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Abstract
Background: Emergency department (ED) based syndromic surveillance systems identify
abnormally high visit rates that may be an early signal of a bioterrorist attack. For example, an
anthrax outbreak might first be detectable as an unusual increase in the number of patients
reporting to the ED with respiratory symptoms. Reliably identifying these abnormal visit patterns
requires a good understanding of the normal patterns of healthcare usage. Unfortunately,
systematic methods for determining the expected number of (ED) visits on a particular day have
not yet been well established. We present here a generalized methodology for developing models
of expected ED visit rates.

Methods: Using time-series methods, we developed robust models of ED utilization for the
purpose of defining expected visit rates. The models were based on nearly a decade of historical
data at a major metropolitan academic, tertiary care pediatric emergency department. The
historical data were fit using trimmed-mean seasonal models, and additional models were fit with
autoregressive integrated moving average (ARIMA) residuals to account for recent trends in the
data. The detection capabilities of the model were tested with simulated outbreaks.

Results: Models were built both for overall visits and for respiratory-related visits, classified
according to the chief complaint recorded at the beginning of each visit. The mean absolute
percentage error of the ARIMA models was 9.37% for overall visits and 27.54% for respiratory
visits. A simple detection system based on the ARIMA model of overall visits was able to detect 7-
day-long simulated outbreaks of 30 visits per day with 100% sensitivity and 97% specificity.
Sensitivity decreased with outbreak size, dropping to 94% for outbreaks of 20 visits per day, and
57% for 10 visits per day, all while maintaining a 97% benchmark specificity.

Conclusions: Time series methods applied to historical ED utilization data are an important tool
for syndromic surveillance. Accurate forecasting of emergency department total utilization as well
as the rates of particular syndromes is possible. The multiple models in the system account for both
long-term and recent trends, and an integrated alarms strategy combining these two perspectives
may provide a more complete picture to public health authorities. The systematic methodology
described here can be generalized to other healthcare settings to develop automated surveillance
systems capable of detecting anomalies in disease patterns and healthcare utilization.

Background
The earliest detectable sign of a covert germ warfare attack

may be unusual increases in the number of people seeking
healthcare. For example, victims of an anthrax attack
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might present to emergency departments with flu-like or
respiratory syndromes [1]. The identification of abnor-
mally high visit rates relies on a good understanding of
the normal patterns of healthcare utilization. Once ex-
pected rates of utilization are established, alarm thresh-
olds can be set for public health alerts.

Most previous models of healthcare usage have not incor-
porated real time data and were generally built to improve
resource management, rather than to detect diseases [2–
4]. Recently, the growing bioterrorist threat has led to the
development of real-time syndromic surveillance systems
built on top of existing information systems [5–7], with
increased research activity in the biomedical engineering
[8], public health [9], and general scientific [10]
communities.

A number of different approaches have been developed
for syndromic surveillance, with systems monitoring over
the counter drug sales [11], web-based physician-entered
reports [12], consumer health hotline telephone calls
[13], and ambulatory care visit records [14]. However, due
to the timeliness and data availability considerations, the
majority of systems to date have focused on monitoring
visit data from emergency department information sys-
tems. Several regional syndromic surveillance systems
that focus on real time clinical and administrative emer-
gency department datasets have been deployed [15–17].

Two data elements consistently relied upon are the Inter-
national Classification of Disease (ICD) diagnostic codes
and ED chief complaints (CC). ICD codes are universally
used in the United States for hospital billing. Many EDs
also record information about patients' presenting chief
complaints. ICD and CC data often become available in
databases during or shortly after a patient's visit, thus pro-
viding a basis for real time surveillance. CCs vary in qual-
ity because they are recorded prior to physician
involvement in care, but on the other hand are timelier
because they are elicited and recorded upon arrival to the
ED. The ICD billing codes tend to be more accurate,
though the delay in their availability ranges from hours to
weeks [18,19]. To enable interoperability between differ-
ent systems, data interchange standards are being pro-
posed for communicating emergency department data for
public health uses including syndromic surveillance [20].

Our goal is to be able to detect a possible anthrax attack
by detecting an anomalous surge in emergency depart-
ment usage and particularly in patients presenting with
respiratory and flu-like syndromes. Using CC data, we
sought to define the expected daily rates for emergency de-
partment total volume as well as for the frequency of visits
of patient with flu-like and respiratory illness. These ex-

pected rates can be compared with actual rates in attempt-
ing to identify anomalies.

In addition to presenting a generalized framework for bi-
osurveillance model development, the paper tests the
model with simulated outbreaks, and includes a proposal
for handling specific alarm-related issues that arise with
ARIMA-based models. Furthermore, the present study fo-
cuses on data from a pediatric population, something not
prevalent in the prior literature.

