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Abstract

Background: To identify safety signals by manual review of individual report in large surveillance databases is time
consuming; such an approach is very unlikely to reveal complex relationships between medications and adverse
events. Since the late 1990s, efforts have been made to develop data mining tools to systematically and
automatically search for safety signals in surveillance databases. Influenza vaccines present special challenges to
safety surveillance because the vaccine changes every year in response to the influenza strains predicted to be
prevalent that year. Therefore, it may be expected that reporting rates of adverse events following flu vaccines
(number of reports for a specific vaccine-event combination/number of reports for all vaccine-event combinations)
may vary substantially across reporting years. Current surveillance methods seldom consider these variations in
signal detection, and reports from different years are typically collapsed together to conduct safety analyses.
However, merging reports from different years ignores the potential heterogeneity of reporting rates across years
and may miss important safety signals.

Method: Reports of adverse events between years 1990 to 2013 were extracted from the Vaccine Adverse Event
Reporting System (VAERS) database and formatted into a three-dimensional data array with types of vaccine,
groups of adverse events and reporting time as the three dimensions. We propose a random effects model to test
the heterogeneity of reporting rates for a given vaccine-event combination across reporting years. The proposed
method provides a rigorous statistical procedure to detect differences of reporting rates among years. We also
introduce a new visualization tool to summarize the result of the proposed method when applied to multiple
vaccine-adverse event combinations.

Result: We applied the proposed method to detect safety signals of FLU3, an influenza vaccine containing three
flu strains, in the VAERS database. We showed that it had high statistical power to detect the variation in reporting
rates across years. The identified vaccine-event combinations with significant different reporting rates over years
suggested potential safety issues due to changes in vaccines which require further investigation.
(Continued on next page)
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Conclusion: We developed a statistical model to detect safety signals arising from heterogeneity of reporting rates
of a given vaccine-event combinations across reporting years. This method detects variation in reporting rates over
years with high power. The temporal trend of reporting rate across years may reveal the impact of vaccine update
on occurrence of adverse events and provide evidence for further investigations.

Keywords: Heterogeneity testing, Signal detection, Vaccine Adverse Event Reporting System (VAERS)

Background
The adverse effect (AE) of a medication is a broad term
referring to unwanted, uncomfortable, or dangerous ef-
fects that a medication may have [1]. To monitor the
safety of drugs/vaccines, the Centers for Disease Control
and Prevention (CDC) and the Food and Drug Adminis-
tration (FDA) maintain post-marketing surveillance pro-
grams of adverse event reports in association with drugs/
vaccines2. The Vaccine Adverse Event Reporting System
(VAERS) is a national vaccine safety surveillance program
which contains reports received from 1990 to present [2].
VAERS accepts spontaneous reports from vaccine manu-
facturers, health care professionals and vaccine recipients
[3]. The VAERS report collects information on the admin-
istered vaccines, the experienced AE, age, gender, and
recovery status. Because any reported event following vac-
cination represents a temporal but not necessarily causal
association, these reports are generally thought to provide
weak evidence for a causal effect (although there are ex-
ceptions). Therefore, databases of the safety surveillance
program are used to identify signals of potential AEs, with
further investigation necessary to determine causality.
Public health officials increasingly use data mining ap-
proaches to aid in the identification of signals that might
otherwise be missed because of the large volume of re-
ports (approximately 30,000 reports per year) [3].
Disproportionality measures are commonly used to

identify safety signals in surveillance database. These
methods compare the observed count for a vaccine-event
combination with an “expected” count under the assump-
tion that there is no causal association between the
vaccine and AE. To apply the methods, a vaccine-AE
matrix with types of vaccine as the column variable and
types of AE as the row variable, respectively, is con-
structed. Each cell of the matrix is the count of reported
events for the corresponding vaccine-AE combination.
These approaches focus on identifying the AEs with
higher reporting rates (number of report for a specific
vaccine/number of reports for all vaccines) for a spe-
cific vaccine or identifying the vaccines associated with
higher reporting rates of a specific AE. These methods
include frequentist approaches such as Proportional
reporting ratios3, Reporting Odds Ratios [4], Chi-squared
test of independence [5] and Maximum Likelihood Ratio
test [6] and the Bayesian approaches such as Multi-item

