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Abstract

Background: Free-text medication prescriptions contain detailed instruction information that is key when preparing
drug data for analysis. The objective of this study was to develop a novel model and automated text-mining method
to extract detailed structured medication information from free-text prescriptions and explore their variability
(e.g. optional dosages) in primary care research databases.

Methods: We introduce a prescription model that provides minimum and maximum values for dose number,
frequency and interval, allowing modelling variability and flexibility within a drug prescription. We developed a text
mining system that relies on rules to extract such structured information from prescription free-text dosage
instructions. The system was applied to medication prescriptions from an anonymised primary care electronic record
database (Clinical Practice Research Datalink, CPRD).

Results: We have evaluated our approach on a test set of 220 CPRD prescription free-text directions. The system
achieved an overall accuracy of 91 % at the prescription level, with 97 % accuracy across the attribute levels. We then
further analysed over 56,000 most common free text prescriptions from CPRD records and found that 1 in 4 has inherent
variability, i.e. a choice in taking medication specified by different minimum and maximum doses, duration or frequency.

Conclusions: Our approach provides an accurate, automated way of coding prescription free text information, including
information about flexibility and variability within a prescription. The method allows the researcher to decide how best
to prepare the prescription data for drug efficacy and safety analyses in any given setting, and test various scenarios and
their impact.

Keywords: Text mining, Natural language processing, Dose information, Prescriptions, CPRD

Background
Electronic health records (EHRs) are becoming widely
adopted in national healthcare systems in both primary
and secondary care. By collecting and aggregating data
from anonymised EHRs, research databases have been
established to support large-scale epidemiological analysis:
for example, the Clinical Practice Research Datalink
(CPRD, http://www.cprd.com/) provides comprehensive

longitudinal primary care data for over 11 million UK
patients to support observational research, making it the
world’s largest computerized healthcare database [1].
Examples of research supported by CPRD include drug
utilisation studies [2], pharmacoepidemiology [3] and
health services research [4]. Analysis of population data
within such databases is often dependent on coded or
structured information. For example, data on medica-
tion prescriptions include structured and coded infor-
mation about variables like date of prescription,
medication type, dosage and number of tablets. How-
ever, large parts of EHRs are un- or semi-structured.
During medication prescribing, the doctor is able to
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provide free text directions to the patient indicating
some details that are not coded (e.g. an option to
take a tablet when needed up to a maximum number
of times a day). In order to utilise this information in
large population analysis, additional processing to ex-
tract structured information is required. In many
cases, manual efforts have been undertaken to identify
and extract key information, but such approaches are
extremely time consuming and often inconsistent and
incomplete [5–7]. In this manuscript we present an
automated methodology to extract and represent pre-
scription instruction information in a structured form,
capturing, in particular, the variability and flexibility
of dosage information. For example, instruction ‘two
tablets up to three times a day’, could mean 0, 2, 4
or 6 tablets and we here propose an approach to
model, identify and record flexibility in drug direc-
tions as prescribed by doctors. Our main motivation
is to support researchers in making transparent deci-
sions when preparing prescription data for further
processing.
To identify key clinical information from unstructured

and semi-structured text, automated text mining has
been used for over 30 years [8–11]. It relies on various
lexical, syntactic and semantic techniques in order to
recognise and link various concepts [12–14]. Methods
have been applied to discharge summaries, clinical notes,
reports, health records and journal articles [15–18], and
the results – despite numerous challenges – have dem-
onstrated the potential of text mining to streamline data
collection, improve healthcare, decrease health costs,
reduce the risk of medical errors and enhance medical
understanding [18–21].
There have been a number of studies that specific-

