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Abstract

Background: Identifying subtypes of complex diseases such as cancer is the very first step toward developing
highly customized therapeutics on such diseases, as their origins significantly vary even with similar physiological
characteristics. There have been many studies to recognize subtypes of various cancer based on genomic signatures,
and most of them rely on approaches based on the signatures or features developed from individual genes. However,
the idea of network-driven activities of biological functions has gained a lot of interests, as more evidence is found that
biological systems can show highly diverse activity patterns because genes can interact differentially across specific

molecular contexts.

Methods: In this study, we proposed an in-silico method to quantify pathway activities with a resolution of genetic
interactions for individual samples, and developed a method to compute the discrepancy between samples based

on the quantified pathway activities.

Results: By using the proposed discrepancy measure between sample pathway activities in clustering melanoma gene
expression data, we identified two potential subtypes of melanoma with distinguished pathway activities, where the
two groups of patients showed significantly different survival patterns. We also investigated selected pathways with
distinguished activity patterns between the two groups, and the result suggests hypotheses on the mechanisms

driving the two potential subtypes.

Conclusions: By using the proposed approach of modeling pathway activities with a resolution of genetic interactions,
potential novel subtypes of disease were proposed with accompanying hypotheses on subtype-specific genetic

interaction information.

Background

Since the emergence of high throughput genomic profil-
ing techniques, genomic profile data became a primary
source of information in recognizing the various statuses
of complex diseases. Cancer is one of such complex dis-
eases, where even tumors from the same tissue locations
can have strikingly diverse molecular mechanisms for
their origins. Such high heterogeneity in cancer is one of
the main obstacles in treatment, as different driving
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mechanisms may require different therapeutic approaches
to repair their abnormality. For this reason, identifying
subtypes of cancer with different functional mechanisms
is very important for improving their successful diagnosis
and treatment.

One of the popular approaches to recognizing the
subtypes of cancer is clustering the gene expression data
of patient samples (for example, [1-7]), as expression data
can give a comprehensive snapshot of transcription activ-
ities for whole genes. Many clustering studies consider
each gene as a feature for clustering, assuming the expres-
sion levels of individual genes are factors that discriminate
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the different subtypes of cancer. However, the main draw-
back of such approaches is that they focus on individual
genes, while a set of interacting genes constitutes a
functional module in many real biological systems. For
this reason, using individual genes as features often suffer
with the issue of low reproducibility, which indicates the
expression levels of genes reflect only some part of
discrepancy residing between different subtypes.

In order to overcome such limitation, utilizing known
pathway information together with the expression data can
be a promising approach. Considering that a joint prob-
ability distribution of a set of variables can give a compre-
hensive picture of its pattern, an ideal approach is
modeling the joint probability distribution that describes
the combinatorial gene expression levels within a pathway.
However, this approach is not practical due to the
complexity of the model to represent the joint probability
distribution, and the lack of available data to infer such
complex models with sufficient reliability. Hence, most of
the methods to utilize pathway information focus on
specific features of pathways rather than considering the
complete joint probability distributions. Characterizing
individual samples with pathway information and applying
it to clustering achieved limited success, while there is a
recent study that proposed a method called PARADIGM
[8], which infers patient-specific gene activities from
multi-dimensional genomic data using known genetic
interactions from pathways. PARADIGM can convert
multiple genomic data of a gene from a sample into a
single aggregated value called IPA, which represents the
summarized activity level of the gene for the sample and it
is evaluated in consideration of genetic interactions from
pathway information. The computed IPA values of genes
can be used for clustering instead of their raw expression
values, but it still represents the activity levels of individual
genes rather than the activity levels of pathways.