Gamma Poisson Shrinker [7] and Bayesian Confidence
propagation Neutral Network [8]. All of the aforemen-
tioned methods identify safety signals by calculating a
score and comparing it to a pre-specified threshold.
The VAERS database has an important feature: the re-

ports have been collected since 1990. Most of the exist-
ing methods collapse all the reports from different years
together without considering the possibility of a tem-
poral trend in the reporting rate. However, ignoring the
heterogeneity or temporal trend of reporting rates across
years may miss important signals. This is a particular
concern for flu vaccines, which change every year to
match the strain of flu virus expected to be prevalent
[9–11]. The alteration of a vaccine may change its safety
profile over time. Data from VAERS can be used to de-
tect signals of changing safety profile for a vaccine over
time. In this study, we extracted the counts of reports
for each vaccine type in each year and reconstructed the
reporting rates data in VAERS with respect to a vaccine-
AE combination by constructing a three-dimensional
data array with types of vaccine, types of adverse events
and reporting time as the three dimensions. With this
newly constructed dataset, we have a unique opportunity
to identify significant variation in reporting rates across
years by testing the null hypothesis that the reporting
rates for each year are the same. We propose a rigorous
statistical model and a powerful testing procedure for
signal detection of temporal variation in AE reporting
using VAERS data.

Method
Data resource and exaction
We applied our method to the FLU-3 vaccine, which is a
synthetic trivalent vaccine consisting of three inactivated
influenza viruses: two different influenza type A strains
and one influenza type B strain. The influenza vaccine is
produced by multiple manufacturers each year and up-
dated annually to include the viruses that will most likely
circulate in the upcoming season [12, 13]. We first down-
loaded all VAERS data from the VAERS website and
imported it to our local MySQL server. We then searched
for and extracted all serious FLU3 vaccine-AE reports (i.e.,
death, life-threatening illness, hospitalization, prolonged
hospitalization, or permanent disability) from 1990 to
2013. Trivalent influenza vaccine is formulated annually,
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based on influenza strains projected to be prevalent in the
upcoming flu season [14].
VAERS uses MedDRA (Medical Dictionary for Regula-

tory Activities) to categorize reported AEs. The MedDRA
terminology is the international medical terminology
developed under the auspices of the International Confer-
ence on Harmonisation of Technical Requirements for
Registration of Pharmaceuticals for Human use [15]. It
has a five-level structural hierarchy: from Lowest Level
Term, Preferred Term (PT), High Level Term, High
Level Group Term, to System Organ Class (SOC). A
PT is a distinct descriptor for single medical concept
like a symptom, sign, disease, and etc. A SOC is the
highest level of the hierarchy that provides the broadest
concept for data retrieval. MedDRA now has more than
21,000 PT terms and 26 different SOCs and each PT is
linked to at least one SOC [13]. In the VAERS database,
each report is manually assigned a MedDRA term by
clinical experts [16].
In order to facilitate further statistical analyses, we

grouped the large number of PTs in MedDRA to the
SOC levels. Each PT term can be associated with mul-
tiple SOCs. To avoid double counting, we needed to
determine the primary SOC for each PT. The rules to
assign a primary SOC to a PT terms according to the
MedDRA guideline [17] can be complicated, usually in-
volving expert manual reviews that can be very time
consuming. To simply this process, we first retrieved all
the SOCs that a PT linked to by using National Center
for Medical Ontology (NCBO) web services [18]. We
then assigned a primary SOC to the PT term based on
the SOC International Agreed Order, as shown in
Table 1. By doing that, each PT term had one primary
SOC. We then considered the AEs on the SOC level for
further analysis.

Statistical Method
The surveillance data of FLU3 vaccine were structured in
a table format with vaccine-AE combination being the col-
umn variable, and reporting year being the row variable,
as shown in Table 2. Therefore, the dataset contained 24
rows and 26 columns in total. The entries in the table cell
were nij , defined as the number of events reported for the
jth vaccine-AE combination during the ith year. The total
number of reported cases for all the vaccine –AE combi-
nations in ith year was denoted as ni: , the total number of
jth vaccine-AE combinations for all the years was denoted
as n:j , and the total number of events, which was the
grand total of the table, was denoted as n:: . For a
given (i, j), the number of reports in other years and
in other vaccine-AE combinations can be summarized
concisely by a simple 2 × 2 table as follows.
For a given vaccine-AE combination (j), the number of

reports in the ith year was assumed to follow a Poisson

distribution: nijePoisson ni: � pij
� �

where pij was the

reporting rate and the parameter of interest. To test for
the heterogeneity of reporting rates of a given vaccine-
AE combination across years, we focused on the data for
a fixed vaccine-AE combination for each analysis, thus
we suppress the notation j from now on. In order to test
for the heterogeneity of reporting rates from 1990 to
2013, we assumed a random effects model for the
reporting rates across years, such that logit pið ÞeN
β0; τ