ally focused on the extraction of medications from
clinical text [10, 22, 23]. These have mostly focused
on the identification of textual expressions that refer
to drug usage, extracting characteristics such as medi-
cation dose (e.g., “2 tablets”, “5 ml”), mode of admin-
istration (e.g., “orally”), frequency (e.g., “every two
hours”) and duration (e.g., “for 2 days”). However, the
aim was often to identify mentions of these character-
istics in text, rather than to convert them into struc-
tured values that can be used directly for data
analytics or epidemiological research. This is in
particular important in cases where prescriptions have
an optional dose (e.g., “2-3 tablets”), optional fre-
quency (e.g., “twice a day as required”) or an interval gap
between the medication administration (e.g., “every other
day”). In these cases, existing text mining approaches
do not aim to provide full information in a struc-
tured form (e.g., that a tablet is to be taken either 2
or 3 times), but rather extract textual spans that
need further processing in order to identify the

options. For example, from “2-4 tablets each morning as
needed”, existing approaches would extract “2-4 tablets”
as dose number, without specifying that the patient
has an option to take between 2 (minimum dose
number) and 4 (maximum dose number), or even to
skip it completely (“as needed”). Having this detailed
information explicitly represented and extracted is key
for allowing healthcare data analysts to study the im-
pact of different prescription options and plans. For
example, “take 1-2 tablets per day” can be used to
analyse the effects of using a minimum dose of 1 or
a maximum dose of 2 tablets, rather than assuming
that the patient will take an average of 1.5 tablets
each day.
This paper presents a novel approach to model and ex-

tract structured detailed values that represent the pre-
scribed drug usage to support subsequent epidemiological
studies. Specifically, we introduce a model to represent
the variability and flexibility in drug directions, including
minimum and maximum values for drug dosage, fre-
quency and interval of administration, as well as optional
choices. We also present a text mining system that en-
ables the identification and structuring of the model
components, and evaluate its performance on a subset
of the CPRD prescription records. Using the system, we
then provide descriptive statistics of the medication in-
formation variability having run the tool on a set of
56,000 most common free text instructions from the
CPRD database.

Related work
There are several approaches to the extraction of medica-
tion information from unstructured clinical notes. One of
the early examples is that of Evans and colleagues [5], who
introduced a rule-based approach that identified targeted
dose information (dose level and frequency, duration, rate,
necessity, purpose, quantity) from discharge summaries
with a relatively good performance (an accuracy of 80 %).
More recently, the identification of medication mentions
and corresponding attributes (dose, mode of administra-
tion, frequency, duration and reason for administration) in
hospital discharge summaries was a focus of the 2009 i2b2
Clinical Data Challenge, which attracted 19 international
teams with different methodologies ranging from rule-
based systems to machine learning [24]. A number of
systems (e.g. [10, 23, 25]) utilized rule-based methods
and reported F-scores (the harmonic mean of preci-
sion (i.e. positive predictive value) and recall (i.e. sen-
sitivity)) between 78 % and 86 %. Patrick et al. [9], on
the other hand, relied on machine learning techniques
(conditional random fields (CRFs) and support vector
machines (SVMs)) with an overall 86 % F-score.
Following the challenge, Doan et al. [26] applied vari-
ous classifiers with different voting strategies in order
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to combine outputs from three individual classifiers (a
rule-based system, SVM and CRF) with an F-score of
91 %. More recently, Sohn et al. [27] described a
medication extraction and normalization system
(MedXN) that is based on the RxNorm dictionary
combined with inference rules. They aimed to identify
various components of medication prescriptions from
clinical notes including drug dosage and frequency
with a 92 % and 84 % F-scores respectively. Finally,
MacKinlay et al. [28] proposed a dependency graph-based
system for the recognition of dosage information such
as the minimum and maximum dose numbers and
the dose unit with an overall accuracy of 80 %,
optional doses with 88 % accuracy and the dose fre-
quency with 90 % accuracy. However, they have not
focused on the identification of the minimum and
maximum dose frequency, nor the minimum and
maximum dose interval.

