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Abstract

Background: We develop predictive models enabling clinicians to better understand and explore patient clinical
data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data.
Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in
this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements
as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk
factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges
(conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network
visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors
widely recognized as associated with pressure ulcers.

Methods: We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic
health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian
network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms,
scoring functions, prior structure initializations, and sets of features.

Results: From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication,
diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also
substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models
- without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators
identify strong relationships between risk factors widely recognized as associated with pressure ulcers.

Conclusions: Given the strong adverse effect of pressure ulcers on patients and the high cost for treating pressure ulcers,
our Bayesian network based model provides a novel framework for significantly improving the sensitivity of the
prediction model. Thus, when the model is deployed in a clinical setting, the caregivers can suitably respond to
conditions likely associated with pressure ulcer incidence.
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Background

Pressure ulcers

A pressure ulcer (PU) is a localized injury to the skin and/
or underlying tissue usually over a bony prominence, as a
result of pressure, possibly in combination with shear [1].
Surveys indicate that patients admitted to the intensive care
unit (ICU) have higher incidence of PUs than general hos-
pital patients in acute care settings [2]. The prevalence of
ICU pressure ulcers in the United States during the year
2009 ranged from 16.6% to 20.7% [2]. An estimated 2.5 mil-
lion patients are treated each year in acute care settings at a
cost of $11 billion per year due to PUs [3], many of which
may be preventable.

Identifying accurate risk factors of PUs is essential to de-
termining appropriate prevention strategies. Risk factors for
ICU patients are likely to be different from those of general
hospital patients since ICU patients are often in more
morbid conditions and are hence more likely to be advised
for bed rest. Consequently, the supine and sedentary pos-
ition required of a bed rest in conjunction with related fac-
tors often leads to the onset or aggravation of PUs. The
Braden scale is a risk assessment tool that can assist nurses
in identifying a patient’s risk of developing a pressure ulcer
[4]. It is the most widely used tool for predicting PU risk in
the United States, and contains 6 predominantly skin-
related criteria, namely, sensory perception, moisture,
activity, mobility, nutrition, and friction & shear. Despite its
widespread use, our studies found that while Braden scale
is sensitive, its accuracy is considered insufficient (0.672
AUC) for identifying patients at risk for developing PUs in
ICU settings [5, 6].

Besides the characteristics used in Braden scale, medica-
tions such as vasopressor agents are often administered in
ICU to increase blood pressure for patients in hypotension
caused from shock states. Some studies have found that
vasopressor agents were statistically significant for the de-
velopment of PUs in ICU settings [7, 8]. However, other
studies did not find a conclusive relationship between vaso-
pressor agents and PU development [9-11]. Separately,
comorbid conditions such as hypertension, spinal cord in-
jury, respiratory disease, vascular disease, and diabetes mel-
litus have also been found to increase risk of PU
development [12-15]. Thus, there is a need for identifying
medications and diagnoses as factors for PUs. This issue
motivates us to also examine medications and diagnoses as
indicators of PU incidence.

Bayesian network

A practical problem with the use of medication and diag-
nosis data is that they are embedded in electronic health
records (EHRs). EHRs consist of rich and comprehensive
patient-specific information from a large number of
sources in different formats consisting of heterogeneous
data types. Even when expertly extracted out into features,
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many of the features (e.g. flu and high body temperature)
violate the assumption of independence required by most
machine learning models. Bayesian network models, on
the other hand, take into account these interactions be-
tween variables and eliminate interactions between vari-
ables that fail a dependence test, while retaining more
important ones.

A Bayesian network is naturally suited to represent
dependent relationships between variables. Nodes in a
Bayesian network represent features from the data, and
edges represent dependencies between those features.
Bayesian networks are interpretable, which is critical for cli-
nicians who need a parsimonious view of probable causal
factors pertaining to diseases. Bayesian networks have been
applied to effectively assist users in identifying faulty net-
work structures and model discrepancies [16], and to depict
the underlying uncertainty and facilitate contextual under-
standing in clinical practice guidelines [17]. They have also
been utilized for investigating complex phenotype data,
specifically for the visualization of complex associations
[18], the dependency structure of data, the reduction of di-
mensionality and comparison of substructures, and the esti-
mation of causal effects from data [19]. In addition, a
Bayesian network has been used to predict mortality, re-
admission, and length of stay in real time using EHR data
to improve quality of care in the emergency unit [20].