In this study, a method was proposed to compute the
dissimilarity between two gene expression samples based
on features that represent pathway activity patterns.
Unlike conventional methods, our proposed method
converts a gene-level matrix (for example, gene expres-
sion matrix) to a pathway-level matrix, where each cell
in the matrix represents a pathway activity pattern for a
sample. We applied the proposed sample dissimilarity
measure to clustering of cancer samples, where the
RNA-Seq data of 267 melanoma patients from The
Cancer Genome Atlas (TCGA) was clustered based on
their pathway activities. Two patient groups of potential
subtypes were identified with clear difference in their
survival patterns, where they were associated with
different stages of melanoma. Investigation on selected
pathway activity patterns across two patient groups
suggested hypotheses on different functional mecha-
nisms driving two potential subtypes.
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Methods

Our approach is based on an assumption that the activity
pattern of a pathway for a sample can be represented with
the probability distribution of the genetic network likeli-
hoods from the pathway, which is computed from the
given gene expression data. A sample pathway activity
vector (PAV), which represents the comprehensive picture
of all pathway activities of a single sample, is represented
as a collection of pathway activities for all pathways for the
sample. A pathway activity vector distance (PAVd) is
proposed as a discrepancy measure between two sample
pathway activity vectors, which represents the dissimilarity
between the two samples from the perspective of path-
ways. As PAVd is a distance metric (this will be discussed
in the following subsections), arbitrary clustering methods
and cluster validation indexes can be used for clustering
and quality evaluation. Details of this formulation will be
given in the following subsections.

Pathway activity distribution

We compute the activity of a pathway for a sample by
approximating the probability distribution of genetic
networks from the pathway. Specifically, the pathway
activity distribution Pr(PA;s;) of a pathway PA; for a
sample s; is computed from the following steps:

Step 1) Consider PA; as a discrete random variable that
has a finite set of N genetic network structures
g1 g2, ..., gn as its possible values.

Step 2) Compute the likelihood L;=P(gi|s;) for each

genetic network g for sample s;. The collec-
tion of likelihoods [L;, Ly ... Ly.;, Ly] for N
genetic network structures constitutes the
pathway activity distribution Pr(PA; s;) of
pathway PA; for a sample s;.

Compared to the idea of computing a single scalar-
valued activity for a pathway, our approach of computing
the pathway activity as a probability distribution is a
generalized version of such idea. From this generalization
of considering multiple genetic networks, it is expected to
achieve more reliable measurement of pathway activities
than the idea of computing a single scalar-valued activity.

In computing the pathway activity distribution Pr(PA; s)),
we utilize existing knowledge base on pathways and gene
regulatory interactions. Instead of enumerating all possible
genetic network structures for PA;, a selected list of candi-
date genetic networks are considered in reference with a
knowledge base of choice, to compute Pr(PA; s;). The list
of candidate networks will include one genetic network of
normal status, where we assume that a normally acting
pathway has all known genetic interactions functioning.
From this normal network with all known genetic interac-
tions, we assume that eliminating an interaction can repre-
sent a disturbed status of the pathway. This assumption is



Jung BMC Medical Informatics and Decision Making 2016, 16(Suppl 1):55

based on an idea that disruption of a pathway by external
variables (for example, regulation by miRNA, epigenetic
changes, gene copy number variation) can be repre-
sented with silencing certain genetic interactions within
the pathway. As a result, a normal network and
disturbed networks with one silenced interaction are
considered as possible values of PA; The schematic
outline of this approach is illustrated in Fig. 1.

To compute the likelihood L; = P(g|s;) for each genetic
network gi for sample s;, we model a genetic network with
a Bayesian network structure assuming discrete random
variables as its nodes. The computation of likelihood is
done using the Bayesian Dirichlet equivalence uniform
(BDeu) scoring method [9]. However, the direct computa-
tion of likelihoods with only single sample yields uniform
likelihoods for all samples as the BDeu scoring method
considers each instance (sample) of variables with the
same preference, especially with the uniform prior
assumption. For this reason, we take an indirect approach
to compute likelihoods, with the following formulation:

__ BDeu (g¢|D)
BDeu(g,|D-{s;})

P(gls) (1)

where D represents the collection of all samples. Even
though we use the Bayesian network model assuming
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discrete random variables, our formulation is independent
of model choices. Thus other network and random
variable models can be also used as long as the likelihood
of a network structure can be computed based on the
model of preference.