2
� �

and β0 ¼ logit p0ð Þ , where the parameter p0 is
the overall reporting proportion across all the year and
the parameter τ2 represents the variation in reporting
rates across the 24 reporting years. When τ2 is close to
zero, the reporting rates are roughly the same for each
year and equal to the overall reporting rate p0 . On the

Table 1 International Agreed Orders of SOCs

SOC Order SOC Order

Infections and infestations 1 Gastrointestinal disorders 14

Neoplasms benign, malignant and unspecified (inccysts and polyps) 2 Hepatobiliary disorders 15

Blood and lymphatic system disorders 3 Skin and subcutaneous tissue disorders 16

Immune system disorders 4 Musculoskeletal and connective tissue disorders 17

Endocrine disorders 5 Renal and urinary disorders 18

Metabolism and nutrition disorders 6 Pregnancy, puerperium and perinatal conditions 19

Psychiatric disorders 7 Reproductive system and breast disorders 20

Nervous system disorders 8 Congenital, familial and genetic disorders 21

Eye disorders 9 General disorders and administration site conditions 22

Ear and labyrinth disorders 10 Investigations 23

Cardiac disorders 11 Injury, poisoning and procedural complications 24

Vascular disorders 12 Surgical and medical procedures 25

Respiratory, thoracic and mediastinal disorders 13 Social circumstances 26
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other hand, when τ2 is “large”, there is a substantial vari-
ation in reporting rates across years, which may be an
important signal in vaccine safety. In the following sec-
tion, we propose a rigorous statistical test to identify and
test for such a “large” variation.
The proposed testing procedure is formulated as a

three-stage procedure to test the variance of year-
specific reporting rate, i.e., Ho: τ2 ¼ 0. Specifically,

i. Calculate the likelihood of the vaccine-AE combin-
ation under τ2 ¼ 0:

L0 p0ð Þ ¼ Pr nijjni:; p0
� � ¼ YI

i¼1

exp −ni:p0ð Þ � ni:p0ð Þnið Þ= ni!ð Þ:

The estimation of the parameter p0 is obtained by
maximizing the likelihood L0 p0ð Þ.

ii. Calculate the likelihood of the vaccine-AE combin-
ation under τ2≠0:

La β0; τ
2

� � ¼ Pr nijjni:; β0; τ2
� �

¼
YI
i¼1

Z
0

1 exp −ni:pið Þ � ni:pið Þni
ni!

�
exp −

logit pið Þ−β0ð Þ2
2τ2

� �
pij 1−pið Þτ ffiffiffiffiffiffi

2π
p dpi:

The estimation of the parameters β0; τ
2 is obtained

by maximizing the likelihood La β0; τ
2

� �
.

iii. Obtain the likelihood ratio test (LRT) statistic by
plugging in the estimation of the parameters to the
likelihoods L0 and La in Eq. (1). The p-value of this
test is obtained by compare LRT to the chi-square
distribution with one degree of freedom.

LRT ¼
La β̂0; τ̂

2
� �
L0 p̂0ð Þ ð1Þ

The data suggests evidence of temporal variations in
reporting rates for the vaccine-AE combination across years
if the test statistic LRT is greater than the threshold of a
significant p-value (e.g., p < 0.05). When several vaccine-AE
combinations are considered, a Bonferroni-type correction
can be used to control for the overall Type I errors.
The main procedure of the test is summarized in Fig. 1.
An important advantage of the proposed random effects

model is that testing for the variation is equivalent to
testing a single parameter τ2 ¼ 0, which has only 1° of
freedom. Such a procedure is much more powerful than a
fixed effects model, which requires testing multiple pa-
rameters p1 ¼ p2 ¼ … ¼ p24, with 24 - 1 = 23° of freedom.
This LRT test is expected to be powerful because it is the
well-known heterogeneity test in the variance component
model [19, 20]. As a technical note, under the null hy-
pothesis, the parameter τ2 lies on the boundary of its par-
ameter space [0, ∞). Special considerations may be needed
to account for such a boundary constraint [21, 22]. Here
we choose to use the chi-square distribution with one de-
gree of freedom, in order to keep the procedure simple
and conservative. As we will illustrate later, this test can
effectively identify signals in variation of reporting rates.