In this paper we construct Bayesian networks from fea-
tures of ICU patients in order to predict PU incidence and
better understand the structure of related features. Specific-
ally, we estimate the value of a hidden node (PU), given the
values of the observed nodes (Braden scale, medication,
and diagnosis features). After constructing the Bayesian
network, we perform inference to estimate the risk that pa-
tients will develop PUs during hospitalization. We find that
on our ICU data, Bayesian network models have compar-
able overall performance to, but higher sensitivity than,
models constructed from classical machine learning algo-
rithms such as logistic regression [6]. A beneficial “bypro-
duct” of Bayesian network modeling is that a feature
dependency graph structure is learned. From this feature
relationship graph, high risk factors associated with PU in-
cidence in ICU settings can be directly identified using the
Markov blanket property of the Bayesian network’s PU
node [21].

The Markov blanket of a node in a Bayesian network
corresponds to a set of features that have high predictive
power together. Specifically, the Markov blanket of a node
is the set of nodes that shield the node from the rest of
the network. Thus, nodes in a Markov blanket will likely
predict the behavior of the node of interest. This property
is very useful to identify a succinct set of features or vari-
ables highly associated with the feature-of-interest. The
Markov blanket has been utilized in identifying the most
critical genes towards the development of astrocytic
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tumors from a significant set of meta-analysis genes [22]
and single nucleotide polymorphism (SNP) biomarkers
significantly associated with Alzheimer’s disease [23].
Markov blanket property along with the Tabu search algo-
rithm has been used to predict postoperative morbidity of
heart disease [24].

Our contributions in this paper are the following. We
evaluate our three-stage framework for predictive analysis
with Bayesian networks, on one of the largest datasets de-
veloped for PU predictive analysis, which includes 86 medi-
cation, diagnosis, and Braden features extracted from the
EHRs of 7,717 ICU patients. We evaluate multiple runs of
all combinations of four search algorithms, two prior struc-
ture initializations, two scoring functions, and five sets of
features, and find that the best combination gives Bayesian
networks with an average AUC of 0.827, which is compar-
able to the best classical machine learning models from our
previous study [6]. We visualize a representative Bayesian
network and use the Markov blanket property to identify
several known and several suspected high risk factors asso-
ciated with PU incidence. Our clinician collaborators used
this information to identify strong relationships between
risk factors widely recognized as associated with pressure
ulcers.

For our data the Bayesian network based approach yields
models with much higher sensitivity than the classical ma-
chine learning models (average sensitivity increased to
0.455 from 0.160). Meanwhile, there is only a slight sacrifice
in specificity (average specificity is 0.908 versus 0.990) and
no significant difference in overall accuracy (measured in
AUCQC). Given the strong adverse impact of PU on patients
and high cost for treating PU compared to taking prevent-
ive measures, high sensitivity of the model is preferred, be-
cause patients likely to contract PUs are likely to be
predicted positive.

In summary, we demonstrate that Bayesian network
method is a powerful tool in inferring predictive models
for syndromes such as PU from complex clinical data. Not
only can it lead to high sensitivity models, but it also en-
ables development of new hypotheses on potential risk
factors.

Methods

Dataset

The settings of this study are three adult ICUs at The Ohio
State University Wexner Medical Center (OSUWMC).
OSUWMC serves as a major referral center for patients
from the entire state of Ohio and throughout the Midwest.
The ICUs include 83 beds in total, admitting approximately
3,800 patients annually.

Essentris® is the commercial system used for documen-
tation in all ICUs at the medical center. Patient data en-
tered into Essentris® are eventually transferred to the
information warehouse (IW). The IW compiles EHR data
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from the various electronic records systems throughout
OSUWMC, namely, an administrative system (ADT®), a
laboratory system, a computerized provider order entry
(CPOE) system, and a billing system. Figure 1 shows the
study procedure. Specific details will be described in the
following sections.