Sample pathway activity vector

The sample pathway activity vector PAV(s;, PA) of
sample s; for a set of A pathways PA is defined with a
vector of pathway activity distributions as follows:

PAV(S,’,PA) =< PI'(PAl,Si)7 PI’(PAz,Si), coey PF(PAA,Si) >
(2)

For A pathways and S samples, the pathway activity
distribution matrix R is defined as a A x S matrix, where
a cell R(i, j) corresponds to a pathway activity distribu-
tion Pr(PA; s;) of a pathway PA; for a sample s;. In other
words, R is a collection of column vectors PAV(s;, PA)
for S samples.

Discrepancy measure between two sample pathway
activity vectors

If a column vector in a pathway activity distribution matrix
R is a scalar-valued vector with each pathway activity
represented with a scalar value, conventional distance

sample s

Fig. 1 A schematic diagram of computing pathway activity distribution
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measures (such as Euclidean distance) assuming ordinary
scalar-valued vectors can be used to evaluate the
discrepancy between two samples. In our approach of
representing the pathway activity with a discrete prob-
ability distribution Pr(PA;, s;), the representation of
sample pathway activity PAV(s;, PA) of a sample s; for a
set of A pathways is a vector of probability distributions
as shown in Eq. (2). As each element of a pathway
activity vector PAV(s;, PA) is a probability distribution
rather than a scalar value, a new method is necessary to
compute the distance between two vectors of probability
distributions PAV(s, PA) and PAV(s,, PA) from two
samples s; and s,,,.

We designed a new distance measure pathway activity
vector distance (PAVd) to compute the distance between
two vectors of discrete probability distributions PAV(s;, PA)
and PAV(s,,,, PA), which is defined as follows:

PAVA(PAV (s, PA)||PAV (5,1, PA)) (3)
=" VIS(Pr(PAs:)) [ Pr(PAJs,)

where JS is the Jensen-Shannon divergence. The
Jensen-Shannon divergence is a symmetrized version
of the Kullback-Leibler divergence, and a popular
method of measuring the similarity between two prob-
ability distributions. Note that PAVd is a metric, as it
satisfies the four required properties — non-negativity,
identity of indiscernibles, symmetry and triangle
inequality.

Corollary 1. PAVd satisfies a property, the non-negativity.
Proof. The Jensen-Shannon divergence JS of two
probability distributions is a non-negative value.

. PAVA(PAV (s, PA)||PAV (5,5, PA))
=31 VIS(Pr(PA[s)][ Pr(PAls.))20

(4)

Corollary 2. PAVd satisfies a property, the identify of
indiscernibles.

Proof. PAVA(PAV(s;, PA) || PAV(s,,, PA)) is a sum of
non-negative values from Eq. (3). Thus, PAVA(PAV(s,,
PA) || PAV(s,,, PA)) =0 requires JS(Pr(PA; | s;) || Pr(PA;
| s,u)) to be O for all i. As the square root of the Jensen-
Shannon divergence is a metric [10, 11], JS(Pr(PA; | s))
|| Pr(PA; | s,,)) =0 if and only if Pr(PA; | s;) = Pr(PA; |
Sm). If Pr(PA; | s;) =Pr(PA; | s,,) for all i, then PAV(s,
PA) = PAV(s,,, PA).

< PAVA(PAV (s}, PA)||PAV (5,4, PA))
= Oifandonlyif PAV (s;, PA) = PAV (s,y, PA). (5)

Corollary 3. PAVd satisfies a property, symmetry.
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Proof. The Jensen-Shannon divergence JS is a symme-
trized version of the Kullback-Leibler divergence.

- PAVA(PAV (s}, PA)||PAV (s, PA))
= PAVA(PAV (s, PA)||PAV (s;, PA)) (6)

Corollary 4. PAVd satisfies a property, triangle inequality.