Results
We applied the proposed LRT test to the 26 SOC types
of AEs reported for vaccine FLU3 to detect significant
variation in reporting rates over years for each of the 26

Table 2 Data structure of numbers of reports with respect to a
given vaccine-AE combination

j-th Vaccine- AE Other combinations

i-th Year nij ni: . - nij ni: .

Other years n:j � nij n:: � ni:Þ � n:j � nij
� ��

n:: � ni:

n:j n:: � n:j n::

Download Raw Data
Extract Reports for 

FLU3 vaccine
Group Reports to 26 

SOCs

Format Matrix with 
year as row, 

Vaccine-AE as 
coloum

Select a coloum and 
conduct the LRT test

Make conclusion 
based on the test 

statistic

Fig. 1 Flowchart of the proposed test process
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vaccine-AE combinations. For example, we tested the
null hypothesis that the reporting rate of SOC1 (infec-
tions and infestation) after vaccination is the same from
year 1990 to 2013. For each of the 26 FLU3-SOC com-
binations; we applied the proposed LRT and obtained
the p-values. The 26 p-values are categorized into three
categories based on the magnitude: less than 0.001, be-
tween 0.001 and 0.05, larger than 0.05. The counts of
AEs, the LRT test statistics and the p-values of the LRT
test for three selected FLU3-SOC combinations in each
category are summarized in Table 3.
Figure 2 presents the trajectories of the reporting rates

from year 1990 to 2013 for the FLU3-SOC combinations
categorized by the magnitude of p-values of the LRT
test. The left panel shows the reporting rates of three
FLU3-SOC combinations with p-values less than 0.001.
The reporting rates substantially fluctuate across report-
ing years compared to the reporting rates in the other
two panels. As shown in the plot, SOC1 (infections and
infestations) has a clear decreasing trend across years.
The middle panel shows three FLU3-SOC combinations
with the p-value between 0.001 and 0.05. The variation
in the reporting rates are less obvious compared to the
reporting rates in the left panel but more obvious than
those in the right panel. The right panel shows the trajec-
tories of reporting rates for three FLU3-SOC combina-
tions which are homogeneous across years according to
the LRT test. The change of the reporting rates across
years is very small. There are zero observations for SOC20
and SOC21 in some of the reporting years. The visualized
trends of reporting rates over years are consistent with
our findings using the LRT test.
In order to better present the results, we also developed

an innovative visualization tool to concisely summarize
the results from the LRT tests for all the 26 FLU3-SOC
combinations. Specifically, the bubble plot in Figure 3
shows the size of the p-values from the LRT test and the

temporal trend of each FLU3-SOC combination. The
order of the SOCs (SOC1-SOC26) was based upon the
determination of the International Conference on
Harmonization Expert Working Group for MedDRA,
according to MedDRA Guide Version 19.1 [16]. The
size of the bubble reflects the level of heterogeneity of
the reporting rates across years, as indicated by the cat-
egories of p-values. Figure 3 suggests that some SOCs,
such as infection and infestations, blood system disor-
ders, immune system disorders, endocrine disorders,
Metabolism and nutrition disorders, have a high level
of variation in reporting rates across years. The tem-
poral trend of the FLU3-SOC combinations is indicated
by color, with red denoting an increasing trend of the
reporting rate, green denoting a decreasing trend of
reporting rate, and light blue denoting an ambiguous
trend of reporting rate.

Discussion
In this study, we developed a random effects model with a
likelihood ratio test to detect the heterogeneity of report-
ing rates of vaccine and AE combinations over time. We
applied our method to the FLU3 vaccine to detect the AEs
with heterogeneous reporting rates across years. The find-
ings are consistent with the estimated reporting rates for
each year. To the best of our knowledge, few methods
have been developed to reveal the temporal trend of AE
reporting rate. The sharp increasing or decreasing of
reporting rate at a certain year may be associated with
changes of virus strain and vaccine ingredients. Our
method can be used to detect significant differences in
reporting rates over time and provide signals requiring
further investigation.
Our method can be used to make further investigations

on a specific type of PT when heterogeneity of reporting
rates of specific vaccine-SOC combinations is detected,
since each SOC level is linked to many PTs. Furthermore,