Data extraction

Patients (age > 18) admitted to ICUs between January 1,
2007 and December 31, 2010 comprise the sample set.
Institutional Review Board (IRB) approval was obtained
in 2010 for the data extraction. Data were de-identified
and supplied by IW staff. Patients developing a PU are
identified by reviewing discharge diagnoses appropriately
coded with the International Classification of Diseases
(ICD)-9 codes [25] as one of the fields in EHR system.
For instance, if a patient had an ICD-9 code, 707.07
(Pressure ulcer, Heel), the patient is included in the PU
group. On the other hand, if a patient does not have any
of the ICD-9 codes indicating PUs, the patient is in-
cluded in the non-PU group.

Data cleaning and preparation
Data cleaning and preparation processes include sev-
eral steps. First, patients who are afflicted with a PU
at the time of admission are excluded. In addition,
patients whose ICU stay is shorter than 36 hours are
excluded since PUs generally develop after 3 days of
admission [26]. Second, if a patient had multiple hos-
pitalizations during the study period, only the first
hospitalization record is included. Similarly, if a pa-
tient has more than one ICU admission record during
the hospitalization, only the first ICU admission rec-
ord is included for analysis. This is because our ob-
jective is to find risk factors of patients who have the
first incidence of PUs during their ICU stay. Patients
who suffer from the onset of PUs at the time of ad-
mission are excluded as they may have previously
been exposed to unknown risk factors for which we
have no data. This patient selection process is con-
sistent with practices in our previous studies [5, 6].
Medications administered to patients in PU and
non-PU groups during the ICU stay are also listed.
The list is reviewed by an inter-disciplinary team that
includes a registered nurse, two ICU clinical nurse
specialists, and a dietician. Through this manual re-
view, medications are grouped into 72 categories
based on their perceived functional purposes and effi-
cacies. For instance, Meperidine and Nalbuphine are
included in the Analgesia category, and Dopamine
and Epinephrine are grouped into Vasoactive cat-
egory. Medication categories are coded as dichotom-
ous (binary) variables.
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Fig. 1 The workflow employed in this study includes modules to conduct data acquisition, data preparation, variable selection, construction of a
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Diagnostic data in the form of ICD-9 codes are 5 digits
long and are extracted from the EHR system from re-
cords within ICU length of stay. The first three digits in-
dicate a main disease type and the last two provide
additional information about the disease. Discharge diag-
nostic ICD-9 codes are used to identify patients with
maladies during ICU hospitalization. Subsequently, ICD-
9 codes are truncated into 3 digits in order to analyze
the primary conditions. Most of the 707 ICD-9 codes
are considered PUs except for 707.1 (ulcer of lower
limb), 707.8 (chronic ulcer of other specified sites), and
707.9 (chronic ulcer of unspecified site). Those codes are
labeled as 707-nonPU.

Braden scale contains 6 subscales that measure sen-
sory perception, moisture, activity, mobility, nutrition,
and friction & shear. A Braden total score is simply cal-
culated by adding up all the subscales. We consider each
subscale separately to see which subscales are more re-
lated to PU incidence in ICU settings. Moreover, most of
the subscales have significant association with PU inci-
dence, in addition to the summed Braden scale (Braden
total subscale). We include these for consistency with
previous work [27, 28].

Variable selection

In order to eliminate ill-defined, non-salient, and “noise”
variables irrelevant to PUs, we select a set of medica-
tions and diagnoses highly associated with the PU condi-
tion. To achieve this aim, univariate analysis is first
carried out to determine what medication categories and
diagnoses (variables) are highly associated with PUs. For
each variable, one of the following two statistical tests is
used. A x* -test, being sensitive to small expected fre-
quencies, is used only where expected frequencies are
large enough (>=20), otherwise Fisher’s Exact Test
(FET) is applied. In the midst of this screening process,
we do not apply multiple test compensation in order to
be more inclusive.

Medication categories that appear to be significantly
associated with PUs are retained. Likewise, diagnoses
that appear to be highly associated with PUs (which we
call having a strong “comorbidity association”) are
retained. The retained medication categories, retained
diagnoses, and all Braden features are used as variables
(nodes) for Bayesian networks.

Bayesian network modeling

A Bayesian network model is introduced to model clin-
ical data which is high dimensional in nature and char-
acterized by variables of heterogeneous data types.
Bayesian network models are graphs in which nodes rep-
resent random variables, and the lack of edges represent
conditional independence. Formally, Bayesian networks
are defined as follows:

Let U={xy,...,x,}, n=>1 be a set of random variables. A
Bayesian network B over U is a network structure B in
the form of a directed acyclic graph (DAG) over U and a
set of probability assertions B,={Pr(u|Pa(u)), uel}
where Pa(u) is a set of parents of « in B;.