Proof. Consider three sample pathway activity vector
PAV(s;, PA), PAV(s,,, PA) and PAV(s,, PA). As the square
root of the Jensen-Shannon divergence /S is a metric, the
following is true for all i:

\/]S( Pr(PA;|s;)|| Pr(PA;|sy))

<\/IS(Pr(PA|S)|| Pr(PA/lsm)) + /TS(Pr(PA;|su)|| Pr(PAils,))

(7)

Thus, the following is also true:

S IS(Pr(PAIS [ Pr(PAs,)

<> IS(Be(PAIS) [ Pr(PAf5,)) ®)

+3°0 VIS(Pr(PA]S,) I Pr(PA]s,))
. PAVA(PAV (s;, PA)||PAV (s,, PA))
<PAVA(PAV (s, PA)||PAV (s, PA))
+PAVA(PAV (s,,, PA)||[PAV (s, PA))

(9)

Theorem 1. PAVd is a distance metric.

Proof. From Corollary 1 to 4, PAVd satisfies the four
properties of metric.

By using this distance metric PAVd with conventional
clustering algorithms, we can group samples based on
the sample pathway activities.

Utilizing pathway information

We collected 1932 filtered gene sets of canonical path-
ways, Gene Ontology (GO) biological process and mo-
lecular functions from MSigDB [12], where each gene
set has up to 50 genes, and used them as pathways in
our study. The gene sets from MSigDB do not include
genetic interaction information. For genetic interaction
information, 854,464 human genetic interactions were
obtained from Pathway Commons [13], and genes in
each pathway were interconnected based on the ob-
tained genetic interactions.

Analysis of TCGA melanoma RNA-Seq data

We obtained the RNA-Seq data of 267 melanoma patients
from TCGA. The normalized gene-level transcript counts
were used for the analysis. The normalized counts of each
gene were discretized into two values of 0 (not expressed)
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and 1 (expressed) using SIBER [14]. A sample path-
way activity vector has been computed for each of
the 267 patient samples, and a pathway activity distri-
bution matrix R was built as a result. Using PAVd as
a distance measure between sample pathway activity
vectors that correspond to the columns of R, hier-
archical clustering with complete linkage was applied
to R to find groups of patients.

Results

Identification of two patient groups from the clustering
result

Figure 2 shows the dendrogram from the result of applying
hierarchical clustering to the pathway activity distribution
matrix R of the TCGA melanoma RNA-seq data. After vis-
ual inspection, we identified two groups of patients, Group
I and II. Based on the sample annotations regarding the
stage of melanoma, we also computed what stages of
melanoma cases are significantly enriched in each group of
patients. Table 1 lists the number of patients in each
group as well as the number of associated stage I-IV
cases. From the entire 267 patients, 40 patients were
classified as Stage I, and 18 of them were included in
Group I (p-value =0.0362). In Stage I of melanoma,
cancer has formed on skin, but tumor is not present
in deep skin. Thus it represents relatively early stage
of melanoma prognosis. Regarding Group II, there
were 52 patients classified as Stage II among the 267
patients, and 24 of them were included in this group
of patients (p-value =0.0049). When melanoma is in
Stage 1J, it indicates that the tumor is in deeper skin than
Stage I, with possible ulceration. Thus this stage indicates
a more progressed status of melanoma. The absolute
numbers of Stage I patients and II patients in these two
groups may not be high, but Group I represents patients
with earlier stage of (or less aggressive) melanoma while
Group II represents patients with relatively later stage of
(or more aggressive) melanoma. This observation can be
confirmed in the following subsection.
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Table 1 Identified two groups of patients and their melanoma

stages

Group | Group I
Number of patients 90 85
Stage | 18 (0 =0.0362) 7 (p=09764)
Stage |l 11 (p=09779) 24 (p =0.0049)
Stage |l 16 (p = 04976) 18 (p=0.1623)
Stage IV 2 (p=032598) 2 (p=0.2889)

p-values are shown in the parentheses. (p < 0.05 are shown in boldface)