Methods
Prescription data model
The CPRD database contains over 56,000 most com-
mon free-text prescription rubrics that GPs have used
to instruct administration of medications. Examples
include:
We note that prescription directions do not contain

information about the prescribed drug itself, nor do
they typically specify mode and reason for it being
prescribed; this information is however available in
other structured attributes in the database and can be
therefore easily retrieved. We also note that access to
data from CPRD is subject to a full licence agreement
and an Independent Scientific Advisory Committee
approval.
In order to comprehensively represent the information

in free-text medication prescriptions, we have designed
and developed a model that records the following four
attributes: dose number, dose frequency, dose interval
and dose unit.
Dose number is the number of medication units

taken in a single dose. We record the minimum and
maximum dose number as prescribed, along with the
dose unit (e.g., capsule, tablet), which represents the
item of medication taken. If there is a choice left as
to how much the patient can take, the values for the
minimum and maximum will be different; otherwise
these will be equal. For example, expression “2-4 tablets”
is represented as a minimum dose of 2 and a maximum
dose of 4, with “tablet” as the unit. In expression “5 ml”,
both the minimum and maximum dose will be set to 5,
with “ml” set as the unit. If there is an option not to
take medication (e.g., “up to 2 tablets”), the minimum
dose is set to 0.

Dose frequency represents the number of times the
dose is taken in the dose interval – we use day as the de-
fault interval for the medication administration unless it
has been stated otherwise (see below). For example, if a
medication is taken every 4 h, then the frequency is 6
times per day. We record the minimum and maximum
dose frequency. For example, in the expression “3-4
times”, the minimum frequency is 3 (times per day),
and the maximum frequency is 4. If there is no
choice, the value for both the minimum and max-
imum is the same. In cases where the prescription
offers an option to take medication if/when required
(e.g., “take one every day when required”), the mini-
mum frequency is set to 0.
Dose interval is the time interval to which the dose

frequency applies. For example, if a medication is taken
daily, then the interval refers to the daily application.
We use “daily” as the main (default) unit; if a medication
is taken weekly, then the interval is 7 days. We record
the minimum and maximum dose interval. For example,
in the expression “every 3 to 5 days”, the minimum
interval is 3 (days), and the maximum interval is 5. If
there is no choice, the value for the minimum and max-
imum will be the same. For example, if a medication is
taken on alternate days, the minimum and maximum
dose intervals are set to 2 days between the administra-
tions of the medication.
Table 1 provides examples of prescriptions with

their respective representation in our model. In
cases when certain information is not available (i.e.
not expressed in the prescription), we use ‘?’ to rec-
ord an unspecified value. Note, however, that in
cases where the dose interval is missing, we assume
that it is “daily” (unless the prescription refers to an-
other source (e.g. “as directed”)).

Extraction of dosage information
Medication prescriptions recorded in rubrics are often
dense with information, some of which can be
ambiguous due to abbreviations, often of Latin
nomenclature such as “tds” (Lat. ter die sumendus,
three times per day, see Additional file 1: Table S1
for common examples), and confusing (numerical)
lists of value (e.g., “take 2 3 4 times per day”). In
addition, they often contain a number of typograph-
ical errors and misspellings.

one every 8 hrs5mls daily when
requiredtwo drops every 3 hrs when
requiredapply sparingly 1-2 times
dailyup to three 5 ml spoonsful to
be taken twice a day

one drop once daily l eyefour times a
day if neededone to be applied two
times weektwo times every week
when required

Karystianis et al. BMC Medical Informatics and Decision Making  (2016) 16:18 Page 3 of 10



A rule-based system was designed and implemented
for the extraction of detailed prescription information.
The approach has two steps (Fig. 1). In the first step, a
set of dictionaries and rules are applied to the free-text
prescription aiming to identify and populate candidate
values in the model instance for that prescription. In the
second step, a number of meta-rules are applied to
provide consistency, set defaults for missing values or
correct any values regarded as likely to be incorrect.
These steps are explained below.