In this work, discrete-valued Bayesian networks are
used. Therefore, probability models are represented with
discrete conditional probability tables. There are two
steps to constructing a Bayesian network: structure
learning and parameter estimation. Structure learning
extracts a Bayesian network B, from observed data. Par-
ameter estimation constructs the conditional probability
distribution set U for each node in the network once the
structure has been learned.

Structure learning

Score-based structure learning is a commonly used
method to identify a network structure. This approach
uses a scoring function that measures how well the
model fits the observed data. The score-based structure
learning assigns a score to each candidate network and
tries to find the network maximizing the score. An opti-
mal solution is intractable since this problem has been
shown to be NP-Hard; therefore, many approximate
methods have been proposed. Greedy hill climbing is
one of the simplest and most commonly used search al-
gorithms. It has been observed to achieve similar results
as an optimal algorithm (run on small networks of not
more than 20 nodes) [29]. Greedy hill climbing itera-
tively takes the step that leads to the largest improve-
ment in the score until no modification improves the
score. It therefore can terminate in a local optimum. Re-
peated hill climbing can be used to avoid being caught
in local optima. It repeatedly uses greedy hill climbing
algorithm and returns the best structure of the multiple
runs. Tabu search and simulated annealing are two ap-
proaches that are commonly used to explore the region
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around, and therefore escape, local optima. Tabu search
[30] is a variation of greedy hill climbing which keeps a
list of length L of recently used operations such as edge
addition, deletion, and reverse. For each step, it does not
consider operations in the list, forcing it to explore new
directions in the search space. Simulated annealing is a
different hill climbing variation which starts with an initially
large “temperature” parameter. When the temperature is
large, the algorithm may take steps which decrease the
score. As the algorithm proceeds the temperature is grad-
ually reduced, and the search increasingly focuses only on
moves that improve the score.

Scoring functions

A scoring function is used with a search algorithm to
approximate the probability of each candidate structure
given the data D. The goal is to find a highest scoring
structure B,, that is:

B} = arg max Score(B;|D)
B

S

Bayesian scoring function

The premise of the Bayesian scoring function is to com-
pute the posterior distribution of a network from given
data. The best network is the one that maximizes the
posterior probability. A widely used Bayesian scoring
function is the Bayesian Dirichlet with score equivalence
and uniform priors (BDeu) proposed by Buntine [31].
BDeu assigns the same score to equivalent network
structures and has a uniform prior distribution assumption.
Therefore, BDeu has only one necessary hyper-parameter
called equivalent sample size. The BDeu scoring function is
defined as follows:

n_ 4qi

(%)
BDeu(B|D) = log(Pr(B) + >3 " log (W)
i g

qi

where I1(.) is the gamma function, # is the total number
of variables, r; is the number of possible values of vari-
able x; (e.g., 2 for a binary variable), and g; is the number
of possible values of Pa(x;). Ny is the number of records
in the data set D having variable x; in state k for which
Pa(x;) has its j -th value. Nj; is calculated by summing
over all states of a variable x: Njj = > )" ; Nji. N "is the
user-specified equivalent sample size, which expresses
how much prior knowledge should be taken into account
in the network structure.
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Information-theoretic scoring function

The premise of this scoring function is a tradeoff be-
tween how well the network structure fits the data and
how complex the network is. This can be viewed as a
log-likelihood (LL) function along with a penalty factor
to address the over-fitting problem. The log-likelihood
function is the log probability of D given B and can be
calculated as:

LL(D|B;) = log(Pr(D|B;))

There are several well-known information-theoretic
scoring functions. In this study, we consider minimum
description length (MDL) (equivalent to Bayesian in-
formation criterion (BIC) for Bayesian networks [29])
as it has been shown that it can outperform Akaike’s
information criterion (AIC), Bayesian Dirichlet equiva-
lence score (BDeu), and factorized normalized max-
imum likelihood (fNML) [29]. MDL scoring function
is defined as follows:

MDL(B, D) = LL(DIB.)- %" |p,

where |B;| is the number of independent parameters in
network B;. The penalty factor can be viewed as the
number of bits required to encode the model.