Survival analysis of identified patient groups

We compared the survival lengths of patients in each
group, and Kaplan-Meier (KM) curves from the com-
parison are shown in Fig. 3. Table 2 also lists the survival
statistics on patient groups including Group I and IL
From Fig. 3(a) and Table 2, it is clear that patients in
Group I show better prognosis than the rest of the
patients (statistical significance p-value = 0.0044), with
much longer median survival length (4254 days) than
the rest of the patients. Patients in Group II have
relatively shorter survival (median survival length of
1625.5 days) than the rest of the patients, but the main
difference is with the patients in Group I (Fig. 3(c)) ra-
ther than with the patients other than Group I and II
(All patients — (Group I and II patients), Fig. 4(b)). In
comparison, the patients of Group I still show longer
survival patterns than the patients that do not belong to
the two groups (Fig. 4(a)). This suggests that Group I is
a distinguished patient group compared to other pa-
tients, with clearly longer survival lengths, while Group
II may have different biological mechanisms of melan-
oma compared to other patients while they do not show
clearly different survival patterns.

Discussion

We compared the pathway activity patterns between
Group I and II, and two pathways with distinguished ac-
tivity patterns were selected for further investigation.
The first pathway was a GO gene set Regulation of Cell-

||

Fig. 2 The result of applying hierarchical clustering to the 267 melanoma patient samples, using their computed sample pathway activities.
Two groups of patients (Group | and Il) were visually identified
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Table 2 Survival statistics of identified patient groups

Patient group Number of patients

Median survival (days)

Comparison versus the rest of the patients

Hazard ratio p-value (log-rank test)

Group | 90 4,254
Group Il 85 1,625.5
All = (Group | u Group l) 92 1,982

0.6298 0.0044
23281 0.03294
0.7150 046775

p < 0.05 are shown in boldface
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Cell Adhesion with one genetic interaction from Pathway
Commons, and the second pathway was a DNA
Fragmentation pathway with eight genetic interactions.

Difference between Group | and Il, based on regulation of
cell-cell adhesion

From each group, we computed the average pathway ac-
tivity distribution Pr(Regulation of Cell-Cell adhesion,
Group) by averaging the likelihoods of considered genetic
networks across the samples within the group. Figure 5(a)
shows the average activity pattern of the Regulation of
Cell-Cell adhesion pathway, where Group I patients have
higher likelihood of “Normal” genetic network while
Group II patients have higher likelihood for a network
with a missing SIRPG — CD47 interaction. The Regulation
of Cell-Cell adhesion pathway is involved in cell-cell
adhesion biology, which is a mechanism to bind a cell to a
surface, such as an extracellular matrix or another cell.
CD47 is a ligand for the SIRP protein family, and SIRP-
gamma can bind to CD47. As mentioned earlier, the
tumors from the Group II patients are more advanced
(or aggressive) melanoma, where cancer cells show
more break-in through skin tissues. As can be seen in
Fig. 5(b), the ligand CD47 shows consistent expression
across two groups of patients while SIRPG is not
expressed in Group II patients. This suggests that the
regulation of cell-cell adhesion might have been dis-
turbed with silencing of the SIRPG — CDA47 interaction
through inhibited SIRPG, and it can be one of the
mechanisms that cause tumor cells on the surface of

skin to break-in toward deeper placements in the later
stage melanoma.