Step 1: Application of dictionaries and rules
A random sample of 200 free-text prescription instructions
was chosen from more than 56,000 most commonly used

CPRD instructions, and was manually reviewed in order to
identify their lexical composition and engineer rules. A set
of dictionaries (a total of 13, see Additional file 1: Table S2)
was created for various medication attributes that appear in
prescription free text, including common expressions for
dose units, Latin abbreviations used for dose frequency,
periods, etc. Around 300 generic rules were manually de-
signed to model the three aspects of medication prescrip-
tion: dose number, frequency and interval; we have also
engineered rules to identify mentions of dose units. The
rules rely on two types of constituent:

a. specific semantic classes (e.g., expressions referring
to meals or numbers); these are either represented

Table 1 Examples of prescription instructions represented in our model

Prescription dn_min dn_max df_min df_max di_min di_max dose unit

take 2 tablets 4 times a day 2 2 4 4 1 1 tablet

2 tabs qid 2 2 4 4 1 1 tablet

a half to one tablet to 2 three times a day when required 0.5 2 0 3 1 1 tablet

10 mg to be taken weekly 10 10 1 1 7 7 mg

2 with each meal 2 2 3 3 1 1 ?

take 2.5 ml twice a day 2.5 2.5 2 2 1 1 ml

half a tablet twice a day when required 0.5 0.5 0 2 1 1 tablet

2 puffs 6 hrly prn 2 2 0 4 1 1 puff

1 to 3 every day 1 3 1 1 1 1 ?

one or two to be taken every 4 to 6 hours 1 2 4 6 1 1 ?

take as directed 1 ? ? ? 1 ? -

apply as needed 1 1 0 ? 1 ? -

dn_min is dose number (minimum), dn_max is dose number (maximum), df_min is dose frequency (minimum), df_max is dose frequency (maximum), di_min is
dose interval (minimum), di_max is dose interval (maximum). Additional file 1: Table S1 contains examples of frequent Latin abbreviations

Fig. 1 The two-step approach for the extraction of structured dose information from CPRD prescription instructions
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by the dictionaries or modelled using regular
expressions (i.e. patterns that match character
combinations in text strings; e.g., standard numerical
expressions are represented as series of digits). These
classes can include lexical variation: for example,
numbers (NUM) can include not only standard
numerical expressions, but numerical ranges (e.g., 2-3)
or numerals expressed in words (e.g., “two”).

b. semi-frozen lexical expressions, used as anchors or
context for mentions of certain types of medication
information. For example, we modelled a variety of
lexico-syntactic expressions that indicate expressions
for administration of a medication such as “take
NUM pills”, where NUM indicates a number or
range (as above).

The rules are designed as syntactic patterns consisting
of these two constituents (i.e. semi-frozen chunks and/

or semantic place holders). For example, a rule that
captures the minimum and maximum dose number
would have two parts: a semi frozen verbal expression
(e.g., “take”, “inhale”, “use”), followed by a numeric
mention matched by the numeric regular expressions and
a possible time unit (“2 a day”, “3-4” every week”). Table 2
shows the number of rules created for each of the medica-
tion prescription attributes (dose, frequency, interval, unit),
along with some typical examples. For the implementation
of the rules we used MinorThird [29], an information
extraction development environment, with default, built-in
tokenisation.

Step 2: Structuring the extracted information
The rules applied in Step 1 aim to identify candidate
mentions that correspond to a specific attribute. The
recognised candidate mentions are then used to capture
the minimum and maximum values of each attribute

Table 2 Examples of rules for the recognition of dosage attributes in medication data