Parameter estimation
The conditional probability table for each variable in the
network is created once the structure learning has been
carried out. Direct estimates of the conditional probabil-
ities are calculated for each node in the network struc-
ture as follows:
, Nijx +N gjk

Pr(x = k|Pa(x) =j) = Y
where N' ; is a parameter used for estimating the prob-
ability tables and can be interpreted as the initial count
on each value. When N' =1, N';=r; assigning (in-
stead of 0) a small prior to values unobserved in training
data. With N' =0, maximum likelihood estimates are
obtained.

Markov Blanket

An important concept underlying a Bayesian network is
that of a Markov blanket of a node. The Markov blanket
of a node is a set of nodes that shield the node from the
rest of the network. This set contains the node’s parents,
the node’s children, and all other parents of its children.
Formally, let N be the set of all nodes in a network and
M be a set of nodes not containing node x. M is a
Markov Blanket for x if x is conditionally independent of
all variables in the set N — M — x and it is further re-
quired that M is minimal. This implies that a variable in
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a Bayesian network is conditionally independent of other
variables not included in its Markov blanket. On the
other hand, when the Markov blanket of a certain vari-
able x is known, adding knowledge of other variables
outside the Markov blanket leaves the probability of x
unchanged [32]. This property is noteworthy since only
variables in the Markov blanket are required to predict
the behavior of the outcome variable. From this prop-
erty, we can reduce the size of the model significantly.

Results

Patient demographics

A total of 7,717 ICU patients are included in the analysis.
The number of patients in PU group is 590, while the
number of patients in non-PU group is 7,127. Patient
demographics are summarized in Table 1. In the patient
cohort, 57.4% are male and 82.2% are ethnically classified
as White. The mean age of the patients is 57.7 years and
the mean length of ICU stay is 10.1 days.

Table 1 shows that gender and length of ICU stay are
statistically significant factors influencing PU develop-
ment. However, clinicians are already attuned to the re-
lationship between length of ICU stay or hospitalization
and PU incidence. Consequently, we are looking for
non-obvious relationships that could be related to PU
occurrence such as medications and diagnoses.

Medication variable selection

Medications that are used for patients in PU and non-PU
groups during the ICU stay are listed. In total, 828 unique
medications are administered to the patients in our study.
Our research team including a registered nurse, two ICU
clinical nurse specialists, and a dietician, reviewed all of
the 828 medications. Through the afore-mentioned man-
ual review, medications are grouped into 72 categories.
From the list of medications, categories whose frequency
is less than 10 are removed as they are not considered
significant for the univariate analysis. Additionally,
“Electrolytes”, “IV Fluid”, “Research Drugs”, and “Miscel-
laneous” categories are removed as they do not appear to
be clinically meaningful. As a result, 49 categories are
retained and used for univariate analysis. In general, the
association of individual medication category with PU is

Table 1 Demographics of ICU patients (N=7717)
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not strong; only 18 medication categories are found to be
significantly associated with PUs at a significance level of
90% (i.e., a« =0.1). We applied a relatively loose threshold
for a without multiple test compensation in order to be
more inclusive in the initial screening stage.

Comorbidity association

There are 832 main discharge diagnoses after collapsing
the ICD-9 codes to three digits. We construct the co-
morbidity association in the same manner as the medi-
cation variables are selected by removing diagnoses
whose frequency is less than 10. Retained conditions are
qualified by x* statistic greater than 20 (i.e., significance
level a=0.001), resulting in 61 comorbid conditions
highly associated with PUs.

Bayesian networks

We conducted experiments to compare the performance
of four search algorithms: greedy hill climbing, repeated
hill climbing, Tabu search, and simulated annealing; two
scoring functions: BDeu and MDL; two structure initiali-
zations: empty network and naive Bayes; and five sets of
features: Braden (B), medication (M), diagnosis (D),
Braden & diagnosis (BD), and Braden & medication &
diagnosis (BMD). All features except Braden are binary.
Sensitivity (SENS), Specificity (SPEC), and Area Under
the Curve (AUC) are used as metrics for purposes of
comparison. We performed 100 trials of each experi-
ment and report the average and standard deviation
of SENS, SPEC, and AUC. In terms of the search al-
gorithms, Tabu search outperforms most of results
from greedy hill climbing, repeated hill climbing, and
simulated annealing. The running time of repeated
hill climbing is often long and yields poor results.
Among scoring functions, BDeu performs better than
MDL in hill climbing and repeated hill climbing algo-
rithms, but both scoring functions are comparable in
performance when used with Tabu search. In general,
BDeu is very sensitive to the equivalent sample size
parameter, and selecting an appropriate value can be
challenging [29, 33]. We found that BDeu with a lar-
ger equivalent sample size parameter performs better
than with the smaller one. Regardless of the search