Methods
The record review was approved by the Children's Hospi-
tal Boston Committee on Clinical Investigation (Protocol
Number M-01-03-040). The setting was Children's Hospi-
tal Boston, an urban, tertiary care pediatric teaching facil-
ity. Subjects were consecutive patients visiting the
emergency department from June 2, 1992 through Janu-
ary 4, 2002. Patients with respiratory illness were identi-
fied using a previously validated set of chief complaint
and ICD codes.

We built models of ED utilization using a time-series an-
alytic approach. Models were constructed through an iter-
ative process and were trained on roughly the first eight
years of data (2,775 days). The remaining two full years of
data (730 days) were reserved for testing and validation.
The model and the statistical methods used in its develop-
ment are described below. Complete details are also avail-
able from the authors. Our approach consisted of three
main phases: signal characterization, model develop-
ment, and model validation.

Signal characterization
As a first step towards understanding the trends and be-
haviours of ED utilization, we performed a principal Fou-
rier component analysis on the daily visit totals (Figure 1).
A Fast Fourier Transform (FFT) was calculated from the
time series data, and the results indicated the presence of
strong weekly and yearly periodicities in the data. The
analysis was performed using the Matlab software pack-
age, Release 12, Version 6.0 [21]. Guided by these find-
ings, we calculated the ensemble average profiles for both
the weekly and yearly periodicities (Figures 2 and 3).
These profiles represent the average number of visits for
each day of the week and year respectively.

Model development
Our model development methods followed established
time series forecasting procedures. The signal was broken
up into its various components: the overall mean, the
weekly trend and the yearly trend. Mean Absolute Percent-
age Error (MAPE) was used to measure of quality of fit. A
MAPE of 0% indicated a perfect fit of the model to the
training dataset.
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The trimmed mean seasonal model was then constructed
from the overall mean, the weekly trend, and the yearly
trend, as follows:

Expected number of visits = Overall mean.+ Mean for day of
week + Trimmed mean for day of year

We started with a simple-mean model that consistently
predicted 137 total visits every day, 48 of which were res-
piratory-related. This mean was subtracted from the data.
Next the weekly average profile of the resulting signal was
calculated, yielding a model of the average utilization pat-
terns for each day of the week. The weekly profile was also
subtracted out from the data. The yearly average profile of
the resulting signal was calculated, yielding a model of the

average utilization patterns for each day of the year. To in-
crease the robustness of this model and ensure that it was
not overly sensitive to outliers in the training set, a
trimmed mean function (ignoring a certain percent of the
highest and lowest values) was used for calculating the
yearly profiles. Testing a range of trimming magnitudes,
we found that excluding the highest and lowest 25% of
the values yielded the best results as far as improving the
quality of fit (low MAPE).

When analyzing the residuals (forecasting errors) of the
trimmed-mean seasonal model, a significant degree of au-
tocorrelation was detected. Significant autocorrelations
indicate that, for example, a high utilization rate on one
day is associated with a high utilization rate on the

Figure 1
Fourier analysis. Fourier analysis of daily visit totals reveals strong weekly and yearly periodicities. Power is shown on the Y 
axis with frequency (1/day) shown on the X axis.
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following day. To model these localized auto-correlative
effects, we fit an Auto-Regressive Integrated Moving Aver-
age (ARIMA) time-series forecasting model to the residu-
als (forecasting errors) of the trimmed mean seasonal
model. This class of models is often used in economic
time series forecasting, and is described in full detail in
[22]. The ARIMA model was fit using the SAS Release 8.2
software package Time Series Forecasting System (Cary,
NC) [23].

Three main parameters need to be selected when fitting an
ARIMA model: the order of autocorrelation (AR), the or-
der of Integration (I), and the order of Moving Average
(MA). The higher-order models are more complex and can
usually achieve a better fit of the training data set, while

the simpler low-order models are usually less likely to
over-fit to training dataset.

The first derivative of the data was taken to ascertain
whether Integration would improve the model. Since
forecasting was not improved, the optimal degree of inte-
gration was determined to be zero (I = 0). Different com-
binations of AR and MA orders were then tested. Of all the
models tested, an ARIMA(2,0,1) model (second-order
Auto-Regressive combined with first-order Moving Aver-
age) was found to work best for overall ED volume. An
ARIMA(1,0,1) model (first-order Auto-Regressive com-
bined with first-order Moving Average) was found to work
best for respiratory-related ED volume. The SAS toolkit

Figure 2
Weekly patterns. Weekly ensemble average of daily visit totals, shown from Sunday through Saturday, reveal a peak in visits 
on the weekends.
Page 4 of 11
(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2003, 3 http://www.biomedcentral.com/1472-6947/3/2
was used to automatically fit the parameters for the
models.