The rules were implemented in MinorThird [29] and we use its notation here. Only the part in brackets (the string of interest) is being extracted as a mention (i.e.,
annotation); the rest of the rule (if any) specifies the context/anchors. The rules use explicit matching of spans (e.g., eq(‘times’)), the dictionary matches for single
(e.g. a(verb) – matching verbs that indicate the administration of a medication (e.g., take, insert)) and multiword terms (e.g., @period, see Additional file 1: Table
S2). Number models numerical expressions including those belonging to the dictionary “number”; a(timeUnitLy) matches the words of the dictionary “timeUnitLy”
with prescription text that indicates an adverb of time e.g., “daily”, “weekly”, etc; @perTimeUnit recognises syntactical patterns of the dictionary “perTimeUnit” that
contain both numeric and word phrases in prescription text e.g., “four times a day”, “2 times per week”, etc.; a(timeUnit) identifies the words from the “timeUnit”
dictionary (see Additional file 1: Table S2)
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using a number of rules that capture lexical expressions
of ranges (e.g., “2 to 4”, “2-4”, “between 2 and 4”).
Additional rules have been created to deal with optional
values (e.g., “up to NUM”, or matching specific expres-
sions such as “as necessary”, “when required”, “if
needed”); in such cases, the minimum dose frequency is
set to 0. A number of defaults were used in cases where
information is not explicitly represented in the prescrip-
tion text. For example,

� The minimum and maximum dose numbers are set
to “1” in cases where the prescription text is not
specific about dose numbers, but still contains
information for the identification of dose frequency
(e.g., the dose number is set to 1 for all of these
“apply four times a day when required”, “to each eye
every four hours”, “every morning after food”, “take in
the morning for blood pressure”).

� The minimum and the maximum dose number are
set as an average in prescriptions that include two
(or more) unequal doses per day (e.g. the dose
number in “one every morning and two every night”
is set to 1.5). We record the dosage frequency in the
standard way (“2” in the previous example, as the
medication is to be taken twice (morning, night)), so
that the total daily dosage can be inferred (see also
discussion in Section 3.3).

� The minimum dose interval is set to “1” and the
maximum to “?” when the prescription text contains
no information that suggests any specific detail or
context (e.g., “as directed”).

� Common general meal-time expressions (e.g., “with
each meal” or “after meal”) were assigned a daily
frequency of 3, with individual meals counted as
frequency of 1 (e.g., “with breakfast”).

This step is also used to check consistency (i.e. that
the minimum value is not bigger than the maximum),
and inconsistent cases would be discarded.

Results and discussions
We performed two experiments: first, using a small
gold-standard sample, we aimed to evaluate the per-
formance of the proposed text mining approach (Section
3.1). Then, using a larger set, we aimed to explore, quan-
tify and discuss the practice in medication prescriptions
from CPRD (Section 3.2). The study was approved by
the CPRD Independent Scientific Advisory Committee
(ref 11_154A).

Gold-standard evaluation
The initial set of 200 free-text CPRD prescription in-
structions was used to develop and tune the system, and
these were not used for the evaluation. Following the

development of the system and in order to create a gold
standard for the evaluation, a new set of 100 medication
prescriptions was randomly selected from the CPRD
dataset of 56,000 free-text prescriptions, and manually
and independently annotated by the authors: a clinical
consultant (WGD), a health informatician (GN) and a
health informatician with medical background (GK). The
initial inter-annotator agreement was 93 % at the pre-
scription level, calculated by the absolute agreement rate
[30], indicating a very good annotation consistency. All
disagreement cases were reviewed, and were considered
omissions (e.g., a wrongly recorded maximum dose
number) rather than fundamental disagreement. The
data were then corrected by the agreement of all annota-
tors. Following this, another random set of 120 CPRD
prescriptions was manually annotated by GK and
merged with the 100 gold-standard prescription instruc-
tions to form the final evaluation dataset.
Out of the 220 prescription instructions in the

gold-standard dataset, 33 (15 %) contained different
values for minimum/maximum values in at least one
of the attributes, and a further 26 (12 %) contained at
least one of the minimum/maximum values unspecified
(i.e. represented as ‘?’).
The prescription extraction system was then applied

to the gold-standard set and the results were compared
to the human annotations. We used accuracy to assess
the system’s performance, defined as the number of cor-
rectly identified and structured medication attributes
(true positives) divided by the total number of prescrip-
tion attributes in the evaluation set. We calculated the
accuracy at both the dosage attribute levels and also at
the prescription level.
Table 3 provides the detailed results at the dosage at-

tribute level. The accuracy values were ranging from
94 %-100 %, suggesting reliable results across all the
medication attributes. The minimum dose interval and
dose unit had the highest accuracy (100 %), while max-
imum dose frequency had the lowest accuracy of 94 %.
At the prescription level, each free text record is