Variable Total PU group (N =590) Non-PU group (N=7127) Statistic p value

Gender, freq (%) Male 4426 378 (64.1%) 4048 (56.8%) =19 <.001
Female 3291 212 (35.9%) 3079 (43.2%)

Race/Ethnicity, freq (%) White 6345 469 (79.5%) 5876 (82.4%) x2 =3.15 076
Non-white 1372 121 (20.5%) 1251 (17.6%)

Age (years), mean (SD) 57.7 (15.9) 590 (15.5) 576 (16) t =452 034

Length of ICU stay (days), mean (SD) 10.1 (10) 134 (14.3) 9.8 (9.6) t=70.56 <.001

Note: SD = Standard Deviation
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algorithms and scoring functions, using naive Bayes
to create the initial outperforms the performance of
the Bayesian networks initialized with empty net-
works. In terms of feature sets, Braden & diagnosis
gives the best average AUC, which is consistent with
our previous study [6].

Figure 2 shows a representative Bayesian network of
Braden & diagnosis feature set from the 100 trials. The
learned network consists of 69 nodes, each of which cor-
responds to a Braden subscale or diagnosis feature. The
middle node labeled “PU” is a pressure ulcer diagnosis.
The 32 highlighted nodes are the Markov blanket of PU
(see Section Methods). In the Markov blanket of PU,
there are 2 Braden subscales: total score and friction &
shear. The other nodes represent diagnoses in form of
ICD9 codes.
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Evaluation

A natural way to measure Bayesian network perform-
ance is to predict unobserved data. The data were ran-
domly split into 2 sets: training (67%) and validating
(33%) sets for 100 trials. The Bayesian network structure
is learned from each training dataset. Sensitivity (SENS),
Specificity (SPEC), Positive Predictive Value (PPV),
Negative Predictive Value (NPV), and Area Under the
Curve (AUC) are computed for each trial. Table 2 shows
average predictive performance of each measure (row),
where for each feature set (column) we use the best per-
forming (as measured by AUC) combination of search
algorithm, scoring function, and structure initialization,
as reported below. The M feature set gives the lowest
average AUC, 0.619 i.e., lower than the baseline (B). The
D and BMD feature sets give fairly good average AUC,

representing PU

Fig. 2 Bayesian networks for ICU data — The network with the best AUC is shown here. Highlighted nodes are in the Markov blanket of the node

~
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Table 2 Performance measures: mean (standard deviation) of Bayesian networks in five different feature sets: Braden (B), Medication
(M), Diagnosis (D), Braden & Diagnosis (BD), and Braden & Medication & Diagnosis (BMD)

B° Me D’ BD° BMDP
SENS 0021 (0.034) 0.002 (0.003) 0315 (0.027) 0455 (0.034) 0478 (0.025)
SPEC 0.996 (0.006) 0.999 (0.001) 0939 (0.005) 0908 (0.006) 0.895 (0.007)
PPV 6 (0.201) 0238 (0.385) 0301 (0.022) 0292 (0.184) 0274 (0015)
NPV 0.924 (0.002) 0923 (0.001) 0943 (0.002) 0953 (0.003) 0954 (0.002)
AUC 0731 (0.018) 9 (0.016) 0(0012) 0827 (0011) 0819 (0011)

#MDL scoring function, Tabu search and naive Bayes prior structure

PMDL/BDeu scoring functions give the same result, Tabu search, and naive Bayes prior structure

0.810 and 0.819, respectively. The highest average AUC,
0.827, is from the BD feature set.

We observed similar results in our previous study [6] in
which the same sets of performance measures and fea-
tures were evaluated on six different machine learning
algorithms: linear regression, naive Bayes, decision tree,
k-nearest neighbor, random forest, and support vector
machine.