Model validation
The models, trained on approximately the first eight years
of data – the training set, were validated using the final
two years of the dataset – the validation dataset. Again, a
MAPE of 0% indicated a perfect fit of the model to the val-
idation dataset.

We set out to quantify the detection performance of a bi-
osurveillance system based on the above ARIMA model of
overall ED volume by measuring its ability to detect out-
breaks. Since the historical dataset used here was devoid
of any known outbreaks and there is a paucity of data

available on actual germ warfare attacks [11], we intro-
duced a set of simulated outbreaks into the historical visit
data by adding a certain number of simulated visits to
specified days.

The simulated outbreaks lasted seven days each. While
real outbreaks may last well beyond these durations, we
focused on the first few days since useful detection sys-
tems should be able to spot outbreaks within that time-
frame.

The outbreaks were spaced 15 days apart and there were
233 simulated 7-day outbreaks in total inserted into the
data. This ensured that all the effects of any previous out-
break could be reset from the detection system's memory

Figure 3
Yearly patterns, total visits Yearly ensemble average of daily visit totals, shown from June through June, reveals an increase 
in visits during the winter months.
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before the onset of the next outbreak. Furthermore, since
the only significant periodicities present in the data were
seven day (weekly) and 365.25 day (yearly), the 15-day
spacing of outbreaks yielded a good unbiased sample of
days for infusing outbreaks.

Each complete 3,505-day simulation used outbreaks of
only one size. Different sizes of outbreaks were tested in
separate simulations. For each simulation, sensitivity was
calculated as the ratio of the number of outbreaks detect-
ed (true positives) to the total number of outbreaks. Since
there is an inherent tradeoff between sensitivity and spe-
cificity, a benchmark specificity of 97% was chosen, pro-
ducing approximately one false alarm per month. A study

that evaluates different detection approaches using simu-
lated outbreaks can be found in [24].

Results
Signal characterization
The data exhibited several periodicities. The weekly plot
(Figure 2) revealed significantly higher ED utilization on
the weekends, when primary care clinics tend to be closed.
The yearly plot (Figure 3) showed an overall increase in
utilization during the winter. A separate yearly ensemble
average profile of respiratory-related visits (Figure 4)
showed a general increase in respiratory-related visits dur-
ing the winter, together with localized peaks in the fall
and spring.

Figure 4
Yearly patterns, respiratory visits Yearly ensemble average of daily respiratory-related visit totals, shown from June 
through June, reveals peaks in visits during the fall, winter and spring.
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Model development
The calculated MAPEs for various models of increasing so-
phistication for both overall and respiratory-related utili-
zation volume in the training dataset are shown in Table
1.

An ARIMA(2,0,1) model for overall volume yielded a
MAPE of 9.37%. This means that that on average, the fore-
casts of the model were to within an average of 13 visits of
the actual daily volume, which averaged 137 visits per
day.

Figure 5
Forecast errors Forecast errors before (Figure 5) and after (Figure 6) ARIMA modeling of residuals.

Table 1: Quality of fit measured as mean absolute percentage error for various forecasting models on the training dataset.

Simple Mean Seasonal Trimmed Seasonal ARIMA

Total Visits % 13.17 9.16 8.96 8.80
Respiratory Visits % 35.29 22.69 21.74 18.35
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For respiratory-related visits, An ARIMA(1,0,1) model
yielded an overall MAPE of 27.54%. This means that that
on average, the forecasts of the model were to within 13
visits of an average of 48 visits per day.

Figures 5 and 6 show the forecast error before and after
ARIMA modeling of residuals. The error of the ARIMA
model is close to white noise, meaning that the ARIMA
model is successful in accounting for most of the signifi-
cant autocorrelations present in the residuals.

Model validation
The MAPE values of the forecasts generated by the various
models for the validation dataset are shown in Table 2.
The ARIMA model performs best, followed by the

trimmed-mean seasonal model and the other more sim-
ple models.

The results of the validation experiments using simulated
outbreaks are shown in Figure 7. In detecting the
simulated outbreaks, the model was able to detect 100%
of simulated 7-day, 30-visits-per-day outbreaks, while
maintaining the benchmark specificity of 97%. Detection
performance decreased with smaller simulated outbreaks,
with sensitivity gradually decreasing to 99% for 25 visits-
per-day, 94% for 20 visits-per-day, 78% for 15 visits-per-
day, 57% for 10 visits-per-day, and 36% for 5 visits-per-
day.