Table 3 The accuracy of the medication attribute extraction

Dosage attribute True positives (out of 220) Accuracy (%)

dose number (minimum) 211 95.9

dose number (maximum) 210 95.4

dose frequency (minimum) 210 95.4

dose frequency (maximum) 207 94.0

dose interval (minimum) 220 100.0

dose interval (maximum) 217 98.6

dose unit 220 100.0

(macro) accuracy 97.0

Accuracy is shown for each attribute, considered separately. Macro accuracy
represents an average of the accuracy values across different attributes
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considered a true positive only if all its attributes have
been successfully identified. The accuracy at the pre-
scription level was 90.9 %, suggesting relatively reliable
results.
By analysing the results, two bugs were identified

caused by oversights in the system implementation:
while we handle half dose units generally, due to a
hiccup it was not included in the rule for handling cases
of varying administration at different times (e.g. in “one
in the morning and half at night”). Another oversight
was missing “or” as a range operator for the expression
of alternative dosages (e.g. in “20 or 40 mg before meals
four times a day”). We note that these bugs were cor-
rected before using the system for the analysis described
below.

Analysis of free-text instructions in CPRD
We applied the system to 56,114 most common free text
instructions within CPRD (see next paragraph), to ex-
plore how much variability (i.e. minimum, maximum
values, optional dosages) is presented in free text pre-
scriptions. We note that here we do not aim to look at
the variability of prescriptions across and between pa-
tients, but rather the level of flexibility in a single
prescription.
The data set was obtained from the “common_do-

sages” table in CPRD, which is a generic look-up table of
most common free text instructions that GPs type
within electronic prescriptions. This table is a generic re-
pository of all different (unique) free-text directions that
have been collected from the whole CPRD for all treat-
ments and diseases. Each row corresponds with instruc-
tions about how a drug is to be taken (but no
information about the drug itself is included – this infor-
mation is available in other tables).
We note that for a total of 406 records (0.72 %), we

were not able to extract any dosage information. A man-
ual review of a random sample of 30 such prescriptions
showed that indeed no useful information was present
that could be extracted (e.g., “~ ~ ~ ~ ~ ~ ~”, “1-2 four”,
“28percent”, “40n”, “human”). We also note that there
were no cases that were discarded because of inconsistent
values (i.e. the minimum value is bigger than the
maximum).
Table 4 provides an overview of the dosage attri-

butes identified in this data set. Almost a quarter of
prescriptions (24 %) have variability in at least one at-
tribute (i.e. different min/max value, where both
values are specific): 11 % had different minimum and
maximum dose numbers (e.g., “2-4 tablets”) and 18 %
had different minimum and maximum dose frequen-
cies (e.g., “2-3 times”). Only 55 examples (less than
0.1 %) had different minimum and maximum dose in-
tervals (e.g., “every 2-3 months”).

A fifth of prescriptions (20 %) had at least one un-
specified dosage attribute (either minimum or maximum
dose number, frequency or interval). We note that there
were no unspecified values in dose numbers as we have
provided defaults when these are not explicit. On the
other hand, almost two thirds of the prescription instruc-
tions did not contain information regarding dose units,
but this information is available from other tables within
CPRD. Still, a total of 22 different dose units were recog-
nised in free-text instructions, with tablet and millilitres
as most frequent dose units (30 % and 27.5 %
respectively).