Difference between Group | and Il, based on DNA
Fragmentation

We also compared the average pathway activity patterns
of the DNA Fragment pathway between Group I and IIL.
Figure 6(a) shows the average activity distribution of the
DNA Fragmentation pathway, where Group I patients
have higher likelihood of “Normal” genetic network.
This suggests that the genetic interactions in the DNA
Fragmentation pathway are better preserved in Group I
patient tumors than the case of Group II, indicating
Group II patients may have more abnormal activities of
the DNA fragmentation mechanism. The DNA fragmenta-
tion pathway is one of the mechanisms that can be utilized
during the immune response process, where immune cells
send signals into target cells and cause apoptosis through
the fragmentation of DNA in the target cells. From the
pathway activity patterns in Fig. 6(a), two genetic network
cases with two silenced genetic interactions (Net6 with a
missing GZMB — CASP3 interaction, and Net7 with a
missing GZMB — CASP7 interaction) are assigned with
higher likelihoods from Group II than Group I. GZMB is
expressed by cytotoxic T lymphocytes (CTL) and natural
killer (NK) cells, and it is crucial for the rapid induction of
target cell apoptosis. CASP3 and CASP7 are caspases, and
their sequential activation plays a central role in the
execution-phase of cell apoptosis. From Fig. 6(b), CASP3
and CASP7 are expressed from both of Group I and II
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patients, but GZMB is generally being inhibited in Group
II patient tumors. These silenced interactions between
GZMB and caspases genes suggest that the DNA fragmen-
tation mechanism of immune cells has been restricted in
Group II patients, resulting suppressed immune response.
This hypothesis is consistent with the comparison of
Group I and II, where Group II is enriched with later stage
of melanoma cases and show worse survival patterns.

Conclusions

We proposed a method to represent the complete
pathway activity patterns of individual gene expression
samples based on collected pathway information. By
using each pathway activity as a feature rather than
using individual genes, we formulated a distance meas-
ure PAVd that can compute the discrepancy between
two gene expression samples in the scope of activity
patterns of entire pathways. The proposed method of
sample pathway activity quantification and computing
distances based on the quantified activities has several
potential benefits, as active biological mechanisms from
individual samples can be more easily interpreted than

using individual gene-based approaches. Compared to
previous pathway evaluation methods such as GSEA [12]
or PARADIGM, the proposed method of computing PAV
provides unique functional benefit of analyzing single-
sample pathway activities with a resolution of genetic in-
teractions (Table 3), while PAV still needs to be extended
to incorporate multiple types of genomic data. By applying
the proposed method to cluster gene expression data of
melanoma patients, we identified two potential subtypes
of melanoma with distinguished pathway activity patterns.
The two identified groups of patients showed distinctive
survival patterns, and we suggested two hypotheses on
biological mechanisms that can distinguish and potentially
drive the two subtypes. This was possible because of our
novel formulation on pathway activity considering genetic
interactions, and we believe that there are much more
potential applications of this approach as all components
of the analysis — pathways, genetic interactions and etc. —
are defined based on probabilistic models and can be eas-
ily extended with additional features. The two identified
patient groups from this study correlate with stages of the
disease, but each group still includes patients with
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multiple different stages. This implies that disease-driving
biological mechanisms can reside across different stages of
disease progression, and the proposed method contributes
to identify such mechanisms.

We are considering several directions for future studies.
From our current study, we modeled the pathway activity
patterns with a genetic network of normal status and
genetic networks with only one missing interactions. Even
though we showed a successful application of our formu-
lation in this study, it will be definitely beneficial to con-
sider genetic networks with more than one missing

Table 3 Functional difference of the proposed PAV compared
to previous pathway evaluation methods

Interaction- Multi-type data Single sample
resolution integration evaluation
GSEA No No No
PARADIGM No Yes Yes
PAV Yes No Yes

J

interactions, which leads to the generalization of the
formulation with up to K missing interactions. We can
also develop methods to quantitatively evaluate the
abilities of pathways in discerning different clusters. As
our formulation of the distance measure satisfies the
properties of metric, we can incorporate the ideas of many
conventional cluster validation indexes to evaluate the
quality of clusters based on individual pathways. Lastly,
we considered only gene expression data in our study,
but integrating multiple types of genomic data in
evaluation of pathway activity patterns and computing
the effect of latent environment variables on pathways
can be a promising direction to extend our current
models.
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