Figure 6
Forecast errors Forecast errors before (Figure 5) and after (Figure 6) ARIMA modeling of residuals.
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Discussion
The forecasting models developed here produced results
with good accuracy, both in their fit to the training data,
and more importantly, in their predictions of the valida-
tion data. The model of overall ED utilization also proved
to be a solid basis for a detection system capable of detect-

ing simulated outbreaks of different sizes with a high
sensitivity and specificity. Sensitivity decreased with out-
break size.

Figure 7
Detection Sensitivity The detection performance of the system when tested with simulated outbreaks of various magni-
tudes. Sensitivity measures how many of the 233 simulated outbreaks were detected by the system at each magnitude. The 
specificity was held at 97%, corresponding to roughly one false alarm per month.

Table 2: Forecast Accuracy measured as Mean Absolute Percentage Error for the various forecasting models on the validation dataset.

Simple Mean Seasonal Trimmed Seasonal ARIMA

Total Visits % 11.58 9.62 9.56 9.37
Respiratory Visits % 50.16 33.80 32.05 27.54
Page 9 of 11
(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2003, 3 http://www.biomedcentral.com/1472-6947/3/2
Limitations of the model
The rate of respiratory-related visits was lower than the
overall visit rate, and thus the model-based forecasts were
less accurate for the respiratory-related visits. Forecasting
accuracy might be improved by integrating multiple re-
gional emergency departments into a single detection sys-
tem, thus increasing the aggregate number of respiratory-
related visits and allowing for more robust modelling of
visit rates.

The accuracy of the models was also limited by the quality
of the administrative chief complaint data used in the
model. Using diagnostic ICD codes to identify the respira-
tory-related visits would probably improve the modelling
accuracy. However, these diagnostic codes are not always
available in real time for surveillance purposes.

Outbreaks of smaller magnitude were more difficult to de-
tect since the few additional visits were likely to be
masked by the inherent variability (noise) in the pattern
of daily visits that is not fully captured in the model. For
larger outbreaks, variability poses less of a problem since
there is a larger signal-to-noise ratio.

Integrated alarms
Once forecasts have been generated, the appropriate
alarm thresholds need to be set. The particular alarm strat-
egy chosen affects the detection specificity and sensitivity
of the detection system as a whole.

One of the primary benefits of ARIMA models is their abil-
ity to correct for local trends in the data – what has hap-
pened on the previous day is incorporated into the
forecast of what will happen today. This works well, for
example, during a particularly severe flu season, where
prolonged periods of high visit rates are adjusted to by the
ARIMA model, thus preventing the alarm from being trig-
gered every day throughout the flu season.

However, if the ARIMA model "adjusts" to an actual out-
break instead of detecting it, a slowly spreading outbreak
or attack might be missed because of this correction. This
correction is most likely to affect detection of outbreaks
occurring over several days, rather than those that occur
suddenly. It is therefore also important to rely on the non-
ARIMA model for outbreak detection.

To address this issue, we propose incorporating both a
fixed seasonal model as well as a seasonal model with
ARIMA residuals into a hybrid detection system. If an
alarm is triggered by only the fixed seasonal model and
not by the ARIMA model, the situation could be made
clear by a textual explanation that accompanies the alarm.
For example, a textual message might be displayed stating:

"Today's visit rates are significantly higher than expected for
this day of the week and season. However, today's visit rates are
in-line with the unseasonably high trend seen over the past few
days."

Alternatively, when both models trigger an alarm, the tex-
tual explanation could read accordingly:

"Today's visit rates are significantly higher than expected for
this day of the week and season. Furthermore, today's visit rates
are also significantly higher than would be expected from the
past few days."

By communicating the results of both models in this way,
a more complete picture of healthcare utilization could be
provided to the users of a detection system.

Conclusions
Based on extensive historical data, the models described
here forecast both respiratory-related and overall pediatric
ED volume with good accuracy, providing a solid basis for
real-time surveillance and bioterrorism detection. A detec-
tion system based on the model of overall ED volume can
detect simulated outbreaks with a high sensitivity and
specificity.

From these models, an integrated and annotated alarms
strategy that combines both historical and recent trends is
proposed to provide a more complete picture of the cur-
rent state of the public health. Using this integrated
alarms strategy, a public health authority could better de-
termine whether the overall and respiratory visit rates sig-
nificantly exceed standardized thresholds. The systematic
methodology described here can be generalized to other
healthcare settings for developing biosurveillance systems
that detect anomalous increases in healthcare utilization
rates.
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