We next study how our Bayesian network modeling per-
forms against logistic regression (LR). We compare to LR
because in our previous work [6], LR performed best
among six machine learning models including SVM and
random forest, and is simpler to tune. Three performance
measures are used: sensitivity, specificity, and AUC. We
compare 3 experiments: 1) a baseline method (“Braden”)
which, mimicking a standard clinical assessment tool,
thresholds a single Braden total subscale at 13, which
maximizes AUC [5]; 2) Logistic regression (“LR”) on BD
features; and 3) Bayesian network (“BN”) on BD features.
We use BD features for the latter two because it gave the
best AUC in our earlier performance study.

Figure 3 shows a box plot of our performance mea-
sures for these 3 experiments. The Braden baseline gives
balanced, almost equal, sensitivity and specificity (0.670
and 0.623, respectively). While it maximizes AUC, it

does so based solely on the single Braden total subscale
feature. As a result, its AUC (0.647) is much lower than
the other two, more complex models, demonstrating the
limitations of using only one feature. For the other two
experiments, in terms of AUC our Bayesian network
model gives comparable performance to logistic regres-
sion (0.827 vs. 0.830). While Bayesian network has a
slightly lower specificity (0.908 vs. 0.990), it also has
almost three times the sensitivity (0.455 vs. 0.160). In
other words, our Bayesian network model nearly triples
the sensitivity at the cost of a slightly lower — although
still high in absolute terms - specificity, while overall
performance (AUC) remains comparable. We find this
result promising because treating PU incidence is very
costly while preventive measures are not. From the per-
spective of cost and patient quality of life, it is important
to have high sensitivity to predict the patients who may
develop a PU.

Lastly, we evaluate the scalability of Bayesian network
learning, in terms of both number of features and number
of records (patients). We took the best performing feature
set, Braden and diagnosis (BD features) and created a lar-
ger 136 feature dataset from it by duplicating each of BD’s
68 features, and an even larger 204 feature dataset by
triplicating BD’s features. Figure 4 shows the runtime of
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Fig. 3 Box plot of SENS, SPEC, and AUC among Braden scale, logistic regression (LR), and Bayesian network (BN)
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Bayesian network learning using greedy hill climbing and
Tabu search algorithms. The runtime increases more sig-
nificantly in larger number of features, which reinforces
the importance of feature selection in our framework. To
evaluate the scalability in terms of number of records,
starting with BD, we created a 15,434 record dataset by
duplicating each patient in BD, and an even larger 23,151
record dataset by triplicating each patient in BD. Figure 5
shows that the runtime for both greedy hill climbing and
Tabu search increases only slightly more than linearly with
the number of records. This suggests that Bayesian net-
work learning can handle datasets with a moderate to
large number of patients.

Discussion

Four years of ICU EHR data are extracted from the in-
formation warehouse. We focus on patients who
contracted PUs during their first ICU stay. Specifically,
we select only the first hospitalization and filter out later
hospitalizations to make sure that there is no impact from
the previous PU incidence on the current hospitalization.
Medications, diagnoses, and Braden features are used to de-
velop predictive models, and univariate statistical analyses
are carried out to reduce the number of model variables. A
Bayesian network modeling approach is employed and we
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Fig. 5 Scalability: Number of records
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evaluate combinations of different scoring functions, search
algorithms, and structure initialization methods for
Bayesian networks. Compared to the best of a number of
classical machine learning algorithms, the resulting
Bayesian network model nearly triples model sensitivity at
only a slight cost to specificity, while overall performance
(AUC) remains high. High sensitivity is important in posi-
tively predicting patients who may develop a PU, as early
intervention can be far less costly than treatment. The
Bayesian network approach also provides an interpretable
structure, allowing clinicians to understand, discuss, valid-
ate, and explain the logic behind the model. We select the
risk factors highly associated with PUs using the Markov
blanket property of the PU node. This approach reduces
the number of PU risk factors and provides a more
concise set of strong factors to clinicians for validation.