Table 3 Number of reports, LRT test statistics and p-value for three selected FLU3-SOC combinations in each of the three p-value
categories (p < 0.0001, 0.001 < p < 0.05, and p > 0.05)
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as a data mining tool to systematically detect safety
signals, our method can be applied to other surveillance
databases such as the Adverse Event Reporting System
(AERS) administered by FDA for drug adverse events.
When heterogeneity of reporting rates of a given drug/
vaccine-AE combination is found, it suggests the need to
monitor the temporal trend of the drug/vaccine-AE
reporting rate and it warrants development of new statis-
tical models to model and predict the temporal trend in
the future.
We faced two major statistical challenges in this

study. The first is the large number of zero cells in the
data matrix. This is a common feature for the large
safety databases used for post-market surveillance. In
the VAERS database, with more than 4000 types of AEs,

the percentage of vaccine-AE combinations with more
than 90% of observed zero-count cells is as large as 88%.
The percentage of zero values ranges from 57 to 99%. To
take into account such high percentages of observed zero
cells, we can extend our method by using a zero-inflated
Poisson distribution to model the reporting rate. The sec-
ond is that the likelihood function constructed in our test
is not a genuine likelihood function, because the marginal
densities of nij are multiplied together without accounting
for the correlation among them. Such a pseudolikelihood
function is called a composite likelihood function, which
can be constructed by multiplying (weighted) marginal or
conditional densities together even when they may not be
independent [23–25]. Therefore, the likelihood ratio test,
LRT , is a composite likelihood ratio test. Chen and Liang

Fig. 2 Trajectories of estimated reporting rates over time for selected FLU3–SOC combinations categorized by magnitude of p-values of the LRT test.
The left panel contains the trajectories of reporting rates for FLU3-SOC combinations with p-value less than 0.0001. The middle panel contains the
combinations with p-value between 0.0001 and 0.05. The right panel contains the combinations with p-value larger than 0.05

Fig. 3 Bubble plot of LRT test result for FLU3-SOC combinations. The largest bubble stands for the SOC with p-value less than 0.001, the median
size bubble stands for the SOC with p-value between 0.001 and 0.05, the smallest bubble size denoting the SOC with p-value large than 0.05. The
bubble in red indicates the combinations with increasing reporting rates over time. The bubble in green indicates the combination with decreasing
reporting rates trend. The bubble in light blue indicates the combination with unobvious reporting rates trend
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[22] have derived the asymptotic distribution of the
composite likelihood ratio test when one of the parame-
ters is on boundary, which is a mixture of a Chi-squared
distribution with zero degrees of freedom and a weighted
Chi-squared distribution with one degree of freedom. The
calculation of such a mixture distribution is very
complicated and need to be carried out for each AE-
combination. In this paper, we adopt the simple Chi-
squared test with one degree of freedom.
Notably, our approach is intended to filter out weak

safety signals and identify the more important ones
that might merit further investigations. However, this
method cannot be used as a significance test to quan-
tify the strength of the evidence of heterogeneity. The
magnitude of the p-value obtained from the test
should not be over interpreted. It suggests statistical
significance which is not an indicator of the import-
ance of the evidence. Larger sample size can achieve
higher statistical significance, but the clinically im-
portance of the results should be discussed with do-
main experts.
While the flu vaccine changes yearly and is therefore

the most obvious candidate for evaluating temporal
trends in reporting, other vaccines may also change
from time to time. For example, the preservative thi-
merosal was removed from several childhood vaccines
in the late 1990s because of theoretical concerns about
mercury exposure. Another example was the substitu-
tion in 2006 of recombinant human albumin (rHA) for
human-derived serum albumin (HSA) in the manufac-
ture of MMR, which eliminated the use of any human-
derived substances [17, 26].
Other information external to VAERS will be import-

ant to the proper interpretation of findings about hetero-
geneity of reporting over time. For example, when a
highly infectious strain of flu virus is circulating there
may be many more cases of flu than in an average year;
some cases of flu following vaccination will likely appear
in VAERS as individuals may suspect that the vaccine
caused them to have the flu. In such a year, there may
be increased reports of infections following flu vaccines,
which would most likely be due simply to the increased
number of flu cases that year.

Conclusion
In this paper, we propose a rigorous statistical model to
detect vaccine safety signals by testing the heterogeneity
of reporting rates of given vaccine-event combinations
across reporting years using a random effects model
with a variance component test. To the best of our
knowledge, this is the first method to evaluate variation
of safety signals across years in a passive surveillance
database. We proposed a random effects model and for-
mulated the test statistics using composite likelihood

functions, which can effectively account for the impact
of passive reporting through conditional probability. We
found that our proposed likelihood ratio test is power-
ful in detecting variation of reporting rates over years.
Evaluating temporal trends of reporting rates can sug-
gest the potential impact of changes in vaccines on the
occurrence of AEs and provide evidence for further
investigations.
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