Discussion
Our analysis of free-text prescriptions in the CPRD data-
base shows that a substantial proportion of records have
flexibility or variability in prescribed dosage and/or fre-
quency, and therefore the ability to represent such de-
tails is key for supporting pharmacoepidemiology
researchers in preparing prescription data for further
processing. We note that the CPRD database does con-
tain transformation of the free text prescriptions into
various structured dose variables, but their model does
not allow for further choices that the researchers can
make in cases where there is variability or flexibility in
drug administration, as in such cases the attributes are
recorded by a single average value, without specifying
prescribed options or ranges. In particular, cases where
drugs are taken when or if needed are not recorded. Our
model, on the other hand, allows researchers to explore
effects of all such variability by making transparent deci-
sions as to which values have been taken into account.
While the quality of text-mined data was high, there

were still cases where the system failed to extract correct
information. Such cases in the evaluation gold-standard
dataset were analysed in detail (see Additional file 1:
Table S3 for all errors). We summarise here the major
challenges:

Table 4 Medication prescription variability in the most
common CPRD prescription instructions

Prescriptions with Number of such prescriptions
(out of 56,114)

Prescriptions
percentage

all medication
elements as “?”

406 0.7 %

at least one element
as “?”

11,696 20.8 %

dn_min≠ dn_max 6,278 11.1 %

df_min≠ df_max 10,249 18.2 %

di_min≠ di_max 55 0.1 %

no dose units 36,111 65.4 %

dn_min is dose number (minimum), dn_max is dose number (maximum),
df_min is dose frequency (minimum), df_max is dose frequency (maximum),
di_min is dose interval (minimum), di_max is dose interval (maximum)
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� Misspellings: As with other types of clinical text [31,
32], prescription records often contain
misspellings (e.g., “2bd bil””, “aplly twice daily”).
For example, in our evaluation set, 11.8 %
(26 out 220) of prescription instructions had
misspellings. A common source of errors is the
misspelling of dose units or frequency keywords,
which have failed to trigger relevant rules. In
such cases, most if not all of dose attributes
would be unrecognised (not only the one linked
to the cue word in question). For example, half
of the cases where the dose number was
incorrectly identified were due to misspellings
(e.g. “1 mnae”, “2-3 spoonsfuls to be taken twice
daily”), as the system failed to recognise
misspelled keywords (e.g., “mnae” for “mane”;
“spoonsfuls” for “spoonfuls”), which are used to
trigger the associated rules.

� Tokenisation: The tokenisation approach used in
MinorThird has resulted in a number of errors. For
example, our pre-processor did not tokenise on ‘/’
(e.g., “take 1 mane/take 1 at night” has “mane/take”
as a single token). In addition, spaces were some-
times missing between dosage attributes (e.g., dose
number and dose frequency - “1mnae”, “1-
26hlryprn”), which makes it challenging to identify
correct tokens.

� Structural ambiguity: There are cases where the
prescription text can be interpreted in more than
one way, often as a result of typographic errors or
omissions. For example, prescription “take 1 2 3
times per day” can be read as “take [1 or 2 DOSE
UNITS], [3 times per day]” or “take [1 DOSE UNIT],
[2-3 times per day]”. A similar case is “a half to one
tablet to 2 three times a day when required”, which
can be either interpreted as “[a half to one tablet] [to
2 three times] a day [when required]” (“0.5 to 1
tablets, 2-3 times a day when required”) or “[a half
to one tablet to 2] [three times] a day [when re-
quired]” (“0.5 to 2 tablets, 3 times a day when re-
quired”). Our system opted for the latter, identifying
the second “to” as a dosage number cue rather than
a frequency cue (and not realising that it is likely
that there was a typo where “to” and “2” were
swapped in the original text). Similarly, other types
of ambiguity also proved challenging. For example,
prescription “6 per day” can mean either 6 dose
units taken at once, or one taken 6 times. While be-
ing ambiguous, we note that the pattern of adminis-
tration within a day may not be important for a
given data analysis (and thus may not matter which
one – in this case – is extracted). Another example
is “2 for pain”, where the missing interval (per day
or just one-off ) makes the whole expression

under-specified. Another example is “apply 2 times
a day when required”, which could be interpreted as
“twice a day on days when required” or “apply daily
up to 2 times when required”.