Our clinician collaborators identified many of the rela-
tionships depicted in Fig. 2 consistent with domain know-
ledge and clinical observations. For instance, it was
obvious to them that ICD-9 main code 250 (Diabetes mel-
litus) is strongly related to PU incidence due to vascular
circulation issues and (frequent) obesity associated with
Diabetes. They also confirmed that many of the patients
afflicted with disease code ICD-9 main code 806 (spinal
cord injury) are very likely to contract PUs. The ICD-9
main code 995 (adverse effects) appearing as a child node
of PU required more thought on their part. They realized
that 995 appears as a child of PU because most PU
patients in our data suffer from specific adverse
effects of Sepsis (995.91) and Systemic Inflammatory
Response Syndrome (SIRS, 995.9). In other words,
non-obvious relationships in the data are gleaned
from the Bayesian network.

Figure 2 can also be used to help confirm suspected
associations. For instance, several studies show that PUs
in diabetic patients often occur on extremities [34, 35].
Figure 2 shows an edge from PU to 250 (Diabetes melli-
tus). Other Fig. 2 associations include between PU and
maladies of kidney (codes 403, 584, and 585), and car-
diovascular issues (codes 428 and 785). Once again, both
observations are consistent with findings from previous
studies [28, 36]. Septicemia or sepsis (995 and 038) and
respiratory failure (528 and 482) have been identified
earlier as risk factors [37]. Further, we confirm that
spinal cord injury (806), infection of the bone (324 and
730), and dementias (290) are also some of the risk
factors of PUs as identified elsewhere [38—40].

Of the six Braden subscales, Braden total score and
friction & shear appearing in the Markov blanket of the
PU node indicate that they are the two most significant.
Other Braden subscales i.e., activity, nutrition, mobility,
sensory perception, and moisture are not as useful since
they are more likely to have similar values for most ICU
patients. ICU patients are likely to be sedate and in bed
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rest. Unsurprisingly, most diagnoses highly associated
with PU incidence involve patients’ immobility including
paralytic syndromes, spinal cord injuries, machine or de-
vice dependence, infections including sepsis and urinary
tract infection, or imperceptions including dementias. In
short, clinicians can benefit from the predictive model
which helps them better understand the risk factors,
leading to allocation of preventive measures and
evidence-based risk assessment.

There are limitations pertaining to our study. The data
are from a single institution; thus, interpretation of the
finding is limited. The predictive models are constructed
based solely on the data from EHRs and our data do not
contain APACHE-II score, a severity of disease classifica-
tion system. Consequently, we are unable to adjust for se-
verity of illness, nor is severity of illness used as a
predictor or PUs. The predictive models do not consider
longitudinal analysis since temporal modeling would sig-
nificantly complicate both the learning process and inter-
pretation. We did not directly evaluate the robustness of
learned Bayesian networks, for instance using different
network similarity measures, parameter combinations,
and perturbation models. As each of these variations de-
serves careful attention, we leave a comprehensive evalu-
ation of the robustness of learned Bayesian networks as
future work. Finally, the predictive power and risk factors
of pressure ulcer incidence in this study are only based
upon Braden scale, discharge diagnoses, and medication
data.

Conclusions

In this work we develop predictive models to help clinicians
improve patient care. Motivated to assist clinicians, necessi-
tating the use of an intuitive and interpretable model, we
select Bayesian networks to serve our purpose. We present
a three-step framework for predictive analysis of patient
clinical data, consisting of data preprocessing, feature selec-
tion, and model construction. We apply our framework
specifically to pressure ulcers in ICU settings, where we
consider 86 diagnosis, medication, and Braden scale fea-
tures extracted from a dataset of 7,717 patient EHRs.

We evaluate all combinations of Bayesian network
models from four search algorithms, two prior structure
initializations, two scoring functions, and five sets of fea-
tures. Our model gives comparable overall performance
to the best of classical machine learning algorithms,
while nearly tripling sensitivity at only a slight cost to
specificity with no sacrifice on high overall accuracy. We
consider this promising since high sensitivity can better
facilitate preventive care in patients likely to contract
PU, which is less costly than treatment. From a qualita-
tive standpoint, our clinician collaborators identified
strong relationships between risk factors widely recog-
nized as associated with pressure ulcers. These include
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cardiovascular, kidney, lung, spinal cord, bladder, bone
issues or infections, dementias, diabetes, malnutrition,
sepsis, friction & shear, and Braden total score. Identify-
ing accurate risk factors of PUs is a key to comprehend
disease burden and to improve pressure ulcer care. Our
clinical collaborators found the Bayesian model useful in
identifying dependencies between pressure ulcers and
risk factors consistent with their own experience.
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