataset used comprises only records based on
data gathered from kidney patients. Future work includes

Fig. 4 True Positive Rates (TPR), with respect to CKD stages 3, 4 and 5, attained by the hierarchical meta-classifiers when trained on datasets
obtained by gradually pruning the early years of patient history included in the training set, one year at a time. The X-axis indicates the years
covered by each training set, while the Y-axis shows the true positive rate (also known as sensitivity)
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testing and extending the generalizability of our model,
using additional datasets in the context of other diseases.
We also plan to conduct prospective testing of the model
over CKD patients in future studies.

Endnotes
1Stage 1 is defined by kidney damage (protein or blood

in the urines) while eGFR is normal (eGFR ≥90 ml/min/
1.73m2); stage 2 by kidney damage and mildly decreased
eGFR (eGFR 60 – < 90); stage 3 as eGFR 30 – < 60; stage
4 as eGFR 15 – < 30 and stage 5 as eGFR < 15.

2Dataset approved by Christiana Care’s IRB, with a
waiver of consent according to 45CFR46.116d.
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