� Lexical coverage in the dictionaries: Despite a
reasonable assumption that the prescription lexical
space is limited, we have still encountered cases
where the dictionaries were not complete in
particular for some variation of common concepts
(e.g., “tablet(s)”).

� Acronyms and abbreviations: Medical
abbreviations are used extensively, and they
appear in multiple ways. Acronyms can also be
ambiguous (e.g., “od” that can stand either for
“once a day” or for “oculus dexter”, right eye),
and additional information (e.g., other linked
tables in CPRD) may need to be used to
disambiguate them.

� Varying dosages: While we aimed to model (and
extract) cases where there were different doses taken
in different times (e.g., “one every morning and two
every night”, “take 3 in the morning 2 at teattime
and 3 at night”), the system missed some specific
patterns of variability. For example, there were cases
where prescriptions require administration at
different specific time(s) on the hour scale (e.g.,
“take one tablet and then at 8 am and one at 2 pm”,
“1 at 8 am 1 at 4 am”). We note that the model
would need to be expanded to allow representation
of specific dosages for each administration point in
cases where such granularity is of interest for drug
exposure modelling (e.g., “take 3 in the morning 2 at
teattime and 3 at night” can be modelled as three
parallel drug administration events – one for
morning, one for mid-day and one for night).

� Drug administration duration and breaks: A
special type of prescription is that which asks for
a specific duration or requires breaks in taking
medication (e.g., “1 daily for 21 days then 7 day
break caution if vomiting diarrhoea antibiotics”, “2
drops to each eye every 2 hour for 24 hour then 2
four times a day til settled for 2 day”; “2 to start
then 1 after each loose motion up to 16 mg total
daily”). This type of prescription instruction
requires an extended model to represent the
dynamics of the drug administration. There are
also examples that suggest a single, one off,
dosage administration (e.g., “take 1 at 9 o clock”),
which is not currently supported by our model.

Our rule-based approach to the extraction of prescrip-
tion details proved to be both effective and efficient.
While building rule-based systems is often time consum-
ing, in this case, the whole system was engineered within
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two months of effort, requiring further two months for
tuning and adjustments. The complementarity of expert-
ise within the development team covered both clinical
aspects and text mining experience, which led to the
rapid implementation of the lexicalised rules. Given the
modular implementation, any further changes in the
model can be relatively quickly deployed.

Conclusion
Electronic health record research databases, such as the
CPRD, contain a wealth of patient information including
coded data and information that appears only in unstruc-
tured text. This includes free-text directions from the pre-
scribing doctor associated with medication prescriptions.
In this paper we introduced a model and presented a rule-
based system for the identification of detailed structured
medication dosage attributes (dose number, dose fre-
quency, dose interval, dose unit). The system specifically
captures the variability and flexibility in instructions, such
as different minimum and maximum dosages. The evalu-
ation process revealed reliable performance with an overall
accuracy of over 90 %, suggesting that the proposed imple-
mentation can be useful for exploring prescription patterns
on a large scale. In the analysis of most common free-text
prescriptions in the CPRD database, we were able to dem-
onstrate that at least a quarter of prescriptions have some
level of variability or flexibility. By capturing the variability
in the possible range of exposures from a single prescrip-
tion, we allow the researcher to select how they would like
to model the exposure, for example selecting the minimum
dose number, maximum dose number, average dose num-
ber or a random dose number within the minimum to
maximum range. While some issues still remain for future
work (e.g. handling dosage duration, varying dosages and
breaks/different dynamics in medication administration),
the current model can be used to prepare drug exposure
information for epidemiological studies.
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